Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Welcome, You have received this letter because you are enrolled in Honors Algebra II for the 2013 – 2014 School year. At the end of July, you will find your summer math packet on the teacher website of Janet Johnson under a folder called summer packet. The school website is located at www.ketteringschools.org. If you do not have access to a computer at home, ask a friend or go to your local library. The material in this packet has been covered in both Algebra I and Geometry. You are expected to complete this packet over the summer. For each section, show all of your work and solutions on a separate piece of paper or graph paper. No Calculators. The completed packet will be due on the first day of school. This packet will be graded and is worth several assignments. While you are working on your packet, you may find a topic you are unfamiliar with. If you need to view extra examples of each topic worked out, access the teacher website of Janet Johnson or John Harvey. Solutions to the packet will be posted in early August. Please make sure that you check the answers to verify whether or not you understand the material. Should you need additional help on any of the material, teachers will be available at school on August 7th and August 8th for drop in help from 10:00 a.m. to 12:00 p.m. You may also email either of us and we can try to help. The material in the packet serves as a foundation to Algebra 2. It is very important that you, the students, possess these skills. As such, upon return to school, students will be given quizzes on the material found in the packet. Students will be expected to earn a minimum of an 80% on each quiz. A score of zero will be given until the student reaches the minimum required percentage. Students will be encouraged to come in before and after school to get help on the trouble areas. Up to three attempts may be made on each quiz. The quizzes will need to be completed by midterm of the first quarter. We encourage you to take the packet seriously. Again, if we can be of any help, please email us throughout the summer. We look forward to seeing you next year. Math Department Fairmont High school Number Systems Identify all of the sets of numbers to which each number listed belongs. 1) 7) 13) ! 19) 5 "15 " 6 -2.6 2) 2/3 3) -7 4) 3 5) 16 6) 8) 44 9) π 10) 1.765 11) -10,000 12) 14) 0 15) 1 ! 16) 20) 21) "7 2 10 10 22) ! 17) 1 9 23) 5.11 8 24) ! ! Give an example of: ! "16 ! 18) "12! 3! "1 12 4 5 25) ! 26) a rational number that is not an integer. 27) ! that is not positive. an irrational number 28) an imaginary number. 29) a negative even number. 