Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
PRACTICE PROBLEMS PARK, BAE JUN Logarithm Math114 Section302 & 308 (1) Write the expression as a single logarithm with a coefficient of 1. 1 log5 6 + log5 + log5 10 3 log5 (6 · 13 · 10) = log5 20 ∴ log5 20 (2) Simplify logb (3b4 ).(Circle only one answer) A. 1 + 4 logb 3 B. 4 + 4 logb 3 C. 4 + logb 3 D. 12 logb (3b4 ) = logb 3 + logb b4 = logb 3 + 4 logb b = logb 3 + 4 ∴C 1 E. none of these 2 PARK, BAE JUN (3) Given A = log3 x and log3 y, express the followings as a single logarithm with a coefficient of 1. (a)2A + 3B 2A + 3B = 2 log3 x + 3 log3 y = log3 x2 + log3 y 3 = log3 (x2 y 3 ) ∴ log3 (x2 y 3 ) (b)3A − 2B 3A − 2B = 3 log3 x − 2 log3 y = log3 x3 − log3 y 2 = log3 ∴ log3 (c) A B x3 y2 A B = log3 x log3 y ∴ logy x = logy x x3 y2 SECTION 302 & 308 3 (4) Which of the following is equal to log 7? Justify your answer. a. log2 10 log2 7 b. log2 7 log2 10 c. log2 7 log 2 d. log 2 log2 7 e. log7 10 log2 10 f. log2 10 log7 10 a.log7 10 b.log10 7 = log 7 log 7 log 7 log 7 log 2 c. 2 = = log 2 log 2 (log 2)2 log 2 (log 2)2 d. log 7 = log 7 log 2 1 log 7 e. 1 log 2 1 log 2 f. 1 log 7 = log 2 = log7 2 log 7 = log 7 = log2 7 log 2 ∴b (5) Which of the following is equal to log 2? Justify your answer. a. a. log 3 log2 3 log 3 log 3 log 2 1 log 2 b. 1 log 3 1 log 3 c. 1 log 2 b. log2 10 log3 10 c. = log 2 = log 3 = log2 3 log 2 = log 2 = log3 2 log 3 d.log3 10 e.log10 3 = log 3 f. log 3 log 2 log 3 ∴a = 1 = log2 10 log 2 log3 10 log2 10 d. log2 10 log2 3 e. log2 3 log2 10 f. log2 3 log 3 4 PARK, BAE JUN (6) Find a number t such that log2 t = −5. t = 2−5 = 1 32 (7) Given log4 x = 3.2 and log4 y = 1.3, evaluate log4 x3 y 4 . log4 x3 y 4 = log4 x3 + log4 y 4 = 3 log4 x + 4 log4 y = 3 · 3.2 + 4 · 1.3 = 14.8 (8) Find all numbers x that satisfy the equation log5 (x + 6) + log5 (x + 2) = 1. log5 (x + 6)(x + 2) = 1 and x + 6 > 0, x + 2 > 0 ⇒ (x + 6)(x + 2) = 51 = 5 and x > −2 ⇒ x2 + 8x + 12 = 5 ⇒ x2 + 8x + 7 = 0 ⇒ (x + 1)(x + 7) = 0 ⇒ x = −1, −7 Since x > −2, x = −1. ∴ x = −1 SECTION 302 & 308 (9) Find all numbers x that satisfy the equation log9 (x + 1) = 5 1 + log9 x. 2 log9 (x + 1) = log9 3 + log9 x = log9 (3x) ⇒ (x + 1) = 3x and x + 1 > 0, 3x > 0 1 2 1 ∴x= 2 ⇒x= (10) Find all numbers x that satisfy the equation log2 (x + 16) − 1 = log2 (x − 2). log2 (x + 16) − log2 2 = log2 (x − 2) ⇒ log2 ⇒ x+16 2 = log2 (x − 2) x + 16 = x − 2 and x > −16, x > 2 2 ⇒ x + 16 = 2x − 4 ⇒ x = 20 ∴ x = 20