Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Exam 4 Review- Solutions to selected Practice Test Problems Sec 5.3 to 6,3 rev1012 6th ed d)Prove the identity: Put Statement on left | Math 170 Reason on right d) 1. 2 cot 2x = cot x – tan x _____________________________________________________ 1. 2. 3. 2 tan(2 x) 1. cot x = 2 2 tan( x) 1 − tan 2 ( x) 2. tan 2x= 1 − tan 2 ( x) tan( x) 4. algebra 5. cot x - tan(x) 5. cot(x) = cos 2 y= d) 2. 2 tan( x) 1 − tan 2 ( x) 3. simplify 1 - tan(x) tan( x) 4. 1 tan( x) 1 tan( x) 1 + cos(2 y ) 2 _____________________________________________________ 1. 1 + (2cos 2 y - 1) 2 1. cos 2y=2cos2 y -1 2. 2cos 2 y 2 2. Simplify 3. cos 2y 3. Algebra 1 d) 3. Prove the identity: Put Statement on left | Reason on right 2 sin2 x + 2 sin2x cos2x = 1- cos 2x _____________________________________________________ 1. 2 sin2 x (sin2 x + cos2 x) 1. Factor 2 2. 2 sin x 2. sin 2 x+-cos2 x=1 3. 2( 1 − cos(2 x) ) 2 3. cos 2x=1 -2 sin2 x or sin2 x= 4. 1- cos 2x 1 − cos(2 x) 2 4. simplify d) 5. cos 3A = 4 cos3A - 3 cos A _____________________________________________________ 1. cos (A +2A) 1. Algebra 2. cosAcos2A - sinAsin2A 2. cos(A ± B)=cosAcosB m sinAsinB 2 3. cosA(2cos A – 1) 3. cos 2A=2cos 2A – 1 - sinA(2sinAcosA) sin 2A=2sinAcosA 3 4. 2 cos A- cosA 4. Algebra 2 - 2sin A cos A 5. 2 cos3A- cosA 5. sin 2 A= 1-cos2 A - 2(1-cos2 A) cos A 6. 2 cos3A- cosA 6. Algebra - 2cosA+2cos3 A 7. 4 cos3A - 3 cos A 7. Algebra 2 g) 1. sin2 x 2 = csc( x) − cot( x) 2 csc( x) _____________________________________________________ 1 cos x − ) sin x sin x 1. 2 sin x 1 − cos x 2. 2 x 3. sin2 2 ( 1. csc(x) = 1 sin( x) cot x = cos( x) sin( x) 2. Simplify x 1 − cos x 2 2 3. sin2 = j) Solve the trigonometric equations: for 0 o ≤ θ < 360 o or radians 1. 2 cos θ + 3 = 0 cos θ = - 3 /2 cos < 0 in QII and QIII ) ref ∠ = θ = 30 o o o θ = 150 , 210 j) 2. 5 cos θ + 12 = cos θ ans. θ = 150 o , 210 o ans. θ = 5π 7π , 6 6 5 cos θ - cos θ =- 12 4 cos θ = - 12 cos θ = - 12 /4 = - 3 /2 θ= 5π 7π , QII and QIII as above 6 6 3 j) 3. ( cos x – 1) (2 cos x – 1) = 0 . ( cos x – 1)= 0 ( cos x – 1)= 0 cos x= 1 x=0 ans. x = 0, π 3 , 5π 3 , 5π 3 (2 cos x – 1) = 0 Unit circle x=1 point(1,0) (2 cos x – 1) = 0 cos x = 1/2 cos > 0 in QI and QIV ) ref ∠ = θ = 60 o o o θ = 60 , 300 θ= π 3 , 5π 3 ans. x = 0, π 3 k) Solve more complicated trigonometric equations: Use double or half angle formulas for 0 o ≤ θ < 360 o or radians 2. cos 2 θ - cos θ - 2 = 0 Use cos 2 θ = 2 cos2 θ - 1 (2 cos2 θ - 1)- cos θ - 2 = 0 2 cos2 θ - cos θ - 3 = 0 (2 cos θ – 3) (cos θ + 1) = 0 ( 2cos θ – 3)= 0 cos θ = 3/2 Never |cos θ | ≤ 1 ans. θ = π ( cos θ + 1) = 0 cos θ = - 1 Unit circle x=- 1 point(-1,0) ans. θ = π 4 k) Solve more complicated trigonometric equations: Use double or half angle formulas for 0 o ≤ θ < 360 o or radians 3. sin x – cos x = 2 ans. x = 135 o sin x = cos x + 2 Square both sides sin2 x = cos2 x +2 2 cos x + 2 Use sin 2x = 1 - cos2 x 1 - cos2 x = cos2 x +2 2 cos x + 2 0 =2 cos2 x +2 2 cos x + 1 Use quadratic formula a = 2 b = 2 2 c = 1 COS X=( - 2 2 ± 8 − 8 )/4 cos x = - 2 /2 X=135 o, 225 o Only x=135 o checks 4 . cos θ 2 - cos θ = 0 ans. θ = 0 o , 240 o θ cos = cos θ 2 θ Use cos = 2 1 + cos ϑ 2 1 + cos ϑ = cos θ 2 Square both sides 1 + cos ϑ 2 = cos θ 2 0=2 cos2 θ - cos θ - 1 (2 cos θ +1)( cos θ - 1)= 0 ( 2cos θ + 1)= 0 cos θ = -1/2 o o θ =120 ,240 Only X=240 o checks ( cos θ - 1) = 0 cos θ = 1 Unit circle x= 1 point(1,0) o θ =0 ans. θ = 0 o , 240 o 5