30) a natural number. 31) a real number that is not natural. 32) a real number that is neither positive or negative. 33) an irrational number that is not a real number. Numerical Properties Identify the properties: 1) 0 + 21 = 21 2) (8+4)+2=8+(4+2) 3) 23 ( 1 ) = 23 4) 5 ( ab ) = ( 5a ) b 5) 3abc * 0 = 0 6) 3 ( a + 2b ) = ( a + 2b ) 3 7) ( a + b ) c = ac + bc 8) 5x + ( 4y + 3x ) = 5x + ( 3x + 4y) 9) 3=3+0 10) 5a + 2b = 2b + 5a 11) 10 + 5x = ( 2 + 8 ) + 5x 12) 4m - 4n = 4 ( m - n ) 13) ( 0 ) ( 15 ) = 0 14) ax + 2b = xa + 2b 15) (14 - 6 ) + 3 = 8 + 3 16) 3 + ( -3 ) = 0 17) 5a + 7a = ( 5 + 7 ) a 18) 3x * 2y = 3 * 2 * x * y 20) " 1% 3$ ' = 1 # 3& 21) 5 ( 4x - 9 ) = 20x - 45 19) abc = 1abc 22) (a+b)+[-(a+b)]=0 23) v ( 4t ) = ( 4t ) v 24) -a2b + a2b = 0 25) 7 * π is a real # 26) -6r + 0 = -6r 27) ( 8 + n ) + ( -n ) = 8 + [ n + ( -n)] 28) m-n=1(m-n) 29) 8+ 2 is a real # 30) mn + 2 = nm + 2 31) -5 ( 3t ) = ( -5 * 3 ) t 32) 5+ 3 is a real # 33) m ( n2 + n ) = mn2 + mn 36) 2c is a real # 34) w 4 " =1 4 w ! !35) ! ! -1 2c + 3c2 = 3c2 + 2c Combining Like Terms Name the terms, variables, coefficients, and constants of the expressions. 1) 3a + 5b + 2 2) 5x - 2 + 3y Combine like terms. 3) -5q - 2 + 2q -8 4) 4a + 2b - 3 - 6a - 5b 5) 7c - 2 ( 3c - 5 ) + 4 6) -3 ( 8 - 7z ) + 6z - 9 ( 4 - 3z ) 8) 1 1 10a " 4 + 8 + 4a 5 2 7) 9) ! 5 6 ( ) ( )( ) "24a + 36b + " 13 60a " 42b 5 - [ 7 - ( 4 - 2m ) - ( 3 - m ) ] + 2m 10) ! ( ) ( ) 8-2[7-(4-y)-(y-6)]-(8-y) 11) 3 ( 6x - 5 ( x - 1 )) 12) 7 - 2 [ 3 - 2 ( x + 4 )] 13) 8 + 4 [ 5 - 6 ( x - 2 )] 14) 3x - [ 2x + ( x - 5 )] 15) 4x - [ 3x - ( 2x - x )] 16) 6 - 2 [ x - 3 - ( x + 4 ) + 3 ( x - 2 )] 17) 7 [ 2 - 3 ( x - 4 ) + 4 ( x - 6 )] 18) x2 + y2 - [ x ( x + y ) - y ( y - x )] 19) 4x2 - 2x ( x - 2y ) + 2y ( 2y + x ) - 2x2 21) -2 ( 3 - n ) - ( 5n + 4 ) - 7n for n = -2 Simplify and Evaluate. 20) -6r + 5 - 3 ( 2r - 1 ) for r = -7 22) 6b - 3 ( b + 7 ) - ( 5 - 4b ) for b = 2 Simplify, then Evaluate for x = -2, y = -3, and z = -4. 23) 7x + 2 [ 6 + 5 ( 3y + 4 ) ] 25) [ 8x + ( y + 3 ) 2 ] 3 + ( 7z - 4 ) 2 24) 2 ( 5z + 4 ) + 3 [ 4 + 2 ( 3x + 4y ) ] Equations Solve the following equations. Answers should be simplified. 1) -3x – 12 = -5x - 24 4) 5n + 4 = 7 ( n + 1 ) – 2n 5) 6 ( x – 3 ) – 4 = 2 ( 2x + 7 ) 6) 3 ( 2x + 3 ) – 4 ( 5x – 1 ) = -5 ( 3x – 2 ) + 4 7) 5x – 4 + 3x = 2 ( x – 4 ) – 2x 8) 4(x+2)+2(x+1)=3(1–x) 9) 7y – ( 4 – 2y ) = 3 ( y + 5 ) 10) 2 ( x – 8 ) + 7 = 5 ( x + 2 )5 - 5x – 19 11) 5 ( 2 – 3x ) = 4 – 3 ( 4x + 7 ) 12) 2 [ x + 3 ( x – 1 )] = 5 ( x – 6 ) + 9 13) 4 [ 6 – 4 ( x – 2) ] = 2 ( x + 4 ) 14) 6t – 2 [ 7 ( t + 1 ) + 4 ] = 10t - 5 15) 7x – 2 [ 4 – ( 5 – x ) ] = 3x – ( 6 – 2x ) 16) 2 m=6 5 44) 3 n + 5 = 11 4 ! 