* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download F2 - Sum of Cubes
Survey
Document related concepts
Transcript
2 Factoring by Grouping 0.1 Warm-up, “X” Game Begin this lesson by playing the game, but this time with a product that has even more factors and sums. Warm Up. Begin by creating a table of Factors and Sums for 30 and −30. Below, the tables are started for you; however, you should try to complete the tables yourself. Completed tables are provided at the end of the lesson. Table of Product 30 30 .. . Factors and Sums Factors Sum = 1 · 30 31 = −1 · −30 −31 .. .. = . . Table of Product −30 −30 .. . Factors and Sums Factors Sum = −1 · 30 29 = 1 · −30 −29 .. .. . . = Use the tables you created to complete the following games. Try the games before checking the solutions at the end of the lesson. 30 30 30 −30 31 11 −13 −29 −30 −30 30 30 7 −1 13 −17 −30 −30 −30 30 29 −13 1 17 1 0.2 30 30 −30 −30 −31 −11 13 −7 Factoring by Grouping Consider ax + ay + bx + by. No GCF is shared by all four terms, i.e., the GCF is 1. Look at the “groups” of two terms that do share a GCF. The first two terms share a GCF of a, and the second group of two terms share a GCF of b. 1. Consider the polynomial as two groups of two. 2. Factor the common monomial for each group. 3. The new GCF will be a binomial. a is the gcf z }| { ax + ay + bx + by = ax + ay + bx + by | {z } b is the gcf = a(x + y) + b(x + y), (x + y) is the gcf. = (x + y)(a + b) Notice the use of the under brace to denote the groups, not parentheses. Avoid using parentheses to show the groups, for in some cases this changes the expression. Is the following expression true or false? Justify your answer using the properties of operations. (x + y)(a + b) = (a + b)(x + y) The above is true because of the commutative property of multiplication1 , i.e., the order of the factors does not affect the multiplication. An example of the commutative property is that 3 · 4 = 4 · 3. Example. Factor. 3xy − 4y − 4 + 3x. 1 The commutative property of multiplication is often shortened to the commutative property. When this is done, the reader can determine by the context of the step whether the author is referring to the commutative property of multiplication of the commutative property of addition. 2 Solution. The groups of two do not have an obvious GCF; however, the commutative property allows for terms to be rearranged. 