Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
7/13/2012 OPERATIONS ON POLYNOMIALS OPERATIONS ON POLYNOMIALS TYPES of Polynomials According to the number of terms continuation… • • • • MONOMIAL – one term BINOMIAL – two terms TRINOMIAL – three terms MULTINOMIAL – more than three terms OPERATIONS ON POLYNOMIALS OPERATIONS ON POLYNOMIALS TYPES of Polynomials COEFFICIENTS According to degrees A term is composed of • Numerical coefficient • Literal coefficient 7 •CONSTANT – degree 0 x yz •LINEAR – degree 1 xy x •QUADRATIC – degree 2 •CUBIC – degree 3 3 x 3 x 2 x3 OPERATIONS ON POLYNOMIALS SIMILAR Terms • are terms that have the same literal coefficient. Example: Identify the numerical and literal coefficients. 5 xy 2 7 x 2 y 3 4 x 2 y 2 2 x 2 y 2 OPERATIONS ON POLYNOMIALS ADDITION of Polynomials RULE: Identify similar terms; add their numerical coefficients and affix common literal coefficients. Example: Identify similar terms. 3xy 2 7 xy 3 12 x 2 y 2 x 2 y 2 Example: Simplify by adding similar terms. 5 x 2 y 2 2 xy 3 4 x 2 y 2 xy 3 x 2 y 2 3xy 3 1 7/13/2012 OPERATIONS ON POLYNOMIALS ADDITION of Polynomials COLUMN Method RULE: Arrange similar terms in column, then add. Example: Add the polynomials below. 5x 7 x x 4 3 Example: Add the following polynomials: 1. x 2 y 2 x 2 y 2 xy 3 ; x3 y 3x 2 x 2 y y 2 Solution: x 2 y 2 x 2 y 2 xy 3 2 x3 y x 2 y 3x 2 y 2 3x 8 x 3x 7 3 2 3 x3 y 2 8 x x 4 x 11 xy 3 x2 Answer: x3 y x 2 xy 3 Example: OPERATIONS ON POLYNOMIALS SUBTRACTION of Polynomials Add the following polynomials: 2. 3x 4 5 x 2 x 12; 5 x 4 x3 11x 3 Solution: Example: Subtract the 2nd polynomial from the first one. 3 x4 5 x2 x 12 5 x4 x3 11x 3 4 RULE: a – b = a + (-b) 4 x3 7 x 2 2 x 4 7 3x3 8x2 3x 2 3 2 x x 5 x 10 x 9 x3 15 x 2 x 3 Answer: - 2 x4 x3 5 x2 10 x 9 Example: Subtract the Example: 2nd from the 1st: Subtract the 2nd from the 1st: 1. x 2 y 2 x 2 y 2 xy 3 ; x3 y 3x 2 x 2 y y 2 Solution: x y 2 x y xy 2 2 2 2. 3x 4 5 x 2 x 12; 5 x 4 x3 11x 3 Solution: 3 x3 y x 2 y 3x 2 y 2 x3 y 2 x 2 y 5 x 2 2 y 2 xy 3 Answer: - x3 y 2 x2 y 5 x2 2 y 2 xy3 3 x4 5 x2 x 12 5 x4 x3 11x 3 8 x4 x3 5 x 2 12 x 15 Answer: 8x4 x3 5 x2 12 x 15 2 7/13/2012 OPERATIONS ON POLYNOMIALS MULTIPLICATION of Polynomials Multiply: RULE: a(b + c) = ab + ac 1. x3 3x 2 x 1; x 2 Solution: Example: Multiply the polynomials below. 8 x 2 7 4 x 7 x 2 x 4 3 Example: 2 x 4 3 x3 x 2 x 2 x36 x 2 2 x 2 3 4 2 8 xx2 5 4x56 x 7x16 x23 x 32 324x 2 3 2 3 x 14 28 57x 4x49 7 x 2 3 x2x28 4 4 32 x 56 x 12 x 17 x 2 14 x 28 x3 3 x 2 x 1 x2 Answer: x4 5 x3 7 x2 3x 2 OPERATIONS ON POLYNOMIALS DIVISION of Polynomials x 6 Long Division Synthetic Division Example: Perform the indicated operation. x 2 OPERATIONS ON POLYNOMIALS LONG DIVISION 5 x 6 x 1 12 x1 x 1 x2 5 x 6 x2 x 6 x 6 6 x 6 12 OPERATIONS ON POLYNOMIALS SYNTHETIC DIVISION polynomial Used when we have: xa 1. 