Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
05 Termwise Higher Integral (Trigonometric, Hyperbolic) In this chapter, for the function which second or more order integral cannot be expressed with the elementary functions among trigonometric functions and hyperbolic functions, we integrate the series expansion of these function termwise. Therefore, sin x, cos x, sinhx, cosh x mentioned in " 4.3 Higher Integral of Elementary Functions " are not treated here. 5.1 Termwise Higher Integral of tan x Since both zeros of tan x and the primitive function -log cos x are x =0 , the latter seems to be a lineal primitive function with a fixed lower limit. Then, we assume zeros of the second or more order primitive function x =0 . are also 5.1.0 Higher Integral of tan x tan x dx tan x dx x = -log cos x 0 x x 2 = non-elementary function 0 0 5.1.1 Termwise Higher Integral of Taylor Series of tan x Formula 5.1.1 When B0=1, B2=1/6, B4=-1/30, B6=1/42, hold for |x|< /2 . tan x dx =Σ k =1 0 tan x dx x x =Σ k =1 tan x dx x x x 3 =Σ k=1 tan x dx x 0 0 22k22k -1B2k 2k+1 x 2k (2k +1)! 2 0 0 x 22k22k -1B2k 2k x 2k (2k)! x 0 0 0 are Bernoulli Numbers, the following expressions n =Σ k =1 22k22k -1B2k 2k+2 x 2k (2k +2)! 22k22k -1B2k 2k+ n-1 x 2k (2k + n -1)! Proof tan x can be expanded to Taylor series as follows. tan x = Σ k=1 22k22k -1B2k 2k-1 x 2k (2k -1)! |x| < 2 Integrating both sides of this with respect to x from 0 to x repeatedly, we obtain the desired expression. (1) Termwise Higher Definite Integral of Taylor Series of tan x Substituting x = /2 for Formula 5.1.1 , we obtain the following expressions. tan x dx 2 x 0 0 2 =Σ k=1 22k22k -1B2k 2k (2k +1)! -1- 2 2k+1 (1.2') tan x dx 2 x x 0 =Σ k=1 0 0 tan x dx 2 0 3 x x 0 4 22k22k -1B2k 2k (2k +2)! =Σ k =1 0 2 2k+2 (1.3') 22k22k -1B2k 2k (2k +3)! 2 2k+3 22k22k -1B2k 2k (2k + n -1)! 2k+ n-1 (1.4') tan x dx 2 0 x x 0 n 0 =Σ k =1 2 (1.n') (2) Taylor Series of the 1st order Integral of tan x The1st order Integral of tan x is as follows. 2k 2k x 2 2 -1B2k tan x dx = Σ 2k (2k)! k=1 0 x 2k = -log cos x From this, the following expression follows immediately. 2k 2k 2 2 -1B 2k 2k Σ k =1 2k (2k)! Substituting Σ k =1 = -log cos x x x =1 , 1/2 , /4 (1.t) 2 22k -1B2k Σ 2k (2k)! k =1 = -log cos 1 2k 2 -1B2k Σ 2k (2k)! k =1 2 for this one by one, we obtain the following special values. 22k22k -1B2k 2k (2k)! |x|< |x|< = -log cos 2 1 2 2k = -log cos This is used in 5.3.1 later. 4 5.1.2 Termwise Higher Integral of Fourier Series of tan x Formula 5.1.2 Let (x) =Σ (-1)k-1 be a Dirichlet Eta Function and kx for |x|< /2 . be a ceiling function, then the following k =1 expressions hold 1 (-1)k-1 1 2 = 0Σ k x tan x dx sin 2 0 2 k=1 k 1 x x 2 1 (-1)k-1 2 2 = 1Σ k x tan x dx sin 2 0 0 2 k=1 k 2 x x x 1 (-1)k-1 3 3 tan x dx = 2 Σ sin 2k x 3 2 0 0 0 2 k=1 k x x 0 0 x 4 1 (-1)k-1 tan x dx = 3 Σ sin 2k x 4 2 2 k=1 k 4 -2- + (1) x 0 20 (1) + 0 2 (1) + 0 2 + 0! x1 1! x 2 (3) x 0 - 2 2! 0! 2 (1) x 3 20 3! - (3) x 1 22 1! tan x dx x 0 x n = 0 1 Σ (-1)k-1 2n-1 k=1 k n sin 2k x - n 2 n/2 k-1 + Σ (-1) (2k -1) 22k-2 k =1 n+1-2k x (n +1-2k)! Proof tan x can be expanded to Fourier series in a broad meaning.as follows. 1 e ix - e -ix 1- e 2ix =i = i1- e 2ix1 tan x = -ix 2ix i ix e +e 1+ e e 2ix + e 4ix - e 6ix +- = i - i2e 2ix - 2e 4ix + 2e 6ix - 2e 8ix +- = 2(sin 2x - sin 4x + sin 6x - sin 8x +-) -2i(cos 2x - cos 4x + cos 6x - cos 8x +-) + i (2.0) y 40 30 20 10 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 -10 0.2 0.4 0.6 0.8 1.0 1.2 1.4 x -20 -30 -40 tan(x) 2*sin(2*x) - 2*sin(4*x) + 2*sin(6*x) - 2*sin(8*x) tan x is the locus of the median (central line) of this real number part. (See the figure) However calculus of the right side of (2.0) may be carried out, the real number does not turn into an imaginary number and the contrary does not exist either. Therefore, limiting the range of tan x and the higher order integral to the real number, we calculate only the real number part of the right side of (2.0) . Although the Riemann zeta (2n) is obtained from calculation of the imaginary number part, since it is long, it is omitted in this section. Now, integrate the real number part of both sides of (2.0) with respect to x from 0 to x , then x 2(sin 2x - sin 4x + sin 6x - sin 8x +-)dx x tan x dx = 0 0 ==- cos 2x cos 4x cos 6x cos 8x + +- 2 3 4 1 cos 2x cos 4x cos 6x cos 8x + +- 1 2 3 4 i.e. 0 x k-1 (-1) 1 k-1 cos 2k x +Σ tan x dx = - 0 Σ(-1) k=1 2 k=1 k1 k1 -3- + x 0 1 1 1 1 - + - +- 1 2 3 4 Here, let 0 -cos x = sin x x 2 (-1)k-1 k=1 kx , (x)=Σ 1 (-1)k-1 tan x dx = 0 Σ sin 2k x 1 2 2 k=1 k , then we obtain (1) x 0 + This is consistent with the real number part of the Fourier series of 20 0! -log cos x . Next, integrate both sides of this with respect to x from 0 to x , then 1 (-1)k-1 sin 2kx 0Σ 1 2 2 k =1 k tan x dx = x x 0 0 0 = 1 (-1)k-1 Σ 21 k=1 k1 1 (-1) Σ 21 k =1 k1 - 20 0! x 1 0 0 k-1 = (1) x 0 dx 2 (1) x sin 2kx 2 1! 2 x 2 sin 2kx - 2 2 + (1) x 20 1 1! Next, integrate both sides of this with respect to x from 0 to x , then tan x dx = 2 Σ x x x 1 3 2 0 0 0 = = Σ 22 k=1 1 22 k=1 k-1 1 (-1)k-1 Σ k=1 (-1) k 1 (-1)k-1 k 1 3 sin 2k x 2 + 3 2 + (1) x 3 2 + k 1 sin 2k x sin 2k x - 20 20 2 2! (1) x 2 20 (1) x 2 2! - 2! 1 x 0 (-1)k-1 2Σ 2 k=1 cos 2k0 k 3 (3) x 0 22 0! Hereafter, in a similar way we obtain the desired expressions. (1) Termwise Higher Definite Integral of Fourier Series of tan x x = /2 Substituting for Formula 5.1.2 , we obtain the following expressions. tan x dx 2 x 0 2 = 0 2 x x 0 tan x dx 3 = 0 0 tan x dx 2 0 x 0 x 4 = 0 2 0 x 0 x tan x dx = 0 2 0 5 x 0 0 x (1) 201! 2 1 (1) 202! 2 2 (1) - 203! 2 3 (1) 4 204! n /2 tan x dx = Σ 6 (2.2') k =1 2 - - (3) 0 220! 2 (3) 221! 2 1 (3) 2 222! (-1)k-1 (2k -1) 22k-2(n +1-2k)! -4- - 2 2 (3) (2.3') 22 (2.4') + (5) 240! n+1-2k + + (5) (n) 2n-1 24 sin n 2 (2.5') (2.n') (2) Fourier Series of the1st order Integral of tan x The1st order Integral of tan x is as follows. x 1 k-1 tan x dx = - 0 (-1) 0 2 k =1 Σ cos 2k x log 2 0 + x = -log cos x 0! k1 From this, the following expression follows immediately. cos 2k x = log(2cos x) k1 k-1 (-1) Σ k =1 Substituting x =1 , 1/2 (2.f) 2 for this one by one, we obtain the following special values. cos 2k = log(2cos 1) k1 cosk = log2cos(1/2) k1 k-1 (-1) Σ k =1 |x|< k-1 (-1) Σ k =1 5.1.3 Dirichlet Odd Eta Comparing Taylor series of tan x and Fourier series of tan x, we obtain Dirichlet Odd Eta Formula 5.1.3 When B2k , (x), (x) denote Bernoulli Numbers, Dirichlet Eta Function and Riemann Zeta Function respectively, the following expressions hold. 2k 2 -1B 2k (3) = -Σ k=1 2k (2k +2)! 2k+2 + 2 2! (1) - (3) 22k -1B2k 2k+3 3 (3) = (1) 3! Σ k=1 2k (2k +3)! 1 22k -1B2k 2k+4 4 2 (5) = Σ (1) + (3) - (5) 4! 2! k=1 2k (2k +4)! (5) = 22k -1B2k 2k+ 5 5 3 (1)+ (3) 3! 5! Σ k=1 2k (2k +5)! 1 2k 2 -1B2k 2k+ 6 6 4 2 + (7) = -Σ (1)(3)+ (5)- (7) 6! 4! 2! k=1 2k (2k +6)! 22k -1B2k 2k+7 7 5 3 (7) = (1)+ (3)(5) 5! 3! 7! Σ k=1 2k (2k +7)! 2k 2 -1B 2k 2k+2n n (2n +1) = (-1) Σ k=1 2k (2k +2n )! 1 n - (-1) (2n +1) = (-1)n n -1 (-1) Σ k =0 Σ k=1 k 2n-2k (2n -2k)! (2k +1) - (2n +1) 22k -1B2k 2k+2n +1 2k (2k +2n +1)! -5- (-1)n - n -1 (-1) Σ k=0 3 (1) 2n+1-2k k (2n +1-2k)! (2k +1) Proof tan x dx 2 x 0 x = 202! 0 0 tan x dx 2 x 0 x =Σ 3 k=1 0 0 2 (3) 2 - 220! 2 22k22k -1B2k 2k (2k +2)! (3) 0 2 - (2.3') 22 2k+2 (1.3') from these (1) 2! (3) 0 2 - 2 0! 2 - 202! (1) (3) 2 2 -(3) - =Σ k =1 22k22k -1B2k 2k (2k +2)! 2 2k+2 22k -1B2k 2k+2 =Σ k =1 2k (2k +2)! (3) 2 22 22 22k -1B2k 2k+2 2 + (3) = -Σ (1) - (3) 2! k=1 2k (2k +2)! i.e. Next tan x dx 2 0 x x 0 4 = 0 (1) 203! 