3xy − 4y − 4 + 3x = 3xy + 3x − 4y − 4 Commutative property = 3x(y + 1) − 4(y + 1) The GCF of each group of two. = (y + 1)(3x − 4), y + 1 is the GCF OR, 3xy − 4y − 4 + 3x = y(3x − 4) + 3x − 4, commutative property = y(3x − 4) + 1(3x − 4), the second group has a GCF=1 = (3x − 4)(y + 1) Solutions to games and Table of Factors and Sums for 30 and −30. Table of Product 30 30 30 30 30 30 30 30 Factors and Sums Factors Sum = 1 · 30 31 = 2 · 15 17 = 3 · 10 13 = 5·6 11 = −1 · −30 −31 = −2 · −15 −17 = −3 · −10 −13 = −5 · −6 −11 Table of Product −30 −30 −30 −30 −30 −30 −30 −30 Factors and Factors = −1 · 30 = 1 · −30 = −2 · 15 = 2 · −15 = −3 · 10 = 3 · −10 = −5 · 6 = 5 · −6 30 1 30 30 31 5 Sums Sum 29 −29 13 −13 7 −7 1 −1 30 6 −3 11 −10 −13 3 −30 1 −30 −29 −30 10 −3 5 30 3 −6 10 −2 −15 7 −1 13 −17 −30 −30 −30 30 30 −1 2 6 −5 −15 2 15 29 −13 1 17 30 30 −30 −30 −1 −30 −5 −31 0.3 30 −30 −6 15 −2 13 −11 3 −10 −7 Practice Problems Directions. Factor the expressions by grouping. 1. xy + 5x + 2y + 10 2. xy − 4x + 3y − 12 3. 6xy − 4x + 9y − 6 4. 15xy − 10x + 6y − 4 5. 3xy − 12x + 2y − 8 6. ab − 7a + 4b − 28 3 3 2 7. x + 5x + 3x + 15 8. x − 6x2 + 2x − 12 9. xy + 4x − 3y − 12 10. xy + 5y − 2x − 10 11. xy − 3x − 5y + 15 12. 2xy − 8x − 3y + 12 13 xy + 3y + x + 3 14. xy − 5y + x − 5 15. 3xy − 6x + y − 2 16. 2xy − 3y − 2x + 3 17. xy + 10 + 5x + 2y 18. xy − 12 − 4x + 3y 19. 6xy − 6 − 4x + 9y 20. 3xy − 4 + 3x − 4y 21. xy + 2x + 14 + 7y 22. xy + 3x + 15 + 5y 23. 2x + xy + 4y + 8 24. 3x + xy + 7y + 21 25. 2ab − 5a + 6b − 15 26. 6xy − 4x − 9y + 6 4 27. 3ab + 15 + 9a + 5b 28. 29. 8ab − 4a − 6b + 3 30. 2xy + 14x − 21 − 3y 31. 6ab − 3b + 2a − 1 32. 33. 14b + 21 + 3a + 2ab 2xy + 4x + y + 2 8xy + 2x + 12y + 3 34. 12xy − 3 + 18x − 2y 5 Solutions 1. xy + 5x + 2y + 10 = (y + 5)(x + 2) 2. xy − 4x + 3y − 12 = (y − 4)(x + 3) 3. 5. 6xy − 4x + 9y − 6 = (3y − 2)(2x + 3) 4. 15xy − 10x + 6y − 4 = (3y − 2)(5x + 2) 3xy − 12x + 2y − 8 = (y − 4)(3x + 2) 6. 3 2 2 7. x + 5x + 3x + 15 = (x + 5)(x + 3) 9. xy + 4x − 3y − 12 = (y + 4)(x − 3) 8. ab − 7a + 4b − 28 = (b − 7)(a + 4) 3 x − 6x2 + 2x − 12 = (x − 6)(x2 + 2) 10. xy + 5y − 2x − 10 = (x + 5)(y − 2) 11. xy − 3x − 5y + 15 = (y − 3)(x − 5) 12. 2xy − 8x − 3y + 12 = (y − 4)(2x − 3) 13 xy + 3y + x + 3 = (x + 3)(y + 1) 14. xy − 5y + x − 5 = (x − 5)(y + 1) 15. 3xy − 6x + y − 2 = (y − 2)(3x + 1) 16. 2xy − 3y − 2x + 3 = (2x − 3)(y − 1) 17. xy + 10 + 5x + 2y = (y + 5)(x + 2) 18. xy − 12 − 4x + 3y = (y − 4)(x + 3) 19. 6xy − 6 − 4x + 9y = (3y − 2)(2x + 3) 20. 3xy − 4 + 3x − 4y = (y + 1)(3x − 4) 21. xy + 2x + 14 + 7y = (y + 2)(x + 7) 22. xy + 3x + 15 + 5y = (y + 3)(x + 5) 23. 2x + xy + 4y + 8 = (y + 2)(x + 4) 24. 3x + xy + 7y + 21 = (y + 3)(x + 7) 25. 2ab − 5a + 6b − 15 = (2b − 5)(a + 3) 26. 6xy − 4x − 9y + 6 = (3y − 2)(2x − 3) 27. 3ab + 15 + 9a + 5b = (b + 3)(3a + 5) 28. 2xy + 4x + y + 2 = (y + 2)(2x + 1) 29. 8ab − 4a − 6b + 3 = (2b − 1)(4a − 3) 30. 2xy + 14x − 21 − 3y = (y + 7)(2x − 3) 31. 6ab − 3b + 2a − 1 = (2a − 1)(3b + 1) 32. 8xy + 2x + 12y + 3 = (4y + 1)(2x + 3) 33. 14b + 21 + 3a + 2ab = (2b + 3)(a + 7) 34. 12xy − 3 + 18x − 2y = (2y + 3)(6x − 1) 6