Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Algebra Notes 8-1 Multiplying Monomials A. Multiplying Monomials 1. Definitions a. A monomial is a number, a variable, or a product of a number or variable. Ex 1: Determine if each expression is a monomial. a.) 17 − s b.) 8 f 2 g c.) 3 4 d.) xy 2. To multiply monomials, write everything out. Ex 2: Simplify each expression a.) (2r 4 )( −12r 5 ) b.) (6cd 5 )(5c5 d 2 ) Ex 3: Simplify each expression a.) ( x 2 y )3 b.) [(a 3b 4 ) 2 ]3 Ex 4: Find the area of a square if a side is 5xy. Ex 5: Simplify [(8 g 3h 4 ) 2 ]2 (2 gh5 ) 4 HW: Algebra 8-1 p. 413-415 15-39 odd, 43-46, 59-60, 63-65, 67-68, 75-82 8-2 Dividing by Monomials Ex 1: Simplify the following. y4 z2 a.) 2 = y z 2 4c d b.) 2 4 = 5e f 3 2 8 x 4 y10 a 3b c.) = 12 2 2 xy b 1. If you have a −2 , then you must switch the 1 numerator and the denominator, so a −2 = 2 a 2. Any number raised to the zero power is 1. Ex 2: Simplify the following. x −6 a.) −4 −5 = y z 75 p 3 q −5 b.) = 5 0 −8 15 p q r y −2 x 4 z −5 c.) −1 0 −6 = x y z HW: Algebra 8-2 p. 421-423 15-37 odd, 38, 43, 47-48, 55-59 odd, 63-77 odd, 8-3 Scientific Notation A. Scientific Notation 1. Very large or very small numbers can be written more easily in scientific notation. 2. The number is written a × 10n where a is at least one but less than ten, and n is an integer. (1 ≤ a < 10 ) Ex 1: Write the numbers in standard notation. a.) 7.23 × 105 b.) 5.17 × 10−4 Ex 2: Write the number in scientific notation. a.) 507,000,000 b.) 0.0000123 3. A lot of times you can multiply or divide numbers in scientific notation easily. (2.2 ×103 )(3 ×105 ) = 2.2(3) × 103 (105 ) Ex 3: Evaluate - answer in both scientific and standard notation. a.) (3 × 1012 )(3 × 10−6 ) 6.4 × 103 b.) 1.6 × 106 HW: Algebra 8-3 p. 428-430 19-41 odd, 45-55 odd, 62-63, 64-73, 77-82 8-4 Polynomials A. Definitions 1. A polynomial is monomial or sum of monomials. 2. A binomial is two monomials added together. 3. A trinomial is three monomials added together. Ex 1: State whether the expression is a polynomial, if it is, state whether it is a monomial, binomial, or trinomial. 2z a.) 7 x 2 yz 3 + + 14 xy b.) 6 − 4 c.) x 2 + 2 xy − 12 d.) 256a 5b5c 6 4. The degree of a monomial is the sum of the exponents of the variables. Ex 2: Find the degree of each monomial. a. 4x 2 b. 3abc c. −20x 2 y 3 z 5. To find the degree of a polynomial, it is the degree of the greatest term. Ex 3: Find the degree of each polynomial. a. 3 x 2 + 5 b. y 7 + y 6 + 3 x 4 m 4 6. To arrange a polynomial in descending order, put the powers in order from highest to lowest. Ex 4: Arrange the x-terms in descending order. a. y 4 x + y 5 x3 − x 2 + yx5 b. 7 x 2 − x5 − 12 x 4 + 3 + x + 7 x 7 HW: Algebra 8-4 p. 434-436 15-20, 22, 25-36, 45-51 odd, 59-60, 61-71 odd, 72-76 8-5 Adding and Subtracting Polynomials A. Adding 1. In order to add polynomials, you may only add like terms. Ex 1: Simplify a.) (7 y 2 + 3 y + 5) + (2 y 2 + 4 y + 1) b.) ( x 3 + 2 x 2 − 4 x + 5) + (2 x 3 + 2 x − 1) B. Subtracting 1. When you subtract polynomials, you MUST distribute the minus sign to all the monomials that follow the subtraction sign. Ex 2: Simplify a.) (2a 2 + 5a − 4) − (5a 2 − a + 3) b.) (8 x 4 − 2 x 2 + 3) − (6 x 2 + 7 x 4 − 3) Ex 3: The measure of the perimeter of the triangle shown is 37s + 42. 14 s + 16 a.) Find the third side. b.) Find the length of the third side if s = 3 meters. 10 s + 20 HW: Algebra 8-5 p. 441-443 13-29 odd, 30-31, 45-46, 47-53 odd, 60-61, 63-68 8-6 Multiplying a Polynomial by a Monomial A. When you multiply a polynomial by a monomial, you must be sure to distribute both the variable and the coefficient to the terms in the polynomial. Ex 1: Simplify a) 7b(4b 2 − 9) = b) 2 x(4a 2 + 3 x3 − 5ax) = c) −3 pq ( p 2 q + 2 p − 3 p 2 q) = d) 4 2 5 x (9 xy + x − 25 y ) = 5 4 e) 4 y (2 y 3 − 8 y 2 + 2 y + 9) − 3( y 2 + 8 y ) = f) Solve for x: 1.) −2( w + 1) + w = 7 − 4 w 2.) x( x − 4) + 2 x = x( x + 12) − 7 HW: Algebra 8-6 p. 446-448 15-35 odd, 38, 39-47 odd, 53-54, 64-65, 67-79 odd, 82-87 8-7 Multiplying Polynomials A. FOIL – to multiply any polynomial, you must FOIL, multiply: F – First terms O – Outer terms I – Inner terms L – Last terms Ex 1: Find each product a. ( x + 4)( x − 9) = b. ( a + 5)(2a − 4) c. ( y − 3) 2 = d. (2 y + 5)(3 y 2 − 8 y + 7) = HW: Algebra 8-7 p. 455-457 13-41odd, 45-46, 56-57, 59-71 odd, 72-77 8-8 Special Products A. Special products Ex 1: Find each product a.) ( x + 5) 2 b.) (7 a − 4) 2 c.) (5 y 4 − 2 y ) 2 d.) ( x + 4)( x − 4) -this result is called a difference of squares. e.) (11r + 7 s )(11r − 7 s ) HW: Algebra 8-8 p. 462-463 13-37 odd, 41-44, 49-50, 53-67 odd, 70