2 0 x 0 0 x tan x dx = Σ 4 k =1 2 3 - (3) 221! 22k22k -1B2k 2k (2k +3)! 1 2k+3 2 2 (2.4') (1.4') from these (1) 203! (1) 3! 2 - 221! 2 1 =Σ k=1 22k22k -1B2k 2k (2k +3)! 2 2k+3 22k -1B2k 2k+3 =Σ 1! k =1 2k (2k +3)! (3) 3 1 22k -1B2k 2k+3 3 (3) = (1) 3! Σ k=1 2k (2k +3)! 1 i.e. (3) 3 Hereafter, in a similar way we obtain the desired expressions. 5.1.4 Riemann Odd Zeta Applying (n) = 2n-1 2n-1 - 1 (n) for Formula 5.1.3 , we obtain Riemann Zeta Function. Formula 5.1.4 22 (3) = - 3 2 -1 22k -1B2k 2k+2 2 log 2 Σ 2! k =1 2k (2k +2)! -6- 22k -1B2k 2k+3 3 log 2 Σ 3! k=1 2k (2k +3)! 22 1 (3) = - 2 2 -1 24 (5) = 5 2 -1 22k -1B2k 2k+4 4 2 22-1 (3) log 2 + Σ 4! 2! 22 k =1 2k (2k +4)! 24 1 (5) = 4 2 -1 2k 2 -1B2k 2k+ 5 5 3 22-1 (3) log 2 + Σ 5! 3! 22 k=1 2k (2k +5)! 22k -1B2k 2k+ 6 6 + log 2 Σ 6! k =1 2k (2k +6)! 4 22-1 2 24-1 26 + 7 (3)+ (5) 4! 22 2! 24 2 -1 26 (7) = - 7 2 -1 log 2 7! 7 22k -1B2k 2k+7 Σ k=1 2k (2k +7)! 5 22-1 3 24-1 26 1 + 6 (3) + (5) 3! 24 5! 22 2 -1 26 1 (7) = - 6 2 -1 2k 2 -1B 2k 2k+2n 2n 22n (2n +1) = (-1) 2n+1 log 2 Σ (2n)! 2 -1 k=1 2k (2k +2n)! 2n-2k 22k-1-1 22n n -1 n k - (-1) 2n+1 Σ(-1) (2k +1) (2n -2k)! 22k-1 2 -1 k=1 n (2n +1) = - (-1)n 22n 22n-1 (-1)n Σ k=1 2k 2 -1B2k 2n+1 log 2 2k+2n+1 2k (2k +2n +1) ! (2n +1) ! 22k -1 22n n -1 k Σ(-1) (2n +1-2k) ! 22k (2k +1) 22n-1 k=1 2n+1-2k -7- 5.2 Termwise Higher Integral of tanh x Since both zeros of tanh x and the primitive function log cosh x are x =0 , the latter seems to be a lineal primitive function with a fixed lower limit. Then, we assume zeros of the second or more order primitive function x =0 . are also 5.2.0 Higher Integral of tanh x tanh x dx tanh x dx x = log cosh x 0 x x 2 = non-elementary function 0 0 5.2.1 Termwise Higher Integral of Taylor Series of tanh x Formula 5.2.1 When B0=1, B2=1/6, B4=-1/30, B6=1/42, hold for |x|< are Bernoulli Numbers, the following expressions /2 . tanh x dx x 22k22k -1B2k 2k x 2k (2k)! =Σ k=1 0 tanh x dx x x =Σ k=1 0 0 tanh x dx x x x 22k22k -1B2k 2k+1 x 2k (2k +1)! 2 3 0 0 0 22k22k -1B2k 2k+2 x 2k (2k +2)! =Σ k=1 tanh x dx x x n 0 0 =Σ k=1 22k22k -1B2k 2k+ n-1 x 2k (2k + n -1)! Proof tanh x can be expanded to Taylor series as follows. tanh x = Σ k =1 22k22k -1B2k 2k-1 x 2k (2k -1)! |x| < 2 Integrating both sides of this with respect to x from 0 to x repeatedly, we obtain the desired expression. (1) Termwise Higher Definite Integral of Taylor Series of tanh x Substituting x = 1/2 for Formula 5.2.1 , we obtain the following expressions. 1 2 =Σ tanh x dx k=1 0 1 2 tanh x dx 0 x 0 2 22k22k -1B2k 2k (2k)! =Σ k=1 22k22k -1B2k 2k (2k +1)! -8- 1 2 2k 1 2 (1.1') 2k+1 (1.2') 1 2 x tanh x dx 0 x =Σ 3 k =1 0 0 22k22k -1B2k 2k (2k +2)! 1 2 2k+2 (1.3') 1 2 tanh x dx 0 x x 0 =Σ n k=1 0 22k22k -1B2k 2k (2k + n -1)! 1 2 2k+ n-1 (1.n') (2) Taylor Series of the 1st order Integral of tanh x The 1st order Integral of tanh x is as follows. 2k 2k x 2 2 -1 B 2k tanh xdx = Σ 2k (2k)! k=1 0 x 2k = log cosh x From this, the following expression follows immediately. 2k 2k 2 2 -1 B 2k 2k Σ k =1 2k (2k)! Substituting Σ k =1 = log cosh x x x =1 , 1/2 , /4 2 (1.t) 2 = log cosh 1 22k -1B2k Σ 2k (2k)! k =1 2k 2 -1B2k Σ 2k (2k)! k =1 for this one by one, we obtain the following special values. 22k22k -1B2k 2k (2k)! |x|< |x|< = log cosh 2 2k = log cosh 1 2 4 This is used in 5.4.1 later. 5.2.2 Termwise Higher Integral of Fourier Series of tanh x Formula 5.2.2 Let (x) be a Dirichlet Eta Function, tanh x dx x = 0 x x 0 0 then the following expressions hold for x >0 . -2k x 1 (1) x 0 x1 k-1 e + Σ(-1) 1! 20 k=1 20 0! k1 -2k x 1 (1) x 1 (2) x 0 x2 k-1 e + 1 + tanh x dx = - 1 Σ(-1) 2! 0! 2 k=1 2 20 1! k2 2 -2k x 1 x3 k-1 e + tanh x dx = 2 Σ(-1) 3! 0 0 0 2 k=1 k3 (1) x 2 (2) x 1 (3) x 0 + 1 1! 220! 0! 20 2! 2 -2k x x x (-1)n-1 xn k-1 e tanh x dx n = + Σ(-1) n! 0 0 2n-1 k=1 kn x x x 3 -9- n -1 - Σ(-1) k (k +1) 2k k =0 n-1- k x (n -1- k)! Proof tanh x can be expanded to a Fourier series as follows. (See the following figure). 1- e -2x e x - e -x = = 1- e -2x1 - e -2x + e -4x tanh x = x -x -2x 1+ e e +e e -6x +- = 1 - 2e -2x - 2e -4x + 2e -6x - 2e -8x +- = 1 - 2(cos 2ix - cos 4ix + cos 6ix - cos 8ix +- ) - 2i(sin 2ix - sin 4ix + sin 6ix - sin 8ix +- ) y (2.0) 1.0 0.8 0.6 0.4 0.2 0.0 0 1 2 3 4 5 x tanh(x) 1 - 2*(exp(-2*x) - exp(-20002*x))/(exp(-2*x) + 1) Integrate both sides of (2.0) with respect to x from 0 to x , then x 1 - 2e x tanh xdx = 0 -2x - e -4x + e -6x - e -8x +- dx 0 e e =x + 1 2 = x+ e -2x e -4x e -6x e -8x + +- 1 2 3 4 -2x -4x + e -6x - 3 e -8x 4 +- - i.e. x k =1 0 Here, let k-1 tanh x dx = Σ(-1) (-1)k-1 k=1 kx (x)=Σ 0 k =1 x (-1)k-1 k=1 k1 +x -Σ , then we obtain tanh x dx = Σ(-1) x e -2k k1 k-1 e -2k k1 x + x - (1) log cosh x . Next, integrate both sides of this with respect to x from 0 to x , then Of course, this is also the Fourier series expansion of - 10 - x 0 1 1 1 1 - + - +- 1 2 3 4 tanh x dx x x x 2 = 0 0 0 -2k x 1 k-1 e + x - (1) dx Σ(-1) 20 k =1 k1 -2k x 1 x2 x1 k-1 e = - 1 Σ(-1) - (1) + 2! 1! 2 k=1 k2 -2k x =- + 0 0 (1) x 1 (2) x x + 1 2! 0! 20 1! 2 2 1 k-1 e -1 ( ) Σ 21 k =1 k2 x Hereafter, in a similar way we obtein the desired expressions. (1) Termwise Higher Definite Integral of Fourier Series of tan x x = 1/2 > 0 Substituting 1 2 for Formula 5.2.2 , we obtain the following expressions. k-1 = Σ(-1) tanh x dx k =1 0 1 2 0 x 0 (1) e -k 1 1 + - 0 1 1! 2 2 1! k 1 2 -k 1 2 1 1 k-1 e + tanh x dx = - 1 Σ(-1) 2 k=1 k 2 2! 2 (1) 1 1 (2) - 0 + 1 2 1! 2 2 0! 0 x 0 0 -k 1 1 1 k-1 e + tanh x dx = 2 Σ(-1) 3 3! 2 2 k=1 k (1) 1 2 (2) 1 - 0 + 1 2 2! 2 2 1! 2 3 1 2 0 x 0 (2.1') 2 1 2 x 0 (-1)n-1 1 2 n tanh x dx = 0 (2.2') 3 1 (3) - 2 0! 2 1 1 e -k + n! 2 2n-1 k=1 kn n -1 (-1)k 1 n-1- k (k +1) -Σ k =0 2k (n -1- k)! 2 x 0 k-1 Σ(-1) 1 2 0 (2.3') n (2.n') (2) Taylor Series of the 1st order Integral of tanh x The 1st order Integral of tanh x is as follows. -2k x x k-1 e (-1) tanh x dx = k =1 0 k1 Σ + x - log 2 = log cosh x From this, the following expression follows immediately. -2k x k-1 e = log(2cosh x) - x (-1) 1 Σ k =1 Substituting k x =1 , 1/2 , /2 k-1 (-1) Σ k =1 e -2k k1 x >0 x >0 for this one by one, we obtain the following special values. = log(2cosh 1) - 1 - 11 - (2.f) k-1 (-1) Σ k =1 k-1 Σ(-1) k =1 e -k k1 e -k k1 1 2 - - = log 2cosh = log 2cosh 2 1 2 2 5.2.3 Dirichlet Eta Function Comparing Taylor series of tanh x and Fourier series of tanh x, we obtain Dirichlet Eta Function. Formula 5.2.3 When B2k , (x) denote Bernoulli Numbers and Dirichlet Eta Function, the following expressions hold. = Σ(-1) 0 22k -1B2k 1 1 +Σ 2 0! k=1 2k (2k -1)! k-1 -k e k=1 k-1 2k 2 -1 B 2k 1 1 e -k -Σ + 1 2 1! 2k (2k)! k=1 k k-1 2k 2 -1 B 2k 1 1 1 e -k +Σ + (1) 2 2 2! 1! k =1 2k (2k +1)! k (1) = Σ(-1) k=1 (2) = Σ(-1) k=1 (3) = Σ(-1) k=1 k-1 (4) = Σ(-1)k-1 k=1 (n) = Σ(-1) k=1 k-1 2k 2 -1 B 2k 1 1 1 e -k + (1)+ Σ 2 3! 2! k =1 2k (2k +2)! k3 2k 2 -1 B 2k 1 1 e -k +Σ 4 2 4! k =1 2k (2k +3)! k 1 1 + (1) (2) + 3! 2! 1 (2) 1! 1 (3) 1! 2k 2 -1B2k (-1)n 1 e -k n + (-1) Σ 2 n! k=1 2k (2k + n -1)! kn n -1 (-1)k -Σ (n -k) k! k=1 Proof tanh 1 = 1 - 2e -1 - e -2 + e -3 - e -4 +- 2 1 tanh 2 =Σ k=1 0 = Σ(-1) k-1 -k k =1 0 1 2 e 1 2 2k-1 (1.0') 22k -1B2k 1 +Σ 2 k =1 2k (2k -1)! tanh x dx 22k22k -1B2k 2k (2k -1)! (2.0') k-1 = Σ(-1) k =1 1 e -k + - (1) 2 k1 - 12 - (2.1') 1 2 =Σ tanh x dx k =1 0 (1) = Σ(-1) k-1 k=1 1 2 0 x 0 22k22k -1B2k 2k (2k)! 1 2 2k (1.1') 2k 2 -1 B 2k 1 e -k + Σ 2k (2k)! 2 k=1 k1 -k 1 1 1 2 k-1 e + tanh x dx = - 1 Σ(-1) 2 k=1 k 2 2! 2 (1) 1 1 (2) - 0 + 1 2 1! 2 2 0! 2 1 2 tanh x dx 0 x =Σ 2 k=1 0 (2) = Σ(-1) k-1 k=1 22k22k -1B2k 2k (2k +1)! 