18) ! 25) ! 27) ! !30) 33) ! 2) 17) 6) ! 2 3 x "1= x + 5x 5 4 23) ! 2 5 4 7 y+ = y+ 3 2 5 6 ) x 9 = 2 4 2x + 5 4x " 3 = 4 6 ) 28) 2x = x +16 = 18 4 7) 3 2 5 x " = x "2 4 3 8 24) 3 1 1 x " = x +5 4 2 4 ! 2 3 2 3 x" x= x+ 3 5 5 4 ( ) ( ) 2x + 7 "3 = 7 5 3 4 8x "12 " 2 = 10x "15 4 5 3 32) = "6 x +3 ) 34) ! 8x " 3 "2 = 6x + 9 !3 0.12x – 4 = 0.112x + 1 5 - 0.03w = 0.7w – 0.11 36) ! 37) 4.8 – 0.02x = 6x – 12.7 ! 38) 0.01 ( 5 – 0.2x ) = 0.75 + 0.198x 29) ( ! 40) 5 3 3 1 5 m" = m 4 2! 6 8 2 4x +1 = 5x " 4 " 2 9 3 35) 39) ! ! ! 31) 4x + 4 – x = -2x - 6 18) ! ( 3) 3 7 y= 2 4 26) 1 30 "12x = "3 2x " 5 2 ( 5x + 6 – 7x = 2x - 10 ( ) -2.5x – 4 ( -0.5x + 1 ) = 6.5 0.2 ( 5 – 0.3x ) = 0.16x + 0.208 41) | x | = 9 42) | x + 6 | = 19 43) | 4x - 3 | = -27 44) 3 | x + 6 | = 36 45) 8 | 4x - 3 | = 64 46) -6 | 2x - 14 | = -42 47) | 7 + 3a | = 11 - a 48) 49) 3 | x + 6 | = 9x – 6 | 2a + 7 | = a – 4 50) 2 + 3 | x + 6 | = 35 51) -4 - 2 | 3x + 1 | = -12 53) t – 2k = m; solve for k 55) 57) k= 3 m t + q ; solve for t 4 ( ) ! 59) 61) 56) V= 58) 1 A = bh ; solve for b 2 60) w ; solve for d d 4 2 "r h ; solve for h 3 Ax + By = C; solve for y ! 5 – 3bx = -2b + 2bx; solve for x 62) ay + z = am – ny; solve for y 63) P R = Q + ; solve for D D D 64) 4r ( x + t ) = 3rx + n; solve for x 65) I E ; solve for B = T A+ B ! ! 67) 66) yx - a = cx; solve for x. ! 69) ! d ; solve for d r t= ! F= -1 + 5 | 2x - 3 | = -6 54) ! V = lwh; solve for w 52) ! p= ab " c ; solve for b. a "b m= a j + t ; solve for t 2 ( ) 68) x+ y = d ; solve for x. c 70) A = 21 h b1 + b2 ; solve for b1. ( ) ! Inequalities. ! Solve each inequality. Write the solution in set notation form, and graph the solution on a number line. 1) x+3<6 2) 6 – 2x < -4 3) 4x + 8 ≥ -8 4) –7 – 4x < 13 5) 2x + 3 < 6x - 1 6) 3x – 2 ≥ 7x – 10 – 4x 7) 2x – 14 > 4x + 4 8) 6x + 3 ≤ 3 ( x + 2 ) 9) –2 ( x + 4 ) > 6x - 4 10) 2 ( 3x – 4 ) ≥ 6 ( x + 5 ) 11) 5p - ( 7p + 2 ) < 29 + 3 ( 2p - 5 ) 13) 5 (18 "12t) " 23 (12t +15) # 14 6 14) 2x + 7 x + 4 " 3 3 ! ! ! ! a " 38 a # 21 a " 2 12) 5 6 15) 2y + 3 > 3" y "5 Formulas. Find the distance between each pair of points whose coordinates are given. 1) ( 1, 5 ), ( 3, 1 ) 2) ( -2, -8 ), ( 7, -3 ) 3) ( 3, -4 ), ( -4, -4 ) 4) ( -3, -1 ), ( -11, 3 ) 5) ( "2 7 , 10 ) ( 4 7 , 8 ) 6) ( 2 3, 4 3 ) ( 2 3, " 3 ) Find the coordinates of the midpoint of the line segment whose endpoints are given. ! ! ! ! ! ! 