Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Name ________________________________________ Date __________________ Class__________________ LESSON 10-3 Reteach The Unit Circle Radians are a real number measure of rotation. To convert between radians and degrees, use the following identity. π radians = 180° To convert from radians to degrees, solve the identity for 1 radian. 180° 1 radian = π radians To convert from degrees to radians, solve the identity for 1 degree. π radians 1 degree = 180° Convert 60° to radians. ⎛ π radians ⎞ π ⎟ = radians 60° = 60° ⎜ ⎜ 180° 3 ⎟ 3 ⎝ ⎠ Convert Use dimensional analysis to help. Notice that the degrees cancel so the remaining unit is radians. 5π radians to degrees. 4 ⎛ 5π 5π radians = ⎜ 4 ⎝ 4 ⎞ ⎛ 45 180° ⎞ radians ⎟ ⎜ ⎟ = 225° ⎠ ⎝ π radians ⎠ The radians cancel so the remaining unit is degrees. Convert each measure from degrees to radians. 1. −45° 2. 150° ⎛ π radians ⎞ −45° = −45° ⎜ ⎟ ⎝ 180° ⎠ ⎛ π radians ⎞ 150° = 150° ⎜ ⎟ ⎝ 180° ⎠ _____________________________________ _________________________________ 4. −120° 3. 210° _____________________________________ _________________________________ Convert each measure from radians to degrees. 5. 4π radians 3 6. − 4π ⎛ 4π ⎞ ⎛ 180° ⎞ radians = ⎜ radians ⎟ ⎜ ⎟ 3 ⎝ 3 ⎠ ⎝ π radians ⎠ − _____________________________________ 7. π 6 radians 8. _____________________________________ 3π radians 2 3π ⎛ 3π ⎞ ⎛ 180° ⎞ radians = ⎜ − radians ⎟ ⎜ ⎟ 2 ⎝ 2 ⎠ ⎝ π radians ⎠ _________________________________ 5π radians 3 _________________________________ Original content Copyright © by Holt McDougal. Additions and changes to the original content are the responsibility of the instructor. 10-22 Holt McDougal Algebra 2 Name ________________________________________ Date __________________ Class__________________ LESSON 10-3 Reteach The Unit Circle (continued) Use a reference angle to find the exact value of the sine, cosine, and tangent of an angle in any quadrant. Find the value of the trigonometric functions of 150°. Step 1 Sketch the angle. Find the measure of the reference angle. 180° − 150° = 30° Step 2 Draw the triangle with the reference angle. Label the sides with their lengths. Step 3 Find the sine, cosine, and tangent of 30°. 1 sin 30° = 2 cos 30° = tan 30° = 3 2 1 3 The diagram shows the quadrants in which each trigonometric function is positive. Step 4 Adjust the signs for 150°. sin 150° = 1 2 cos 150° = − tan 150° = − 3 2 1 3 Complete to find the exact value of the sine, cosine, and tangent of 315°. 9. Find the measure of the reference angle. ___________________________________ 10. Find the sine, cosine, and tangent of the reference angle. _______________________________ _______________________________ _______________________________ 11. Adjust the signs to find the sine, cosine, and tangent of 315°. _______________________________ _______________________________ _______________________________ Original content Copyright © by Holt McDougal. Additions and changes to the original content are the responsibility of the instructor. 10-23 Holt McDougal Algebra 2 15. 3 16. 17. 2 2 ;− ; −1 2 2 18. 1 3 3 ;− 19. − ; 2 2 3 2 2 ;− ;1 2 2 21. − 7. 30° 1 3 3 ;− ;− 2 2 3 9. 45° 3 1 ; ; 3 2 2 20. − 2 2 2 cos 45° = 2 10. sin 45° = 3 1 ;− ; 3 2 2 tan 45° = 1 22. 2073 mi 2 2 2 cos 315° = 2 tan 315° = −1 11. sin 315° = − Practice C 5π radians 2 1. −270° 2. 3. 50° 4. − 5. 315° 6. −330° 35π 7. radians 18 8. 63° 9. π radians 15 10π radians 9 12. − 7π radians 12 1 3 3 13. − ; ;− 2 2 3 14. − 2 2 ; ; −1 2 2 15. − 17. − 19. 3 1 ;− ; 3 2 2 16. 2 2 ;− ;1 2 2 18. 2 2 ; ;1 2 2 1 3 3 ;− 21. − ; − 2 2 3 23. − 3 1 ; ;− 3 2 2 Challenge 1. 6080 ft 2. 1,600,921 mi; 66,705 mi/h 3. Area of circle = πr 2; A sector whose central angle has a measure of θ radians has an θ times the area of the circle. So 2π θ 1 Area of sector = πr 2 = θr 2 . 2π 2 10. 234° 37π radians 30 11. area of ( ) 4. 3 1 ;− ;− 3 2 2 b. θ = 2 2 ; ; −1 2 2 3. 4 radians 7π radians 6 5. 240° 2. 2π π or 6 3 π π ⋅ 2 3 = π2 6 e. Yes; possible answer: because the arc length of the fragment is very close to the arc length that would be expected for a plate of diameter π 2 2 ;− ; −1 2 2 2. 5π radians 6 4. − 2 d. 1.64 in. Reteach π π c. S = r θ = 25. 138 ft 1. − 4 1. a. r = 20. 0; −1; 0 24. π Problem Solving 1 3 3 ;− ;− 2 2 3 22. − 8. 300° 2π radians 3 1 4 3. C 4. H 5. B 6. F Reading Strategy 6. −270° 1. 2π 2. 0 Original content Copyright © by Holt McDougal. Additions and changes to the original content are the responsibility of the instructor. A35 Holt McDougal Algebra 2