1 2 1 2 0 (2.2') 2k+1 (1.2') 2k 2 -1 B 2k 1 1 1 e -k + (1)+Σ 2 2! 1! k =1 2k (2k +1)! k2 Hereafter, in a similar way we obtain the desired expressions.. 5.2.4 Riemann Zeta Function Applying (n) = 2n-1 2n-1 - 1 (n) for Formula 5.2.3 , we obtain Riemann Zeta Function. Formula 5.2.4 21 (2) = 1 2 -1 Σ(-1) 22 (3) = 2 2 -1 k-1 k=1 k-1 (-1) Σ k=1 2k 2 -1 B 2k 1 e -k log 2 + + Σ 1! 22! k=1 2k (2k +1)! k2 2k 2 -1 B 2k 1 e -k log 2 + Σ 2! 23! k=1 2k (2k +2)! k3 1 2 -1 (2) + 1! 21 2k 2 -1 B 2k 1 e -k log 2 +Σ + 4 3! 24! k=1 2k (2k +3)! k 23 (4) = 3 2 -1 k-1 (-1) Σ k=1 22-1 (3) 21-1 (2) + 1! 2! 22 21 (n) = Σ(-1) (-2) Σ 2 -1 2n-1 2n-1-1 k=1 n-1 n-1 k-1 k =1 n-1- j n -2 -1 (n -j) e -k j-1 2 -1 + ( ) Σ j! j=1 2n-1- j kn 22k -1B2k 1 log 2 + 2k (2k + n -1)! 2n ! (n -1)! - 13 - 5.3 Termwise Higher Integral of cot x Since both zeros of cot x and the primitive function log sin x are x = /2 , the latter seems to be a lineal primitive function with a fixed lower limit. Then, we assume zeros of the second or more order primitive function are also x = /2 . 5.3.0 Higher Integral of cot x cot x dx x = log sin x 2 cotx dx x x 2 = non-elementary function 2 2 5.3.1 Termwise Higher Integral of Taylor Series of cot x Formula 5.3.1 When (x) on 0< x < <n> B2k denote Bernoulli Numbers and functions f n 1 xn (x)= log x -Σ n! k=1 k <n> f -Σ k=1 are as follows. 22kB2k 2k+n x 2k (2k +n)! n =1, 2, 3, the following expressions hold . cot x dx x 22kB2k 2k x 2k (2k)! = f<0>(x) = log x -Σ k=1 2 cot x dx x x 2 2 x x x 1 (x) x2 0! 1 x2 0! 0 <1> 2 =f cot x dx 3 = f <2>(x) - 0 f<1> f 2 2 <2> - 1 x1! 2 1 f 2 <1> 2 2 2 x x 1 4 cot x dx = f <3>(x) - 0! x - 2 2 2 0 f 2 <3> 1 x1! 2 - 1 x2! 2 <2> <1> 1 f 2 2 f 2 cot x dx x x 2 2 n =f <n -1> n -2 (x) -Σ k=0 where 1 x2 k! k <0> <1> Proof 2k 22k B2k 2k 2 B 2k x cot x = 1+Σ(-1) x = 1+Σ x 2k (2k)! (2k)! k =1 k=1 2 n =2, 3, 4, f = 0 , f = - log 2 2 2 2 n -1-k > f< k - 14 - From this 2k 1 2 B2k 2k-1 cot x = -Σ x x k =1 2k (2k -1)! Integrate the both sides with respect to x from /2 cot x dx = log x -Σ x k=1 x, to then 2k 22kB2k 2k 2 B 2k x - log 2k (2k)! 2 Σ k=1 2k (2k)! 2 2k 2 Here log -Σ 2 k=1 22kB2k 2k (2k)! 2 2k =0 Because, the following equation is known ( 岩波数学公式Ⅱ p151) 2k 2 B 2k 2k log x -Σ k=1 Then, substituting x = /2 0< x < = log sin x x 2k (2k)! for this, we obtain the above. Thus, cot x dx = log x -Σ x k=1 22kB2k 2k x = f<0>(x) 2k (2k)! 2 Next, integrate the both sides with respect to x x 2 2 f x cot x dx 2 = x to x, <0> (x)dx = f<1>(x) - f<1> then 2 2 Furthermore, integrate the both sides with respect to x /2 from x x cot x dx 3 = 2 2 2 f x <1> x (x) - f<1> from /2 to x , then 2 dx 2 <2> =f <2> (x) - f 2 1 x1! 2 1 f 2 <1> Hereafter, in a similar way we obtein the desired expressions. Although Formula 5.3.1 is a general expression anyway, if it is expand actually, it is very complicated. Then, this was devised and was made the same easy expression as tan x. It is as follows. Formula 5.3.1' When B2k denote Bernoulli Numbers, the following expressions hold for 0< x < . 2k 2k x x 2 2 -1B 2k 2k+ n-1 n cotx dx = -Σ x2k (2k + n -1)! 2 k=1 2 Proof 2 cot x = -tan x - 2 - 15 - tan x = Σ k=1 22k22k -1B2k 2k-1 x 2k (2k -1)! |x|< 2 From these cotx = -Σ k =1 22k22k -1B2k x2k (2k -1)! 2 2k-1 0< x < Integratingboth sides of this with respect to x from /2 to x repeatedly, we obtain the desired expressions. (1) Termwise Higher Definite Integral of Taylor Series of cot x When n 1 xn (x)= log x -Σ n! k=1 k <n> f x =0 substituting 0 cot x dx 2 2 0 x 1 cot x dx = 0! 2 2 2 0 2 x 3 x 4 cot x dx = - 0 0 2 1 = 0! 2 x k=1 22kB2k 2k+n x 2k (2k +n)! 2 1 0! 2 f<1> <2> f 2 2 0 <3> f cot x dx 0 x x 2 2 2 n n -2 =Σ k=0 (-1)k+1 k! (1.2') 1 + 1! 2 2 2 n =1, 2, 3, for Formula 5.3.1 , we obtain the following expressions. x -Σ 1 1! 1 2! <n -1-k > 1 2 2 + k 2 f f<1> 1 2 2 2 f 2 f<2> (1.3') 2 <1> 2 (1.4') (1.n') (2) Taylor Series of the 1st order Integral of cot x The 1st order Integral of cot x is as follows. 2k x 2 B 2k cot x dx = log x -Σ k =1 2k (2k)! x 2k = log sin x 2 From this, the following expression follows immediately. 2k 2 B 2k 2k x Σ k=1 2k (2k)! Substituting Σ k=1 Σ k=1 Σ k=1 0< x < = -log sin x + log x x =1 , 1/2 , /4 for this one by one, we obtain the following special values. 2k 2 B2k 2k (2k)! B2k 2k (2k)! B2k 2k (2k)! = -log sin 1 = -log sin 2 0< x < 2k = -log sin - 16 - 1 - log 2 2 4 + log 4 (1.t) Moreover, from the last expressions of this and 5.1.1 (2) , the next expression follows 2k 2 -2B 2k 2k = -log This is used in 5.5.1 later. Σ k=1 2 2k (2k)! 4 5.3.2 Termwise Higher Integral of Fourier Series of cot x Formula 5.3.2 (x) be Dirichlet Eta Function and 0< x < . Let for be the ceiling function, then the following expressions hold 1 1 1 = 0 Σ 1 sin 2kx 2 2 k=1 k cot x dx x (1) - 2 0! x - 2 0 0 2 cot x dx x x 2 2 cot x dx x x x 2 2 2 x x 2 2 1 1 2 = 1 Σ 2 sin 2kx 2 2 k=1 k 2 3 = 4 cot x dx = 22 Σ k =1 3 sin 2kx 3 2 k 1 1 1 23 1 Σ k =1 k sin 2kx 4 4 2 (1) - 2 1! x - 2 1 0 (1) 2 (3) 3 (3) 0 1 - 202! x - 2 + 220! x - 2 - (1) 203! x- 2 + 221! x- 2 cot x dx x x 2 2 n 1 = n-1 Σ k =1 2 n/2 +Σ k =1 1 k 2kx n sin n 2 (-1)k (2k -1) x2k-2 (n +1-2k)! 2 2 n+1-2k Proof cot x can be expanded to Fourier series in a broad meaning.as follows. 1+ e 2ix e ix + e -ix = -i = -i1 + e 2ix1 cotx = i ix -ix 2ix 1- e e -e + e 2ix + e 4ix + e 6ix + = -i - i2e 2ix + 2e 4ix + 2e 6ix + 2e 8ix + = 2(sin 2x + sin 4x + sin 6x + sin 8x +) -2i(cos 2x + cos 4x + cos 6x + cos 8x +) - i (2.0) cot x is the locus of the median (central line) of this real number part. (See the figure of the following page.) However calculus of the right side of (2.0) may be carried out, the real number does not turn into an imaginary number and the contrary does not exist either. Therefore, limiting the range of cot x and the higher order integral to the real number, we calculate only the real number part of the right side of (2.0). Although the Riemann zeta (2n) is obtained from the calculation of the imaginary number part, long, it is omitted in this section. - 17 - since it is y 40 30 20 10 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 -10 x -20 -30 -40 cot(x) 2*sin(2*x) + 2*sin(4*x) + 2*sin(6*x) + 2*sin(8*x) /2 Now, integrate the real number part of both sides of (2.0) with respect to x from to x , then cot x dx = 2(sin 2x + sin 4x + sin 6x * sin 8x +)dx x x 2 2 cos 2x cos 4x cos 6x cos 8x + + + + =2 3 4 1 x 2 cos 2x cos 4x cos 6x cos 8x =+ + + + 1 2 3 4 - 1 1 1 1 - + - +- 1 2 3 4 i.e. k-1 (-1) 1 cos 2k x -Σ cot x dx = log sin x = - 0 Σ k=1 2 k=1 k 1 k1 x 2 -cos x = sin x - Here, let 2 (-1)k-1 k=1 kx , (x)=Σ 1 1 1 cot x dx = 0 Σ 1 sin 2kx 2 2 k=1 k x , then we obtain (1) - 2 0! x - 2 0 0 2 log sin x /2 to x , then This is consistent with the real number part of the Fourier series of Next, integrate both sides of this with respect to x from cot x dx = x x x 2 2 2 2 = 1 1 1 2kx 0 Σ 1 sin 2 2 k=1 k 2 1 1 2kx 1 Σ 2 sin 2 2 k=1 k 1 1 2 = 1 Σ 2 sin 2kx 2 2 k =1 k - 18 - . (1) - 2 0! x - 2 dx 0 0 (1) x - 2 1! x - 2 1 0 (1) - 2 1! x - 2 0 1 2 /2 Next, integrate both sides of this with respectto x from cot x dx = 2 x x x x 3 2 2 2 2 2 Σ = 2 1 = 2 Σ k=1 1 2 = 22 Σ k =1 1 k =1 1 1 3 sin 2kx 3 2 k 1 2 sin 2kx 2 2 k 1 - 3 2 - 1 Σ k=1 k sin 2kx 3 (1) - 3 sin 2kx 3 2 k 1 to x , then 0 2 2! (1) 202! - 201! x - 2 202! (1) (1) xx- 2 2 2 x - 2 2 + dx x 2 2 1 1 2 2 Σ k=1 (3) 222! cos 2k k x- 3 2 0 Hereafter, in a similar way we obtain the desired expressions. (1) Termwise Higher Definite Integral of Fourier Series of cot x Substituting x =0 for Formula 5.3.2 , we obtain the following expressions. cot x dx x 0 2 2 2 = cot x dx 0 x x 2 2 2 3 2 2 2 cot x dx 0 x x 2 2 2 2 (1) 0 2 2! x x 201! =- cot x dx 0 (1) 4 5 = (1) 203! =- 1 (2.2') 2 2 (1) 2 4! + 0 2 (3) 221! 