7) ( 5, 7 ), ( 3, 9 ) 8) ( 10, -8 ), ( 4, -3 ) 9) ( 2, 7 ), ( 8, 4 ) 10) ( -3, 2 ), ( -3, -4 ) 11) ( -4, -7 ), ( 2, 1 ) 12) ( 8, -3 ), ( 5, 4 ) If M is the midpoint of line segment AB, find the coordinates of the missing point A, B, or P. 13) A( 1, 5 ), M( 3, 7 ) 14) M( -2, -1 ), A( -3, -5 ) 15) B( -14, 24 ), M( -2, 7 ) 16) A( 11, 12 ), M( 2, 17 ) 17) B( 0, 12 ), M( -5, -1 ) 18) A( 4, -11 ), M( 5, -9 ) Find the missing variable, given the midpoint M. 19) M(2, -5), A(3, 4), B(1, y) 20) M(5, 3 ), A(2, -1), B(x, 4) 2 21) M( " 5 , 3), A(4, y), B(x, -6) 2 Determine the slope of the line passing through each pair of points. Indicate the type of slope you have found and the function’s movement. ! ! 22) ( 2, 1 ), ( 8, 9 ) 23) ( -10, 7 ), ( -20, 8 ) 24) ( 4, 1 ), ( -4, 1 ) 25) ( 3, 2 ), ( 3, -2 ) 26) ( 7, 5 ), ( 3, 1 ) 27) ( 4, 9 ), ( 4, 6 ) 28) ( -4, -1 ), ( -2, -5 ) 29) ( 3, 18 ), ( -12, 18 ) Determine the value of r so the line passing through each pair of points has the given slope. 30) ( 10, r ), ( 3, 4 ), m = " 2 7 33) ( 6, 8 ), ( r, -2 ), m = -3 ! 31) ( -1, -3 ), ( 7, r ), m = 34) ( 6, 3 ), ( r, 2 ), m = ! 3 4 1 2 32) ( 12, r ), ( r, 6 ), m = 2 35) ( r, 3 ), ( -4, 5 ), m = " 2 5 Determine if the three points listed below are collinear. 36) A( 2, 2), B( -2, -6 ) C( 6, 10 ) ! 37) A( 2, 5), B( 0, 7 ), C( 3, 2 ) ! 38) A( 4, -1 ), B( 0, -5 ), C( 2, -1 ) Writing Equations of Lines. Write an equation of a line in slope intercept form given the following: 1) ( -5, 2 ) and m = -4 4) ( -2, 4 ) ( 7,4 ) 5) ( -6, 2 ) ( 3, -5 ) 6) ( 4, 5 ) ( 2, 9 ) 7) ( -3, 1 ) ( -1, -3 ) 8) ( 2, -4!) ( 2, -1 ) 9) ( 6, 0!) ( 0, 4 ) 10) Vertical thru (6, -2) ( 3, 6 ) and m = 2 5 2) 3) ( -6, 6 ) and m = 2 3 11) Horizontal thru ( 8, 4 ) Write an equation of a line in point slope form given the following: 12) (-4 2) m = 13) (9, 7) m = -6 3 4 15) (-1,0) m = 3 16) (-2, -6) m = ! 14) (-8, 3) m = 1 2 17) ( 0, 4 ) m = -1 "5 2 ! Write an equation of a line in standard form given the following: 18) (6, 3 ) m = -5 21) (-3, -5) m = undefined 19) ! 1 (5, -2) m = 4 22) y = 6 – 2x 20) (6, 1) m = 0 23) x= !2 24) What is the slope perpendicular to y = x " 3. 3 1 + y 5 4 3 ! 25) What is the slope parallel to y = 5x – 4. ! 26) What is the slope parallel to 3x – 4y = 8. 27) What is the slope perpendicular to 5x + 2y = 14. Determine if each set of equations is parallel, perpendicular, or neither. 28) 2x + y = 3 4x + 2y = 5 29) 4 x "5 3 3 y = x+2 4 y= 30) 2y + x = 4 y = 2x - 5 31) y = -4x – 3 y = 4x - 3 ! 32) Write an equation of a line in slope intercept form that is parallel to 3x – 5y = 10 and contains the point (10, 7). ! 33) Write an equation of a line in slope intercept form that is parallel to 2x + y = 12 and contains the point (-4, 5). 34) Write an equation of a line in standard form that is parallel to 6x – 2y =2 and contains the point (-2,-8). 35) Write an equation of a line in standard form that is parallel to 4x + 3y = 12 and contains the point (5, 1). 