2 x 5x 6 Example: x 1 SYNTHETIC DIVISION Write the coefficients ONLY of the variable (arrange in decreasing power/exponent) 5 6 2. Write a at the left side: 3. Bring down the 6 leading coefficient: 1 1 6 12 x 6 r.12 x 6 12 1 1 OPERATIONS ON POLYNOMIALS Example: Perform the indicated division using synthetic division. x3 3x 2 x 3 x2 4 x 3x x 2 4 2) x2 1) x 1 3 7/13/2012 OPERATIONS ON POLYNOMIALS OPERATIONS ON POLYNOMIALS SYNTHETIC DIVISION SYNTHETIC DIVISION x 3x x 3 1. x2 2. 3 2 2 3 1 3 2 2 6 1 1 3 3 x 2 x 3 r. 3 x 2 x 3 x32 1 MORE Examples OPERATIONS ON POLYNOMIALS Find: a.) sum of the expressions b.) subtract the second from the first. 1.2 x y 5 and 3 y 2 z 4 a. 2 x y 5 3 y 2 z 4 2x 4 y 2z 1 MORE Examples OPERATIONS ON POLYNOMIALS Find: a.) sum of the expressions b.) subtract the second from the first. 2. x 2 y z and 3 x y 2 z a. x 2 y z 3 x y 2 z x 2 y z 3x 3 y 6 z 2x 5 y 7z x 4 3x x 2 4 x2 2 0 1 3 4 18 2 4 6 3 9 22 1 2 3 2 x 2 x 3 x 9 r. 22 x3 2 x 2 3 x 9 1 MORE Examples 22 x2 OPERATIONS ON POLYNOMIALS Find: a.) sum of the expressions b.) subtract the second from the first. 1.2 x y 5 and 3 y 2 z 4 b. 2 x y 5 3 y 2 z 4 2x 2 y 2z 9 MORE Examples OPERATIONS ON POLYNOMIALS Find: a.) sum of the expressions b.) subtract the second from the first. 2. x 2 y z and 3 x y 2 z b. x 2 y z 3 x y 2 z x 2 y z 3x 3 y 6 z 4 x y 5 z 4 7/13/2012 OPERATIONS ON POLYNOMIALS MORE Examples 4. Subtract the second from the first. 3. ADD the two polynomials. 8 y 4 5 y3 2 y 2 6 14 y 4 5 y 3 4 y 2 3 y 5 OPERATIONS ON POLYNOMIALS MORE Examples 5. Remove all grouping symbols and combine like terms 8 y 4 2 y 4 5 y 3 OPERATIONS ON POLYNOMIALS 7. Multiply x xy y and x y . 2 OPERATIONS ON POLYNOMIALS MORE Examples 6. Remove all grouping symbols and combine 9 x 2 y 3x y x 2 y 4 x 7x y OPERATIONS ON POLYNOMIALS MORE Examples 8. Multiply a 2n x 2 xy y 2 7a n 10 and a 1 . a 2 n 7 a n 10 x y a 1 x x y xy x 2 y xy 2 y 3 2 3y 7 9 x 2 y 3x y x 2 y 4 x 4 y 2 x 3 y 11x 7 y 2 x 11x 10 y 13x 10 y 3 6 5 y3 2 y 2 9 x 2 y 3x y 2 y x 2 y 4 x y 2 x 3 y 5 x 7 y 6 x 2 like terms 2 x 3 y 5 x 7 y 6 x MORE Examples 2 y2 3y 1 6 y4 2 y2 3y 1 6 y4 OPERATIONS ON POLYNOMIALS MORE Examples 2 a x3 y 3 a 2n 2 n 1 7a n 1 10a 7a n 10 a 2 n1 a 2 n 7a n1 7a n 10a 10 5 7/13/2012 MORE Examples OPERATIONS ON POLYNOMIALS OPERATIONS ON POLYNOMIALS SUMMARY 9. Divide 15 x 2 y 2 20 x3 y 3 by 5 x 2 y 2 3 4xy 10. Divide 2 x3 7 x 2 11x 4 by 2 x 1 x 2 3x 4 In this section you learned to perform the following operations on polynomials: •ADDITION •SUBTRACTION •MULTIPLICATION •DIVISION OPERATIONS ON POLYNOMIALS End 6