2 1 (3) 2 2 4 2 0! + 3 2 0 (3) 2 2 2 2! 2 + (3) (2.3') 22 (2.4') - (5) 4 - (5) 2 0! (2.5') 24 cot x dx 0 x x 2 2 2 n n = (-1) n /2 Σ k=1 (-1)k-1 (2k -1) (n +1-2k) ! 2 2k-2 2 n+1-2k - (n) n-1 2 sin n 2 (2.n') (2) Fourier Series of the 1st order Integral of cot x The 1st order Integral of cot x is as follows. x 1 cos 2k x cotx dx = - 2 0 0 Σ k=1 k1 - log 2 = log sin x 0< x < From this, the following expression follows immediately. Σ k=1 cos 2k x = -log(2sin x) k1 Substituting Σ k=1 x =1 , 1/2 0< x < for this one by one, we obtain the following special values. cos 2k = -log(2sin 1) k1 - 19 - (2.f) Σ k =1 cosk k1 = -log2sin(1/2) 5.3.3 Dirichlet Odd Eta & Riemann Odd Zeta Comparing Taylor series of cot x and Fourier series of cot x, we obtain Dirichlet Odd Eta and Riemann Odd Zeta. Formula 5.3.3 When B2k , (x), (x) denote Bernoulli Numbers, Dirichlet Eta Function and Riemann Zeta Function respectively, the following expressions hold. B2k log = 1 +Σ 2k 2k (2k +1)! 2 1 2 B2k +Σ (3) = 2k+2 - (3) log -Σ 2! k =1 k k=1 2k (2k +2)! 3 3 1 1 B2k -Σ (3) = 2k+3 log -Σ 2 2 +3 ! ( ) 3! k k k k=1 k =1 4 4 1 2 B2k 2k+4 -Σ + (5) = (3) - (5) log -Σ 2! 4! k =1 k k=1 2k (2k +4)! 5 1 1 5 3 B2k 2k+5 -Σ + (5) = (3) log -Σ 3! 5! k=1 k k =1 2k (2k +5)! k=1 (7)= (7)= - 6 6! 1 B2k log -Σ +Σ 2k (2k +6)! 1 k 6 k=1 7 2k+6 4 - 4! k=1 7! log -Σ -Σ 2k (2k +7)! k =1 B2k 1 k 7 2k+7 + k =1 (3)+ 5 5! 2 2! (5) - (7) (3)- 3 3! (5) (2n +1) = (-1) n 2n (2n)! 2n log -Σ k =1 n -1 2n-2k k=1 (2n -2k) ! + (-1)nΣ(-1)k-1 (2n +1) = (-1) n n + (-1) 1 k 2n+1 (2n +1) ! 1 1 n -1 (-1) Σ k=1 B2k k =1 2k (2k +2n ) ! -Σ (2k +1) - (2n +1) 2n +1 log - Σ k=1 1 k 2n-2k+1 k-1 2k+2n (2n -2k +1) ! B2k k=1 2k (2k +2n +1) ! -Σ 2k+2n+1 (2k +1) Proof From Fourier series (2.2') and Taylor series (1.2') 1 log 2 1 0 <1> = f 0 0! 2 2 2 1! 1 =1! 2 1 (2.2") 2 log 2 -1 -Σ k =1 - 20 - 22kB2k 2k (2k +1)! 2 2k+1 Hence we obtain B2k k =1 2k (2k +1)! log = 1 + Σ 2k Next, substitute (2.2") for Taylor series (1.3') , then cot x dx 0 x x 2 2 2 3 <2> = -f <2> = -f 2 1 + 1! log 2 1! 2 2 2 f<1> 2 From this and Fourier series (2.3') , we obtain 2 1 log 2 3 2 ( ) 2! 2 i.e. 1 2 1 (3) = -f<2> + 2 2 2 0! 2 1 1 (3) <2> = 3 + ( ) f 2 22 0! 22 log 2 2! 2 log 2 1! 2 2 2 (a) From (a), it is as follows. (3) = -2 f 2 <2> 2 = -2 2 2 - 2! 2 log 2 -Σ -Σ 1 2! 2 2! 2 =- log 2 - (3) 2 log -Σ k =1 1 k 2 k=1 k=1 22kB2k 2k (2k +2)! 2 2 2 <3> = -f log 2 - (3) 2! 1 B2k +Σ 2k+2 - (3) 2 2 +2 ! ( ) k k k k=1 2 + = -f 2 2k+2 2 Next, substitute (2.2") and (a) for Taylor series (1.4') one by one, then 0 x x 1 1 <2> 4 <3> cot x dx f 1! 2 2 2 2 f 2 <1> 1 1 (3) 3 + ( ) 22 22 0! 1 2 2 - 1 2! From this and Fourier series (2.4') , we obtain log 2 3! i.e. 1 22 Substitute 1 22 2 2 f<3> 1 3 1 (3) - 2 2 1! (3) = -f<3> 2 2 2 = -f - 1 2 - 2 2 <3> 1 2 log 2 3! 2 (3)+ 1 (3) 22 0! 3 (b) for (b), then 1 2 (3) = -f 2 <3> 1 =3! 1 3 2 log 2 log 2 3! 3 -Σ k =1 1 k 2 +Σ k =1 - 21 - 3 22kB2k 2k (2k +3) ! 2 2k+3 - log 2 3! 2 3 1 =3! 3 2 log -Σ +Σ 1 k 3 k =1 k=1 22kB2k 2k (2k +3)! 2 2k+3 From this, we obtain 2 1 3 (3) = -2 =- 2 -1 2 1 3! 3! 3 log -Σ k=1 3 1 k 22kB2k 1 +Σ log -Σ k=1 k k=1 2k (2k +3)! B2k -Σ 2k+3 2 +3 ! 2 ( ) k k k=1 3 2 2k+3 Hereafter, in a similar way we obtein the desired expressions. 5.3.4 Another set of Riemann Odd Zeta Substituting 22n - 1 (2n +1) = 2n (2n +1) 2 for Formula 5.3.3 , we obtain another set of Riemann Odd Zeta. Formula 5.3.4 2 2! 2k (2k +2)! 1 B + (3) log Σ Σ 4! 2! 2k (2k +4)! k 1 B log Σ Σ 6! 2k (2k +6)! k 3 (5) ( ) 4! 2! 22 3 = ( ) 23-1 24 (5) = 25-1 26 (7)= - 7 2 -1 26 - 7 2 -1 (2n +1) = (-1) k =1 4 6 1 k k =1 k =1 6 22n+1 -1 2k+4 2k 2k+6 k =1 2n -1 (2n) ! 22n 2 2k 2 22n 2 2k+2 k=1 k=1 2n+1 B2k -Σ 4 4 n + (-1)n 2 log -Σ 2n log -Σ k=1 1 k n -1 2n-2k k=1 (2n -2k) ! Σ(-1)k-1 - 22 - B2k k=1 2k (2k +2n ) ! -Σ (2k +1) 2k+2n n =2, 3, 4, 5.4 Termwise Higher Integral of coth x coth x is x = sinh -11 = 0.8813 , we assume zeros of the second or more order integral of coth x are also x =0.8813 . Where, since the zero of coth x is not 0.8813 , these seem to be a collateral higher integral. Since the zero of the first order integral log sinh x of 5.4.0 Collateral Higher Integral of coth x When = 2sinh -11 = 1.762747174 coth x dx x = log sinh x 2 x x coth x dx 2 = non-elementary function 2 2 5.4.1 Termwise Higher Integral of Taylor Series of coth x Formula 5.4.1 Let = 2sinh -11 (= 1.762747174) and B0=1, B2=1/6, B4=-1/30, B6=1/42, <n> (x) on x >0 be as follows. 22k B2k n 1 xn <n> +Σ f (x)= log x -Σ x 2k+n 2 + ! 2 ( ) k n k n! k k=1 k=1 Then the following expressions hold for x >0 . f are Bernoulli Numbers and functions coth x dx x (x) = log x +Σ =f 22k B2k 2k x 2k (2k)! <0> n =1, 2, 3, k=1 2 coth x dx x x 2 2 x x x 1 (x) x2 0! <1> 2 =f 3 coth x dx = f <2>(x) - 1 x0! 2 0 f 0 f<1> 2 2 <2> - 1 x1! 2 1 2 <1> f 2 2 2 coth x dx x x 2 2 4 =f 1 (x) x2 0! <3> 0 f 2 <3> 1 x1! 2 - coth x dx x x 2 2 n =f <n -1> n -2 (x) -Σ k=0 1 x2 k! Proof x coth x = 1+Σ k=1 22k B2k 2k x (2k)! - 23 - k f f 2 1 x2! 2 <n -1-k > 2 1 <2> 2 f 2 <1> From this 22k B2k 1 coth x = +Σ x 2k-1 x k=1 2k (2k -1)! Integrate the both sides with respect to x from /2 x , then 22k B2k 2k 22k B2k + x - log 2k (2k)! 2 Σ k=1 2k (2k)! coth x dx = log x +Σ x to k=1 2 2k 2 Here log +Σ 2 k =1 22k B2k 2k (2k)! 2 2k =0 Because, the following equation is known ( 岩波数学公式Ⅱ p150) 2k-1 B2k 2k 2 log x +Σ k=1 Then, substituting k (2k)! x = /2 = log sinh x x x >0 for this, we obtain the above. Thus, 22k B2k 2k x = f<0>(x) 2k (2k)! coth x dx = log x +Σ x k=1 2 Next, integrate the both sides with respect to x from x x 2 2 coth x dx 2 = x /2 to x , then f<0>(x)dx = f<1>(x) - f<1> x 2 2 Furthermore, integrate the both sides with respect to x from x x coth x dx 3 = f x <1> (x) - f<1> 2 2 2 /2 to x , then 2 dx 2 <2> =f <2> (x) - f 2 1 x1! 2 1 f 2 <1> Hereafter, in a similar way we obtein the desired expressions. (1) Termwise Higher Definite Integral of Taylor Series of coth x When 22k B2k n 1 xn +Σ f (x)= log x -Σ x 2k+n n! k =1 k k=1 2k (2k +n )! substituting x =0 for Formula 5.4.1 , we obtain the following expressions. <n> 0 x 2 2 coth x dx 0 x x 2 2 2 1 =0! 2 coth x dx 3 = - 1 0! 2 0 0 2 f<1> 2 <2> f n =1, 2, 3, 2 - 24 - (1.2') + 1 1! 2 1 f<1> 2 (1.3') x x 1 coth x dx = 0! 2 2 2 0 4 0 2 f 2 <3> 1 + 1! 1 2 f 2 1 2! <2> 2 2 f<1> 2 (1.4') 0 x 2 2 x n -2 coth x dx = -Σ n k=0 (-1)k k! 2 k n -1-k > f< 2 (1.n') 2 (2) Taylor Series of the 1st order Integral of coth x The 1st order Integral of coth x is as follows. 22k B2k x coth x dx = log x +Σ 2k (2k)! x 2k 0< x < = log sinh x k=1 2 From this, the following expression follows immediately. 22k B2k 2k x Σ k =1 2k (2k)! Substituting Σ k =1 Σ k =1 Σ k =1 x =1 , 1/2 , /4 22k B2k 2k (2k)! B2k 2k (2k)! B2k 2k (2k)! 0< x < = log sinh x - log x (1.t) for this one by one, we obtain the following special values. = log sinh 1 = log sinh 2 2k = log sinh 1 + log 2 2 4 - log 4 Moreover, from the last expressions of this and 5.2.1 (2) , the next expression follows 2k 2 -2 B 2k 2k Σ k =1 2 2k (2k)! = log coth + log 4 4 5.4.2 Termwise Higher Integral of Fourier Series of coth x Formula 5.4.2 Let = 2sinh -11 = 1.762747174, then the following expressions hold for x >0 . 1 e -2k x coth x dx = log sinh x = - 0 Σ 1 + x 2 2 k=1 k x + 2 - log 2 2 coth x dx x x 2 2 2 1 1 e -2k x = 1Σ 2 + x2! 2 2 k=1 k 2 + /2-log 2 1! 