36) Write an equation of a line in slope intercept form that is perpendicular to 2x – 3y =12 and contains the point (4, 5). 37) Write an equation of a line in slope intercept form that is perpendicular to x + 5y = 20 and contains the point (-2, 4). 38) Write an equation of a line in standard form that is perpendicular to 3x – 6y = 6 and contains the point (4, 1). 39) Write an equation of a line in standard form that is perpendicular to 4x + 2y = 10 and contains the point (-6, -2). 40) Write an equation of a line that is perpendicular to y = 4 and contains ( 5, 7 ). 41) Write an equation of a line that is parallel to y = -3 and contains ( -8, 3 ). 42) Write an equation of a line that is parallel to x = 9 and contains ( 5, 2 ). 43) Write an equation of a line that is perpendicular to x = 4 and contains ( -5, 3 ). 44) Write an equation of a line that is parallel to the x-axis thru ( 4, 7 ). 45) Write an equation of a line that is parallel to the y-axis thru ( -3, -2 ) 46) Write an equation of a line that is perpendicular to x-axis thru ( -3, 9 ) 47) Write an equation of a line that is perpendicular to y-axis thru ( -6, -1 ) Determine if the following tables are linear, if you say yes, write the equation in slope intercept form 48. 49. 50. x y x -1 -2 -3 -4 x y -4 -7 y 5 11 21 35 0 8 -2 -4 2 7 0 -1 4 6 2 2 6 5 51. 52. x y 6 115 x 8 6 4 2 9 100 y 28 22 16 10 12 85 15 75 53) Write the equation of the lines in slope intercept form (if possible) a c d b e f g h Determine if the given points lie on the given line. 54) 3x + y = 8 A ( 2, 2 ) B(3, 1) 55) 2x – 5y = 1 A( 2, 1 ) B( -7, -3 ) 56) 3x = 8y – 4 A( 2, 1 ) B( ! ! 2 3 , ) 3 4 Graphing Equations of Lines Find the x and y intercept of each line. 1) 2x + 3y = 6 2) 4x – 5y = 30 3) 5x – 7y = 28 4) 1 3 x+ y=6 2 4 5) 3y = 6 6) 2x = 7 Graph the following equations: ! ! 7) y = 2x – 3 8) y = 10) y = -3 10) x = 4 5 12) y = " x + 2 3 15) 4y = 12 ! 18) 2x = -6 21) x – y = 6 ! "2 x+2 3 13) y = -x 9) y = -4x - 3 11) y = x + 2 14) y = 2 5 x– 3 2 16) 4x – 2y = 4 17) 2x + 3y = 9 19) 2x + y = 5 !20) ! 4x – 5y = 14 22) 2x + 6y = 12 23) 4x – 2y = 7 Inequalities. Graph the following inequalities. 1) 3x > 6 2) 3x – 2y ≤ 6 3) 2x + 4y ≤ 8 4) 4y – 1 < -9 5) x – 3y ≥ -12 6) 3x – y < 2 7) x – 3y > -6 8) -2y ≤ 4 9) 3x + y ≤ 3 10) -4x + 1 < 5 11) 3x – 2y > 8 12) 6x – 9y ≤ -9 13) 4x + 2y > -6 14) x–y≤4 15) 5y ≥ -2x Write an inequality for each graph 16) 17) 18) 19) 20) 21) 22) 23) Systems of Equations and Inequalities. Solve each system of equations using the method indicated below. Solve by Graphing. 