Download solution

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
PRACTICE PROBLEMS
PARK, BAE JUN
Logarithm
Math114
Section302 & 308
(1) Write the expression as a single logarithm with a coefficient of 1.
1
log5 6 + log5 + log5 10
3
log5 (6 · 13 · 10) = log5 20
∴ log5 20
(2) Simplify logb (3b4 ).(Circle only one answer)
A. 1 + 4 logb 3
B. 4 + 4 logb 3
C. 4 + logb 3
D. 12
logb (3b4 ) = logb 3 + logb b4 = logb 3 + 4 logb b = logb 3 + 4
∴C
1
E. none of these
2
PARK, BAE JUN
(3) Given A = log3 x and log3 y, express the followings as a single logarithm with a
coefficient of 1.
(a)2A + 3B
2A + 3B = 2 log3 x + 3 log3 y = log3 x2 + log3 y 3 = log3 (x2 y 3 )
∴ log3 (x2 y 3 )
(b)3A − 2B
3A − 2B = 3 log3 x − 2 log3 y = log3 x3 − log3 y 2 = log3
∴ log3
(c)
A
B
x3
y2
A
B
=
log3 x
log3 y
∴ logy x
= logy x
x3
y2
SECTION 302 & 308
3
(4) Which of the following is equal to log 7? Justify your answer.
a.
log2 10
log2 7
b.
log2 7
log2 10
c.
log2 7
log 2
d.
log 2
log2 7
e.
log7 10
log2 10
f.
log2 10
log7 10
a.log7 10
b.log10 7 = log 7
log 7
log 7
log 7
log 2
c. 2 =
=
log 2
log 2
(log 2)2
log 2
(log 2)2
d. log 7 =
log 7
log 2
1
log 7
e. 1
log 2
1
log 2
f. 1
log 7
=
log 2
= log7 2
log 7
=
log 7
= log2 7
log 2
∴b
(5) Which of the following is equal to log 2? Justify your answer.
a.
a.
log 3
log2 3
log 3
log 3
log 2
1
log 2
b. 1
log 3
1
log 3
c. 1
log 2
b.
log2 10
log3 10
c.
= log 2
=
log 3
= log2 3
log 2
=
log 2
= log3 2
log 3
d.log3 10
e.log10 3 = log 3
f.
log 3
log 2
log 3
∴a
=
1
= log2 10
log 2
log3 10
log2 10
d.
log2 10
log2 3
e.
log2 3
log2 10
f.
log2 3
log 3
4
PARK, BAE JUN
(6) Find a number t such that log2 t = −5.
t = 2−5 =
1
32
(7) Given log4 x = 3.2 and log4 y = 1.3, evaluate log4 x3 y 4 .
log4 x3 y 4 = log4 x3 + log4 y 4 = 3 log4 x + 4 log4 y = 3 · 3.2 + 4 · 1.3 = 14.8
(8) Find all numbers x that satisfy the equation log5 (x + 6) + log5 (x + 2) = 1.
log5 (x + 6)(x + 2) = 1 and x + 6 > 0, x + 2 > 0
⇒ (x + 6)(x + 2) = 51 = 5 and x > −2
⇒ x2 + 8x + 12 = 5 ⇒ x2 + 8x + 7 = 0 ⇒ (x + 1)(x + 7) = 0 ⇒ x = −1, −7
Since x > −2, x = −1.
∴ x = −1
SECTION 302 & 308
(9) Find all numbers x that satisfy the equation log9 (x + 1) =
5
1
+ log9 x.
2
log9 (x + 1) = log9 3 + log9 x = log9 (3x)
⇒ (x + 1) = 3x and x + 1 > 0, 3x > 0
1
2
1
∴x=
2
⇒x=
(10) Find all numbers x that satisfy the equation log2 (x + 16) − 1 = log2 (x − 2).
log2 (x + 16) − log2 2 = log2 (x − 2)
⇒ log2
⇒
x+16
2
= log2 (x − 2)
x + 16
= x − 2 and x > −16, x > 2
2
⇒ x + 16 = 2x − 4 ⇒ x = 20
∴ x = 20
Related documents