1 e -k - 1Σ 2 2 k=1 k - 25 - x- 2 1 e -2k x 1 coth x dx = - 2 Σ 3 + x2 3! 2 k =1 k x x x 3 3 + /2-log 2 x - 2 2! 2 2 2 2 1 e -k - 1 Σ 2 x2 2 k=1 k 1 e -2k x 1 coth x dx = 3 Σ 4 + x2 4! 2 k=1 k x 2 x 4 1 e -k + 2Σ 3 2 k=1 k 4 + /2-log 2 x- 3! 2 3 2 1 e -k 1 x Σ 2 21 k=1 k 2 2! coth x dx x x 2 2 n = (-1)n 2n-1 Σ k =1 1 e -k x Σ 2 22 k=1 k 3 2 + x 1 e -2k + x 2 n! kn n -2 -Σ j=0 + (-1)n-j 1 x 2 2n-1- j j ! n - 1 e -k Σ 23 k=1 k 4 /2-log 2 (n -1)! j e -k Σ k k=1 x - 2 n-1 n-j Proof coth x can be expanded to a Fourier series as follows. (See the following figure). 1+ e -2x e x + e -x = = 1+ e -2x1 + e -2x + e -4x + coth x = x -x -2x e -e 1- e = 1 + 2e -2x + 2e -4x + 2e -6x + 2e -8x +- = 1 + 2(cos 2ix + cos 4ix + cos 6ix + cos 8ix + ) + 2i(sin 2ix + sin 4ix + sin 6ix + sin 8ix + ) e -6x + (2.0) y 60 50 40 30 20 10 0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 x coth(x) 2*exp(-2*x) + 2*exp(-4*x) + 2*exp(-6*x) + 2*exp(-8 Now, let from /2 =sinh -11 (= 0.881373587) . /2 Integrate the both sides of (2.0) with respect to x to x , then - 26 - x 2e x coth x dx = -2x 2 + e -4x+ e -6x+ e -8x+ + 1dx 2 =- e -2x e -4x e -6x e -8x + + + + - x 2 2 3 4 1 x 2 =- e -2x + 1 e -4x + 2 e -6x + 3 e -8x 4 + - x - 2 ee -2 e -3 e -4 + + + + + 1 2 3 4 i.e. 1 e -2k x coth x dx = - 0 Σ 1 + x 2 2 k=1 k x +Σ k=1 e -k k1 2 Here, the following equation holds, -k Σ k =1 e = - log 2 2 k1 (w) Because, log(1-x) = -Σ k =1 xk k -1 x < 1 From this, Σ k =1 e -2kx = -log1-e -2x k x >0 On the other hand, 1 = sech x = e x1- e -2x e x- e -x = 2 2 From this, 1 1- e -2x = 1 ex ex log = -log1-e -2x = x - log 2 log -2x 2 2 1- e Then, Σ k =1 e -2kx = -log1-e -2x = x - log 2 k Substituting x = sech -11 = 2 for this, we obtain (w). Thus, using (w), we obtain 1 e -2k x coth x dx = log sinh x = - 0 Σ 1 + x 2 2 k=1 k x + 2 2 This is consistent with the real number part of the Fourier series of Next, integrate both sides of this with respect to x from /2 - 27 - log sinh x to x , then . - log 2 coth x dx x x 2 2 2 -Σ x = k=1 e -2k + x1 2 k x dx 2 + - log 2 2 = 1 1 e -2k x + xΣ 1 2 2 2! 2 k =1 k /2-log 2 2 + 1! x - 2 x 2 1 1 e -2k x = 1Σ 2 + x2 2! 2 k =1 k /2-log 2 2 + x - 2 1! 1 e -k - 1Σ 2 2 k=1 k Hereafter, in a similar way we obtein the desired expressions. (1) Termwise Higher Definite Integral of Fourier Series of coth x x =0 Substituting for Formula 5.4.2 , we obtain the following expressions. coth x dx x 0 2 2 2 = (2) 1 2! 21 2 2 log 2 + 1! 2 1 e -s - 1 Σ 2 2 0! s=1 s (2.2') 2 (3) 3 log 2 2 3 coth x dx = - 2 + 2 3! 2 2! 2 2 2 1 1 e -s e -s + 2 Σ 3 + 1 Σ 2 0! s=1 s 2 1! 2 s=1 s 2 4 x x 3 (4) log 2 3 4 + coth x dx = 2 4! 2 3! 23 0 2 x x 0 2 2 2 1 - 1 2 2! 2 2 Σ s=1 1 e -s - 2 2 2 1! s (2.3') 2 Σ s=1 1 e -s e -s Σ s 3 230! s=1 s 4 (2.4') coth x dx 0 x x 2 2 2 n n = (-1) (n) 2 n -1 n! n-1 2 n -2 1 j=0 2n-1- r r! -(-1)n Σ n log 2 + (n -1)! r s=1 2 n-1 e -s 2 Σ s n-r (2.n') (2) Fourier Series of the 1st order Integral of coth x The 1st order Integral of coth x is as follows. -2k x x coth x dx = - 1 e Σ 20 k=1 k 1 + x- + 2 2 - log 2 = log sinh x x >0 2 From this, the following expression follows immediately. -2k x Σ k =1 e k1 = x - log(2sinh x) x >0 - 28 - (2.f) Substituting Σ k=1 Σ k=1 Σ k=1 x =1 , 1/2 , /2 for this one by one, we obtain the following special values. e -2k k1 = 1 - log(2sinh 1) e -k k1 = e -k k1 1 1 - log 2 sinh 2 2 = 2 - log 2 sinh 2 5.4.3 Riemann Zeta Function Comparing Taylor series of coth x and Fourier series of coth x, we obtain Riemann Zeta Function. Formula 5.4.3 When = 2sinh -11 = 1.762747174 and B2k are Bernoulli Numbers, the following expressions hold. (2) = Σ k=1 (3) = Σ k=1 e -k k2 - 1! log -Σ +Σ k =1 2 1 2 e -k + log Σ 2! k=1 k k3 + e -k k4 (4) = Σ k=1 + 1! 1 k 1 k=1 B2k 1 3 2 3! 2k (2k +2)! 2k+2 +Σ k=1 3! log -Σ +Σ (3) - 2 2! 1 k 3 k =1 1! 2k+1 (2) 3 B2k 1 2 2 2! 2k (2k +1)! k =1 B2k 1 4 2 4! 2k (2k +3)! 2k+3 (2) j n -2 e -k j-1 + Σ(-1) (n - j) j! j=1 kn (n) = Σ k=1 n-1 + (-1) (n -1)! log -Σ +Σ n-1 n -1 k=1 1 k k=1 B2k 1 n 2 n! 2k (2k + n -1)! 1 e -k Σ 21 k =1 k 2 (a) 2k+ n-1 Proof From Fourier series (2.2') and Taylor series (1.2') <1> f 2 =- 1 1 2 + ( ) 2! 21 2 2 - log 2 1! 2 + From this (2) = -2f <1> 2 2 + 2! 2 2 - log 2 - 29 - 1! +Σ k=1 e -k k2 2 log 2 -Σ +Σ 1 = -2 1! 1 1 k=1 =- k=1 2 2! + 2 1 k =1 log 2 2 - B2k 1 +Σ k k=1 2k (2k +1)! 1! log -Σ 22k B2k 2k (2k +1)! 1 k 2k+1 2 +Σ 1! k =1 2k+1 e -k k2 1 2 e -k + + 2 2 2! Σ k=1 k Next, substitute (a) for Taylor series (1.3') , then 0 x x 3 <2> coth x dx 2 2 2 1 - 1 2 2 = -f 1 (2)+ 2 2! (1.3') 2 3 log 2 1! 2 2 1 + 1 2 2 Σ k=1 e -k k2 From this and Fourier series (2.3') , we obtain <2> f 2 1 =- 1 2 1 (2) + 2 3! 2 3 log 2 2! 2 2 1 1 e -k + 2 (3)- 2 Σ 3 2 2 k=1 k (b) From this, (3) = 2 f 2 <2> 2 =2 22 +2 (2) 2 3! 2 2 log 2 1 2! 2 22 + (2)3! = 2 -Σ k =1 3 2 + k=1 1 k 2! 2log 2 3 2 + +Σ k=1 2log 2 2! 22k B2k 2k (2k +2)! +Σ k =1 e -k k3 +Σ k=1 e -k k3 2 2k+2 -k B2k e 1 1 3 +Σ + + (2) 3 2 3! Σ k k=1 2k (2k +2)! k=1 k 2k+2 log -Σ 2 2! 2 Next, substitute (a), (b) for Taylor series (1.4') , then coth x dx = - f 2 0 x x 2 2 2 <3> 4 <3> = -f 2 2 1 1 2! 2 2 f<2> 2 f<1> 2 (1.4')' 1 e -k 2 e -k 3 2 2 Σ 22! 2 Σ k=1 k k=1 k 1 1 2 (2) + 2 (3) 2 2 23! 2 2 1 - 2 2 1 22! 1 + 1! From this and Fourier series (2.4') , we obtain - 30 - 4 <3> f 2 1 =22! 2 2 1 22 (2) + 1 1 - 3 (4) + 4! 2 2 2 (3) 4 log 2 3! 2 3 1 e -k + 3Σ 4 2 k=1 k (c) From this, (4) = -2 3 2 log 2 -Σ +Σ 1 3! log 2 3! 3 3 k=1 2 3 23 + 4! 2 23 e -k 23 + 3Σ 4 22! 2 k=1 k =- 3! log -Σ 3 3 k =1 +Σ k=1 1 k +Σ k =1 k=1 2 (2) + 23 22 2k+3 2 (n) for natural number n >2 . - 31 - 2 2 (3) B2k 4 2k (2k +3)! 24! e -k (2) + (3) 4 2! k Hereafter, by induction we obtain 22k B2k 2k (2k +3)! 4 2 1 k 2k+3 5.5 Termwise Higher Integral of csc x log tan (x /2) of cscx is x = /2 , we assume zeros of the second or more order integral are also x = /2 . Where, since the zero of cscx is i , these seem Since the zero of the first order integral to be a collateral higher integral. 5.5.0 Collateral Higher Integral of csc x x = log tan csc x dx 2 x csc x dx x 2 2 2 = x 2 = 1 1- cosx log 2 1+ cosx non-elementary function 5.5.1 Termwise Higher Integral of Taylor Series of csc x Formula 5.5.1 When B2k denote Bernoulli Numbers and functions n 1 xn = f (x) log x -Σ n! k=1 k the following expressions hold for x >0 . <n> x =f are as follows 22k -2B2k 2k+n +Σ x k=1 2k (2k +n )! 1 (x) x0! 2 <0> csc x dx 2 (x) on 0< x < <n> f 0 f<0> n =1, 2, 3, 2 22k -2B2k 2k = log x +Σ x - log 2 2k (2k)! k =1 x 1 1 0 <1> xf csc x dx 2 = f <1>(x) x 2 2 0! x x x 3 csc x dx = f <2>(x) - 2 1 x2 0! 2 0 f 2 <2> 1! x- 2 1 x1! 2 2 2 2 - 2 <0> f 1 f 2 1 x2! 2 1 <1> 2 f 2 <0> x x 2 2 n csc x dx = f <n -1> n -1 (x) -Σ k=0 1 x2 k! k n -1-k > f< 2 Where f<0> 2 = log 2 Proof csc x dx = f x <0> (x) - f<0> 2 22k -2B2k 2k = log x +Σ x 2k (2k)! k=1 2 x 2 - 32 - 2k 22k -2B2k 2k 2 -2B2k = log x +Σ x - log 2 +Σ 2k (2k)! 2k (2k) ! k=1 k =1 22k -2B2k 2k = log x +Σ - log x - log 2 4 2k (2k)! k=1 Σ k=1 2k 2 -2B2k 2k (2k) ! 2 2 2k 2k = -log 4 5.3.1 (2) 22k -2B2k 2k = log x +Σ x - log 2 2k (2k)! k=1 x x 2 2 x 2 csc x dx = f<0>(x) - f<0> 2 dx 2 1 (x) x1! 2 <1> = f 1 <0> f 2 x 2 = f<1>(x) - f<1> 2 - 1 x1! 2 1 f<0> 2 Hereafter, in a similar way we obtain the desired expressions.. Although Formula 5.5.1 is a general expression anyway, if it is expand actually, it is very complicated. Then, this was devised and was made the same easy expression as sec x. It is as follows. Formula 5.5.1' When hold for E0=1, E2=-1, E4=5, E6=-61, E8=1385, 0< x < . cscx dx x x 2 2 E2k k =0 (2k + n)! =Σ n x - 2 are Euler Numbers,the following expressions 2k+ n Proof csc x = 1 = sin x secx =Σ 1 cos x - E2k k=0 (2k)! E2k k=0 (2k)! 