1) y=x+4 y = -x + 2 2) y = 2x - 4 y = 2x + 5 3) y = 2x y = -2x + 4 4) 2y - 8 = x 1 y = x+4 2 5) -2x + 5y = -14 x-y=1 6) x+1=y 2x - 2y = 8 7) 1 1 x+ y =2 2 3 x - y = -1 8) 2x + 3y = 5 -6x - 9y = -15 9) 3x + 6 = 7y x + 2y = 11 ! ! Solve by Substitution. 10) y = 2x x+y=9 11) x = 4y 2x + 3y = 22 12) 15x + 4y = 23 10x - y = -3 13) 2x + y = 4 3x + 2y = 1 14) 4x - 2y = 5 2x = y - 1 15) 2x - 3y = 6 1 1 3 x + y = and 2 4 4 18) 16) 2x 3y " = "2 5 4 x y + =7 2 4 ! Solve by Elimination. ! 17) 0.5x - 0.2y = 0 2 " x + y = "2 3 3x - y + 2 = 0 5x - 3y + 4 = 0 ! ! 19) 5x - 2y = 30 x + 2y = 6 20) 5x + 3y = 4 4x - 3y = 14 21) 6x - y = 5 8x + 2y = 10 22) 3x + 2y = 12 2x + 5y = 8 23) 3x + 2y = 5 4x = 22 + 5y 24) 3x + 2y = 5 -6x - 4y = -10 25) 2x - 4y = 5 -x + 2y = 8 26) x " 2y 1 = 8 2 27) 3x + 2y = 4 ! ! ! x y+4 = 2 3 x"y 1 = 6 2 Identify the type of solution that is displayed below. [ Both names that identify type and the number of solutions.] 28) 29) 30) Solve the following quadratic inequalities by graphing. 31) 34) ! 37) y " 2x # 3 y" #1x 2 32) y + 1 < -x y≥1 33) x≥5 x+y≤3 35) 5x – 2y < 10 x+y<4 36) 3x + 4y ≤ 24 x–y>5 38) 2≤x≤6 y > -1 x – 2y ≥ -6 1 y"5#" x "4 2 39) x+y≥3 3x – 2y > 6 y ≥ 4x + 1 +2 y≤3 0≤x≤5 x > -y 3x + 2y ≤ 12 -2x + 5y > -10 x – y ≥ -1 ( ! ) Factoring. Factor using GCF techniques. 1) 75b2c3 + 60bc6 2) 82e3 - 122ef 3) 6r2f - 3rf2 4) 20p2 - 16p2q2 5) 9c4d3 - 6c2d4 6) 20r3s2 + 25rs3 Factor using grouping techniques. 7) 6xy2 - 3xy + 8y - 4 8) 8x2 + 2xy + 12x + 3y 9) 6mn - 9m - 4n + 6 10) 2e2f - 12ef + 3e - 18 11) 2ac + ad + 6bc + 3bd 12) x3 + xy2 - x2y - y3 Factor using difference of squares - special product rules 13) 36n2 - 25 14) 4c2 - 25 15) 25x2 – 9 16) 49 – 9x2 17) 16y2 - 9z2 18) 100x4 – 169 19) 9t2 - 16z4 20) x4-y4 21) 16x6 – 81y4 Factor using Trinomial Techniques. 22) x2 - 4x - 12 23) x2 + x - 12 24) x2 - 9x + 18 25) x2 + 12x + 20 26) x2 + 5x - 14 27) x2 - 9x + 20 28) x2 – 5xy + 4y2 29) x2 + 6xy - 72y2 30) -x2 + 8x - 1 31) 8r2 - 46r + 45 32) 15q2 - 19q + 6 33) 18a2 - 9a – 35 34) 3b2 + 10b - 48 35) 2x2 - 11x - 40 36) 6a2 + 5a - 1 37) 2y2 - y – 10 38) 3y2 - 14y - 24 39) 4x2 - 12xy + 9y2 40) 4y2 + 7y - 2 41) 10x2 - 3xy - y2 42) 3m2 + 19mn - 14n2 43) 16x2 - 35x + 6 44) 15x2 + 8x - 12 45) 6x2 + 19x – 20 46) 6x2 + 7x – 20 47) 10x2 - 29x + 21 48) 25x2 + 40x + 16 49) 3x2 + xy - 10y2 50) 6x2 - 11xy - 10y2 51) 4x2 - 12xy + 9y2 Factor completely using a combination of all methods. 52) 3x3 + 15x2 + 12x 53) 4a2 - 24a + 20 54) 6g3 - 28g2 - 10g 55) 30e3 + 22e2 - 28e 56) 3ar - 6yr + 9am - 18ym 57) 3x3 - 3x 58) 5n2 - 10n 59) 10b3 + 34b2 - 24b 60) 6m3n + 38m2n2 – 28mn3 61) 36a3b2 + 66a2b3 - 210ab4 62) 4x6 – 4x2 63) 81x4 – 16 64) 18p3 - 51p2 - 135p 65) 5x3 + 6x2 – 45x – 54 66) x4 - 26x2 + 25