2 x 2k = sec x - 2 |x|< 2 From these cscx =Σ x - 2 2k 0< x < Integrating both sides of this with respect to x from /2 to x repeatedly, we obtain the desired expressions. (1) Termwise Higher Definite Integral of Taylor Series of csc x Substituting x =0 for Formula 5.5.1 , we obtain the following expressions. - 33 - csc x dx x 0 2 2 0 x x 1 csc x dx = 0! 2 2 2 3 0 0 <1> 1 + 1! <2> 1 + 1! 1 2! 2 f 2 1 =0! 2 2 f 2 1 2 1 2 2 f 2 <0> 2 f<1> (1.2') 2 f<0> 2 (1.3') csc x dx 0 x x 2 2 2 n n -1 = -Σ k=0 (-1)k k! 2 k n -1-k > f< 2 Where (1.n') f<0> 2 = log 2 (2) Taylor Series of the 1st order Integral of csc x The 1st order Integral of csc x is as follows. 2k x 2 -2B 2k csc x dx = log x +Σ 2k (2k)! k=1 x 2k - log 2 = log tan 2 From this, the following expression follows immediately. 2k 2 -2B 2k x 2k Σ k=1 = log tan x - log x 2 0< x < 0< x < 2 2k (2k)! x =1 for this , we obtain the following special value. Substituting x 2 (1.t) 22k -2B2k 1 = log tan + log 2 Σ 2 2k (2k)! k=1 5.5.2 Termwise Higher Integral of Fourier Series of csc x Formula 5.5.2 (-1)k Let (n ) =Σ be Dirichlet Beta Function and be floor function. Then the following n k=0 (2k +1) expressions hold for 0< x < . x 1 1 = 2Σ csc x dx sin (2k +1)x 2 k =0 2k +1 2 x csc x dx x 2 2 csc x dx x x x = 2Σ 2 k =0 3 = 2Σ k =0 1 2 2 +1)x 2 sin ( k 2 (2k +1) 3 1 2 +1 ( ) k x sin 2 (2k +1)3 2 2 2 - 34 - 2(2) + x0! 2 2(2) + x1! 2 0 1 csc x dx x x 2 2 x x 2 2 4 = 2Σ k=0 csc x dx 5 = 2Σ k=0 1 4 2 +1)x 4 sin ( k 2 (2k +1) 2(2) 2 2(4) + xx2! 0! 2 2 1 5 2 +1)x 5 sin ( k 2 (2k +1) 1 2(2) + x3! 2 0 3 2(4) x1! 2 csc x dx x x 2 2 n = 2Σ k=0 1 n 2 +1 ( ) k x sin 2 (2k +1)n n /2 k-1 + Σ (-1) k=1 2 (2k) x2 (n -2k)! n-2k Proof csc x can be expanded to Fourier series in a broad meaning.as follows. 2i 2ie ix = -2ie ix1 + e 2ix + cscx = ix -ix = 2ix e -e 1- e e 4ix + e 6ix + = -2 ie ix + e 3ix + e 5ix + e 7ix + = 2(sin x + sin 3x + sin 5x ++) -2i(cosx + cos 3x + cos 5x + ) (2.0) csc x is the locus of the median (central line) of this real number part. (See the figure) However, calculus of the right side of (2.0) may be carried out, the real number does not turn into an imaginary number and the contrary does not exist, either. Therefore, limiting the range of csc x and the higher order integral to the real number, we calculate only the real number part of the right side of (2.0). Although Dirichlet Odd Beta is obtained from calculation of the imaginary number part, since it is long, it is omitted in this section Now, integrate the real number part of both sides of (2.0) with respect to x from - 35 - /2 to x . Then x 2(sin x + sin 3x + sin 5x + sin 7x +)dx x csc x dx = 2 2 cos 1x cos 3x cos 5x cos 7x + + + + = -2 1 3 5 7 x 2 cos 1x cos 3x cos 5x cos 8x = -2 + + + + 3 5 7 1 i.e. x cos(2k +1)x 2k +1 csc x dx = -2Σ k=0 2 -cos x = sin x - Here, let x . Then using this we obtain 2 1 1 sin (2k +1)x 2k +1 2 csc x dx = 2Σ k =0 2 log tan(x /2) . /2 to x , then This is consistent with the real number part of the Fourier series of Next, integrate both sides of this with respect to x from x x 2 2 csc x dx 2 = 1 2Σ 2k +1 sin (2k +1)x - 2 dx x 1 k=0 2 = 2Σ k=0 1 2 2 +1 ( ) k x sin 2 (2k +1)2 x 2 = 2Σ k =0 (n) =Σ Here, let k=0 x x 2 2 1 2 2 +1 ( ) k x sin 2 (2k +1)2 (-1)k (2k +1)n k=0 Next, integrate both sides of this with respect to x from x x x csc x dx 3 = k=0 (-1)k (2k +1)2 , then we obtain 1 2 2 +1 ( ) k x sin 2 (2k +1)2 csc x dx 2 = 2Σ + 2Σ + 2(2) /2 to x , then 2 2Σ (2k +1) sin (2k +1)x - 2 + 2(2) dx x 2 2 2 1 2 k=0 2 = 2Σ k=0 = 2Σ k =0 1 3 2 +1)x 3 sin ( k 2 (2k +1) 3 1 2 +1 ( ) k x sin 2 (2k +1)3 Hereafter, in a similar way we obtain the desired expression.. - 36 - + 2(2)x - 2 + 2(2)x - 2 x 2 (1) Termwise Higher Definite Integral of Fourier Series of csc x Substituting x =0 for Formula 5.5.2 , we obtain the following expressions. 2(2) csc x dx = 0! 0 x 2 2 0 x 2 csc x dx x 2 2 2 3 csc x dx 0 x x 4 2 2 0 x 2 x 2 (2.2') 2 (2) 1! 2 1 =- 2 2 = 2 (2) 2! 3 2 (2) csc x dx = 3! 2 2 0 5 + 2 23-1 (3) 22 (2.3') 2(4) 0! 2 0 2(4) + 1! 1 2 (2.4') 25-1 (5) 24 (2.5') 2 csc x dx 0 2 x x 2 2 n n = (-1) n /2 k-1 (-1) Σ k =1 2(2k) (n -2k)! 2 n-2k n 2n-1 - sin (n) 2 2n-1 (2.n') Proof Since n 2 n sin (2k +1)0 2 =0 = 1 sin (2k +1)0 - giving x =0 x 2 2 csc x dx 2 = 2Σ k=0 csc x dx 0 for n =3, 5, 7, , to Formula 5.5.2 and substituting these for them, 0 for n =2, 4, 6, x x 2 2 2 = 2Σ k=0 3 1 2 2 +1)02 sin ( k 2 (2k +1) = 2Σ k =0 + 2(2) = 2(2) 1 3 2 +1 0( ) k sin 2 (2k +1)3 1 2(2) 3 1! (2k +1) 2 1 2 (2) 0+ 1! 2 23-1 2 (2) = (3) 2 1! 2 Hereafter, in a similar way we obtain the desired expressions.. (2) Fourier Series of the 1st order Integral of csc x The 1st order Integral of csc x is as follows. x cos(2k +1)x csc x dx = -2Σ k =0 2k +1 = log tan 2 From this, the following expression follows immediately. - 37 - x 2 0< x < 2 1 1 1 cos(2k +1)x x 0< x < = - log tan 2k +1 2 2 Substituting x =1 for this, we obtain the following special values. cos(2k +1) 1 1 = - log tan Σ 2 2k +1 2 k=0 Σ k=0 (2.f) 5.5.3 Dirichlet Even Beta Comparing Taylor series of csc x and Fourier series of csc x, we obtain Dirichlet Even Beta. Although the general expression by the Euler Number is known about Dirichlet Odd Beta, the general expression of Dirichlet Even Beta is not known. The following formula shows this by a little complicated Bernouilli series. Formula 5.5.3 B2k , (x), (x) denote Bernoulli Numbers, Dirichlet Beta Function, Riemann Zeta Function <n> (x) on 0< x < are as follows respectively, and functions f 2k n 1 2 -2B 2k xn <n> +Σ f (x)= log x -Σ x 2k+n n =1, 2, 3, , 2 + ! 2 ! ( ) k k n n k=1 k k=1 When the following expressions hold. 1 1 (-1)k (2) = - Σ 2 k=0 k ! 1 2 (-1)k (2) = 2Σ k! k=0 2 2 1 3 (-1)k (4) = 2Σ k! k=0 1 4 (-1)k (4) = - Σ 2 k=0 k ! 1 5 (-1)k (6) = - Σ 2 k =0 k ! 1 6 (-1)k (6) = 2Σ k! k=0 k f <1-k > k-1 1 2 2 k <3-k > (2) 2 2 + 2! 2 (2) + 2 3! 2 + 25-1 (5) 24 2 f <4-k > k (4) 2 2 f 2 + 2! 2 (4) f + 2 2 3! 2 <5-k > k-1 (2) 2 (2) 5! 2 - + k 2 f (-1)n 2n (-1)k (2n) = 2 Σ k! k=0 2 2 -Σ(-1) <2n-1-k > n -1 k=1 k-1 f 2 -Σ(-1) <2n-k > n -1 k k =1 + Proof 0 x 1 csc x dx = 0! 2 2 2 2 0 <1> f k 2 - 38 - 1 + 1! 2 4 27-1 (7) 26 4 4! 2 <6-k > (-1)n 2n -1 (-1)k (2n) = 2 Σ k! k=0 - f<1> <2-k > k-1 log 2 2 2 2 2 -1 (3) + 2 2 = 3 f 2 f 2 (2n -2k) (2k) ! 2 2k (2n -2k) 2k 2 (2k +1) ! 22n+1 -1 (2n +1) 1 f<0> 22n 2 (1.2') (-1)k = -Σ k! k=0 x 2(2) csc x dx 2 = 0! 2 2 k 2 f 1 <1-k > 2 0 1 1 (-1)k (2) = - Σ 2 k=0 k ! csc x dx 0 x x 2 2 2 x 2 3-1 = -Σ k =0 k f <1-k > (-1)k k! 2 2 f x 2 2 2 <3-1-k > k-1 2 f <3-1-k > 2 2 2 3 1 3-1 (-1)k (2) = Σ 2 k=0 k ! log 2 1 2 = k 2 (2) 23-1 (3) csc x dx = 2 1! 2 0 3 (2.2') 2 - f<1> 2 (1.3') 1 (2.3') 23-1 (3) + 22 Hereafter, in a similar way we obtain the desired expressions. 5.5.4 Riemann Odd Zeta Riemann Odd Zeta can be conversely obtained from the half of Formula 5.5.3 . The following formula shows the relation between Riemann Odd Zeta and Dirichlet Even Beta by a little complicated expression. Formula 5.5.4 B2k , (x), (x) denote Bernoulli Numbers, Dirichlet Beta Function, Riemann Zeta Function <n> (x) on 0< x < are as follows respectively, and functions f 2k n 1 2 -2B 2k xn <n> +Σ f (x)= log x -Σ x 2k+n n =1, 2, 3, , n! k=1 k k=1 2k (2k +n )! When the following expressions hold. 3 2 (2) (3) = 3 2 -1 1! 25 (5) = 5 2 -1 2 (4) 1! 1 22 2 (-1)k - 3 Σ 2 -1 k=0 k ! 2 (2) 1 - 3! 24 4 (-1)k + 5 Σ 2 -1 k =0 k ! 27 (7) = 7 2 -1 (6) 1! 2 1 - 26 6 (-1)k - 7 Σ 2 -1 k=0 k ! 2 3! 2 - 39 - 2 f <2-k > 2 3 k f <4-k > 2 k 2 (4) 2 3 + k f <6-k > (2) 5! 2 2 5 (2n +1) = 22n+1 n -1 22n+1 -1 n + (-1) (-1) Σ k=0 22n 22n+1 -1 k 2n (2n -2k) Σ k=0 (2k +1)! (-1)k k! - 40 - 2 2 2k+1 k f <2n -k > 2 5.6 Termwise Higher Integral of csch x csch x log tanhx /2 x = , the latter seems to be a lineal primitive function with a fixed lower limit. On the other hand, the Fourier series of csch x is known for x >0 . Then, we assume zeros of the second or more order primitive function are also x = . Since both zeros of and the primitive function are 5.6.0 Higher Integral of csch x csch x dx x = log tanh csch x dx x x 2 = x 2 non-elementary function 5.6.1 Termwise Higher Integral of Taylor Series of csch x The Taylor series of csch x is known as follows. 2k 2 -2 B 2k 1 -Σ csch x = x 2k-1 x k =1 2k (2k -1)! However, this can not be integrated with the lower limit 0< x < x = . 5.6.2 Termwise Higher Integral of Fourier Series of csch x Formula 5.6.2 The following expressions hold for x >0 . csch x dx = -2Σ csch x dx = 2Σ (e2k +1) csch x dx = -2Σ (e2k +1) x x 2 x k =0 -(2k +1)x 2 k =0 x x 3 x e -(2k +1) 2k +1 x -(2k +1)x k =0 3 csch x dx x x n = (-1) 2Σ n k=0 x e -(2k +1) (2k +1)n Proof csch x can be expanded to a Fourier series as follows. (See the figure of the following page.) 2 2e -x = = = 2e -x1 + e -2x + e -4x + e -6x + csch x -x -2x x e -e 1- e = 2e -1x + e -3x + e -5x + e -7x + (2.0) = 2(cosh 1x +cosh 3x +cosh 5x +) - 2(sinh 1x +sinh 3x +sinh 5x +) = 2(cosh ix +cosh 3ix +cosh 5ix +)- 2i(sinh ix +sinh 3ix +sinh 5ix +) sinh x = -isin ix cosh x = cosix , - 41 - Integrate the both sides of (2.0) with respect to x from x 2e x csch x dx = -1x = -2 to x , then + e -3x + e -5x + e -7x +dx e -x e -3x e -5x e -7x + + + + 1 3 5 7 x i.e. x x e -(2k +1) 2k +1 csch x dx = -2Σ k=1 This is consistent with the real number part of the Fourier series of Next, integrate both sides of this with respect to x from csch x dx = -2Σ x x x 2 k=0 x e -(2k +1) 2k +1 log tanh x 2 . to x , then dx = 2Σ k =0 x e -(2k +1) (2k +1)2 i.e. csch x dx x x 2 = 2Σ k=0 x e -(2k +1) (2k +1)2 Hereafter, in a similar way we obtein the desired expression. 5.6.3 Dirichlet Lambda Function Substituting x =0 for Formula 5.6.2 , we obtain Dirichlet Lambda Function immediately. Formula 5.6.3 When (n) =Σ k=0 1 (2k +1)n , the following expressions hold. csch x dx = 2(2) csch x dx = -2(3) 0 x 0 x 2 x 3 - 42 - x csch x dx 0 x x n = (-1)n2 (n) 5.6.4 Riemann Zeta Function Applying (n) = 2n 2n - 1 (n) for Formula 5.6.3 , we obtain Riemann Zeta Function. Formula 5.6.4 2n-1 (n) = (-1) n 2 -1 n csch x dx 0 x x - 43 - n 5.7 Termwise Higher Integral of sec x 1 1+ sin x of secx is x = 0 , we assume the zeros of log 2 1- sin x the second or more order integral are also x = 0 . Where, since the zero of secx is i , these seem Since the zero of the first order integral to be a collateral higher integral. 5.7.0 Collateral Higher Integral of sec x secx dx x 1 1+ sin x log 2 1- sin x sec x dx = 0 x x 2 = non-elementary function 0 0 5.7.1 Termwise Higher Integral of Taylor Series of sec x Formula 5.7.1 E0=1, E2=-1, E4=5, E6=-61, E8=1385, When hold for are Euler Numbers, the following expressions |x|< /2 . sec x dx sec x dx x =Σ sec x dx (2k +1)! E2k =Σ x 2k+2 k =0 (2k +2)! E2k =Σ x 2k+3 k =0 (2k +3)! 2 0 0 x x x x 2k+1 k =0 0 x x E2k 3 0 0 0 x x 0 0 E2k k =0 (2k + n)! secx dx n =Σ x 2k+ n Proof secx can be expanded to Taylor series as follows. secx =Σ k=0 E2k (2k)! x 2k |x| < 2 Integrating both sides of this with respect to x from 0 to x repeatedly, we obtain the desired expression. (1) Termwise Higher Definite Integral of Taylor Series of sec x Substituting x = /2 sec x dx 2 x 0 for Formula 5.7.1 , we obtain the following expressions. 0 E2k k=0 (2k +2)! sec x dx 2 x x 0 0 0 3 =Σ 2 E2k k =0 (2k +3)! =Σ 2 2 2k+2 (1.2') 2k+3 - 44 - (1.3') secx dx 2 0 x 0 x n 0 E2k k =0 (2k + n)! =Σ 2 2k+ n (1.n') (2) Taylor Series of the 1st order Integral of sec x The 1st order Integral of sec x is as follows. x E2k 2k+1 sec x dx =Σ (2k +1)! x = k=0 0 1 1+ sin x log 2 1- sin x |x|< 2 From this, the following expression follows immediately. E2k x Σ k=0 (2k +1)! 2k+1 = 1 1+ sin x log 2 1- sin x |x|< 2 (1,t) x =1 for this , we obtain the following special value. 1 1+ sin 1 E2k = log 2 1- sin 1 (2k +1)! Substituting Σ k=0 Reference : Euler Number , Tangent number, Bernoulli Number Euler Number is defined as follows. Ek k |x| < x 2 k=0 k ! E2n-1 = 0 n =1, 2, 3, . sech x =Σ As a result, When Euler numbers , Tangent numbers and Bernoulli Numbers (all non-zero) are listed, it is as follows. E6=-61, E8=1385, E10=-50521, T1=1, T3=2, T5=16, T7=272, 1 1 1 , B 6= , B0=1, B2= , B4=6 30 42 T9=7936, T11= 353792, 1 5 B8=, B10= , 30 66 E0=1, E2=-1, E4=5, According to Mr. Sugimoto ( http://homepage3.nift/y_sugi/gf/gf17.htm ) , the following equations holds between Euler Numbers and Tangent Numbers. n E2n =Σ(-1)k k =1 2n +1 T 2k -1 2k-1 n =1, 2, 3, On the other hand, between Tangent numbers and Bernoulli Numbers, the following equations hold. 2n 2n n-1 2 2 -1 T2n-1 = (-1) B2n n =1, 2, 3, 2n (1) (2) Therefore, the following equations have to hold between Euler Numbers and Bernoulli Numbers. 2k 2k 2n n E2n = 1 -Σ k =1 2 2 -1 B2k 2k 2k -1 n =1, 2, 3, (3) In fact, for example, 43 1 6 1615 1 6 6463 1 6 + =1 2 6 1 4 30 3 6 42 5 = -61 E6 = 1 - 23 23 23 2424-1 2626-1 2222-1 B2 B4 B6 + + 4 6 2 1 3 5 On the contrary, the following equations between Bernoulli Numbers and Euler Numbers are shown by Mr. Nishimura. ( http://www1.ocn.ne.jp/~oboetene/zeta.pdf ). - 45 - B2n = n -1 2n -1 2n E2k Σ 2k 22n22n-1 k =0 n =1, 2, 3, (4) The following example shows the formula is right. 2 5 1 5 = 4 42 23-1 23 B6 = 23-1 E0 + 0 223223-1 5 5 23 11+ = 0 2 6463 E 23-1 E2 + 4 4 In addition, Mr. Nishimura expressed Even Zeta with the Euler numbers using this equation. 5.7.2 Termwise Higher Integral of Fourier Series of sec x Formula 5.7.2 When E2k , (n) , denote Euler Numbers, Dirichlet Beta Function, floor function respectively, the following expressions hold for |x |< /2 . 1 (-1)k cos (2k +1)x 2 k=0 2k +1 0 x x 2 (-1)k 2 = 2Σ 2 +1 ( ) secx dx cos k x 2 2 k =0 (2k +1) 0 0 k x x x 3 (-1) 2 +1)x sec x dx 3 = 2Σ 3 cos ( k 2 k=0 (2k +1) 0 0 0 x = 2Σ sec x dx x 0 x sec x dx 4 = 2Σ k =0 sec x dx 0 x 5 0 = 2Σ k=0 sec x dx x 0 x 0 0 x n = 2Σ k =0 2 (2) 0 x 0! 2 (2) 1 + x 1! + 4 (-1)k 2 +1)x 4 cos ( k 2 (2k +1) 2 (2) 2 2 (4) 0 + x x 2! 0! 5 (-1)k 2 +1)x 5 cos ( k 2 (2k +1) 2 (2) 3 2 (4) 1 + x x 3! 1! (-1)k n 2 +1 ( ) cos k x 2 (2k +1)n n /2 + Σ (-1)k-1 k=1 2 (2k) n-2k x (n -2k)! Proof sec x can be expanded to Fourier series in a broad meaning.as follows. 2 2e ix = 2e ix - e 3ix + e 5ix secx = ix -ix = 2ix 1+ e e +e = 2(cosx - cos 3x + cos 5x - cos 7x +-) + 2i(sin x - sin 3x + sin 5x - sin 7x +-) - 46 - e 7ix +- (2.0) sec x is the locus of the median (central line) of this real number part. (See the figure) y 40 30 20 10 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 x 1/cos(x) 2*cos(x) - 2*cos(3*x) + 2*cos(5*x) - 2*cos(7*x) + However calculus of the right side of (2.0) may be carried out, the real number does not turn into an imaginary number and the contrary does not exist, either. Therefore, limiting the range of sec x and the higher order integral to the real number, we calculate only the real number part of the right side of (2.0) . Although the Dirichlet Odd Beta is obtained from calculation of the imaginary number part, since it is long, it is omitted in this section. Now, integrate the real number part of both sides of (2.0) with respect to x from 0 to x, then x x sec x dx = 2(cosx - cos 3x + cos 5x - cos 7x +-)dx 0 0 sin 1x sin 3x sin 5x sin 8x + +- =2 1 2 3 4 sin 1x sin 3x sin 5x sin 8x =2 + +- 1 2 3 4 x 0 i.e. sec x dx = 2Σ x k =0 0 Here, since (-1)k sin (2k +1)x 2k +1 sin x = cos x - sec x dx = 2Σ x k =0 0 2 , we obtain 1 (-1)k cos (2k +1)x 2k +1 2 This is consistent with the real number part of the Fourier series of 1 1+ sin x log 2 1- sin x Next, integrate both sides of this with respect to x from 0 to x , then x x 0 0 1 (-1)k 2Σ secx dx = cos (2k +1)x 2 k =0 2k +1 0 2 (-1)k = 2Σ 2 +1 ( ) cos k x 2 2 k =0 (2k +1) x 2 dx - 47 - x 0 . = 2Σ k =0 (n) =Σ k =0 secx dx x x (-1)k (2k +1)n Here, let 2 (-1)k 2 +1 ( ) cos k x 2 (2k +1)2 = 2Σ k =0 0 0 k =0 (-1)k cos(-) (2k +1)2 , then we obtain 2 - 2Σ 2 (-1)k 2 +1)x 2 cos ( k 2 (2k +1) + 2 (2) 0 x 0! Next, integrate both sides of this with respect to x from 0 to x , then x x x 3 2 (2) 0 2 (-1)k + 2 +1 ( ) cos x dx k x 2 0! 2 k=0 (2k +1) 0 x 2 (2) 1 3 (-1)k + 2 +1)x = 2Σ x 3 cos ( k 1! 2 k =0 (2k +1) 0 k 2 (2) 1 3 (-1) + 2 +1)x = 2Σ x 3 cos ( k 1! 2 k =0 (2k +1) 0 0 0 x sec x dx = 2Σ Hereafter, in a similar way , we obtain the desired expressions. (1) Termwise Higher Definite Integral of Fourier Series of sec x Substituting x = /2 for Formula 5.7.2 , we obtain the following expressions. secx dx 2 x 0 2 0 2 x x 0 0 0 2 x x 0 2 x 0 0 x 0 2 2 (2) sec x dx = 1! 3 0 0 2 (2) = 0! 2 2 (2) sec x dx = 2! 4 (2.2') 1 2 2 (2) sec x dx = 3! 5 0 23-1 (3) 22 2 2 (2.3') 2 (4) 0! 2 0 2 (4) 1! 1 3 2 (2.4') 25-1 + (5) 24 (2.5') 2 x 0 0 0 x n /2 sec x dx = Σ (-1) n k =1 k-1 2 (2k) (n -2k)! 2 n-2k + sin n 2n-1 (n) 2 2n-1 (2.n') Proof Since n 2 2 n cos (2k +1) 2 2 cos (2k +1) - =0 = (-1) for n =2, 4, 6, k+1 - 48 - for n =1, 3, 5, k =0, 1, 2, , giving x = /2 to Formula 5.7.2 and substituting these for them, secx dx 2 x 0 = 2Σ 2 k=0 0 sec x dx 2 x x 0 3 0 0 (-1)k 2 2 +1 ( ) cos k 2 2 (2k +1)2 = 2Σ k=0 + 2(2) = 2(2) (-1)k 3 2 +1) 3 cos ( k 2 2 (2k +1) 2 (2) (-1)k (-1)k+1 + 2 1! k=0 (2k +1)3 23-1 2 (2) 1 = - 2 (3) + 2 1! 2 = 2Σ 2 (2) + 1! 2 1 1 Hereafter, in a similar way we obtein the desired expressions. (2) Fourier Series of the 1st order Integral of sec x The 1st order Integral of sec x is as follows. x k sin(2k +1)x sec x dx = 2Σ(-1) 2k +1 k =0 0 = 1 1+ sin x log 2 1- sin x |x|< 2 From this, the following expression follows immediately. (-1)k Σ k=0 Substituting x =1 (-1)k Σ k=0 1 1+ sin x sin(2k +1)x = log 2k +1 4 1- sin x |x|< (2.f) 2 for this, we obtain the following special value. 1 1+ sin 1 sin(2k +1) = log 2k +1 4 1- sin 1 5.7.3 Dirichlet Even Beta Comparing Taylor series of sec x and Fourier series of sec x, we obtain Dirichlet Even Beta. Although the general expression by the Euler Number is known about Dirichlet Odd Beta, the general expression of Dirichlet Even Beta is not known. The following formula shows this by the easy Euler series. Formula 5.7.3 When E2k , (x), (x) denote Euler Numbers, Dirichlet Beta Function, Riemann Zeta Function respectively, the following expressions hold. (2) = (2) = 1 E2k 2Σ k =0 (2k +2)! 1 E2k 2Σ k =0 (2k +3)! 1 E2k (4) = - Σ 2 k=0 (2k +4)! 1 E2k (4) = - Σ 2 k=0 (2k +5)! (6) = 1 E2k 2Σ k =0 (2k +6)! 2 2k+2 2 2k+2 2 2k+4 2k+4 2 2 23-1 (3) + 22 + + 2k+6 + - 49 - (2) 2! 2 2 (2) 3! 2 2 (4) 2 2! 2 25-1 (5) + 24 - (2) 4! 2 4 1 E2k 2Σ k =0 (2k +7)! (6) = 2 (4) 2k+6 + 3! 2 - (-1)n-1 E2k Σ 2 k=0 (2k +2n ) ! 2 (-1)n-1 E2k (2n) = Σ 2 k =0 (2 k +2 n +1) ! (2n -2k) k=1 (2k) ! +Σ(-1)k-1 2 2k+2n+1 n +Σ(-1)k-1 sec x dx 2 x 0 0 secx dx 2 x 0 2 E2k k=0 (2k +2)! =Σ 2 2 1 E2k (2) = Σ 2 k =0 (2k +2)! sec x dx 0 0 0 2 2k 2 (2k +1)! 22n+1-1 (2n +1) 22n 2k+2 (1.2') 2 2k+2 E2k k =0 (2k +3)! =Σ 2k (2.2') 3 2 (2) 0! = 0 2 x x 4 (2n -2k ) k =1 + Proof n 2k+2n 2 5! 7 2 -1 (7) + 26 (2n) = (2) 2 2 2k+3 (1.3') 23-1 2 (2) 1 sec x dx = - 2 (3) + 2 1! 0 0 0 2 1 E2k 2k+2 23-1 (3) (2) = Σ + 2 k=0 (2k +3)! 2 22 2 x x 3 (2.3') Hereafter, in a similar way we obtein the desired expressions. c.f. Mr.Sugioka expressed Dirichlet Even Beta by definite Reamann Odd Zeta and infinite Reiamnn Even Zeta using his " Taylor System ". 22-1 (4) = - 22 3 22 + 2 3! 1 24 5 4 2 (3) log 2 24-1 (6) = (4), (6) which he calculated are as follows. (5) 2 5! log 2 1 1 1! - 2 22-1 22 1 1! - 2 2 1! (2) 2 22-1 1 22 5! 1 - (2) - 22-1 22 1! 2 24-1 24 (3) - 1 3! 24-1 2 7! - 50 - 4 2 (4) 3! 24 7! 2 (4) 26-1 26 (6) 5! 26 9! - 3 3! 4 - 2 9! - 26-1 6 2 (6) 5! 6 2 11! - 5.7.4 Riemann Odd Zeta Riemann Odd Zeta can be conversely obtained from the half of Formula 5.7.3 . The following formula shows the relation between Riemann Odd Zeta and Dirichlet Even Beta by the easy expression. Formula 5.7.4 When E2k , (x), (x) denote Euler Numbers, Dirichlet Beta Function, Riemann Zeta Function respectively, the following expressions hold. 23 (2) (3) = 3 2 -1 1! 25 (5) = 5 2 -1 2 (4) 1! 1 22 E2k - 3 Σ 2 -1 k=0 (2k +3)! 2 (2) 1 - 3! 2 2k+3 2 3 24 E2k + 5 Σ 2 -1 k =0 (2k +5)! 27 (7) = 7 2 -1 (6) 1! 2 (4) 1 - 3! 2 3 + (2) 5! 2 2k+5 2k+7 2 5 26 E2k - 7 Σ 2 -1 k =0 (2k +7)! 2 (2n +1) = 22n+1 22n+1 -1 n -1 (-1) Σ k=0 k (2n -2k) (2k +1)! n + (-1) 22n 22n+1 -1 - 51 - 2 2k+1 E2k Σ k=0 (2k +2n +1)! 2 2k+2n+1 5.8 Termwise Higher Integral of sech x Since both zeros of sech x and the primitive function 2tan e x- -1 are x = , the latter seems to be a lineal primitive function with a fixed lower limit. Then, we assume zeros of the second or more order primitive x = . function are also 5.8.0 Higher Integral of sech x sech x dx = 2tan e - sech x dx = non-elementary function x -1 x x x 2 5.8.1 Termwise Higher Integral of Taylor Series of sech x When E2k denote Euler Numbers, the Taylor series of sech x is known as follows. sech x =Σ k=0 E2k 2k x (2k)! |x|< 2 However, this can not be integrated with the lower limit x = . 5.8.2 Termwise Higher Integral of Fourier Series of sech x Formula 5.8.2 The following expressions hold for x >0 . sech x dx sech x dx = 2Σ(-1) (e2k +1) e = -1 ( ) -2 sech x dx Σ (2k +1) x x = -2Σ(-1)k k =0 x x -(2k +1)x 2 k 2 k=0 x x 3 x e -(2k +1) 2k +1 -(2k +1)x k k=0 3 x x x e -(2k +1) sech x dx = (-1) 2Σ(-1) k=0 (2k +1)n n n k Proof sech x can be expanded to a Fourier series as follows. (See the figure of the following page.) 2 2e -x = = = 2e -x 1 - e -2x + e -4x - e -6x +- sech x -x -2x x e +e 1 +e = 2e -1x - e -3x + e -5x - e -7x +- = 2(cos 1ix - cos 3ix + cos 5ix - cos 7ix +- ) + 2i(sin 1ix - sin 3ix + sin 5ix - sin 7ix +- ) - 52 - (2.0) y 1.0 0.8 0.6 0.4 0.2 0.0 0 1 2 3 4 5 x 1/cosh(x) 2*(exp(-x) - exp(-201*x))/(exp(-2*x) + 1) Integrate the both sides of (2.0) with respect to x from x 2e x sech x dx = -x = -2 to x , then - e -3x + e -5x - e -7x +-dx e -x e -3x e -5x e -7x + +- 1 3 5 7 x 0 i.e. x x e -(2k +1) sech x dx = -2Σ(-1) 2k +1 k =0 k This is consistent with the real number part of the Fourier series of Next, integrate both sides of this with respect to x from x x x -(2k +1) 2 k e sech x dx = 2Σ(-1) k=0 (2k +1)2 2tan e x- -1 . to x , then x x e -(2k +1) = 2Σ(-1) k=0 (2k +1)2 k Hereafter, in a similar way we obtein the desired expressions. 5.8.3 Dirichlet Beta Function Substituting x =0 for Formula 5.8.2 , we obtain Dirichlet Beta Function immediately. Formula 5.8.3 When (n) =Σ k=0 (-1)k (2k +1)n is the Dirichlet Beta Function, the following expressions hold. sech x dx = -2(1) sech x dx = 2(2) sech x dx = -2(3) 0 0 x 0 x 2 x 3 - 53 - sech x dx 0 x x n = (-1)n2 (n) Note 1 1 1 1 - 1 + 1 - 1 +- = 1 4 1 3 5 7 1 1 1 1 (2) = 2 - 2 + 2 - 2 +- = 0.9159655941 3 5 7 1 (1) = : Madhava series : Catalan's constant 2006.10.05 2012.05.29 Updated K. Kono Alien's Mathematics - 54 -