Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
C H A P T E R 4 Trigonometric Functions Section 4.1 Radian and Degree Measure . . . . . . . . . . . . . . . . 272 Section 4.2 Trigonometric Functions: The Unit Circle Section 4.3 Right Triangle Trigonometry . . . . . . . . . . . . . . . . 289 Section 4.4 Trigonometric Functions of Any Angle Section 4.5 Graphs of Sine and Cosine Functions . . . . . . . . . . . 317 Section 4.6 Graphs of Other Trigonometric Functions . . . . . . . . . 329 Section 4.7 Inverse Trigonometric Functions . . . . . . . . . . . . . . 339 Section 4.8 Applications and Models . . . . . . . . . . . . . . . . . . 350 Review Exercises © Houghton Mifflin Company. All rights reserved. Practice Test . . . . . . . . 281 . . . . . . . . . . 300 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377 C H A P T E R 4 Trigonometric Functions Section 4.1 Radian and Degree Measure You should know the following basic facts about angles, their measurement, and their applications. ■ Types of Angles: (a) Acute: Measure between 0 and 90. (b) Right: Measure 90. (c) Obtuse: Measure between 90 and 180. (d) Straight: Measure 180. ■ ■ ■ ■ ■ ■ ■ ■ ■ and are complementary if 90. They are supplementary if 180. Two angles in standard position that have the same terminal side are called coterminal angles. To convert degrees to radians, use 1 180 radians. To convert radians to degrees, use 1 radian 180. 1 one minute 160 of 1 1 one second 160 of 1 13600 of 1 The length of a circular arc is s r where is measured in radians. Speed distancetime Angular speed t srt Vocabulary Check 1. Trigonometry 2. angle 3. standard position 4. coterminal 5. radian 6. complementary 7. supplementary 8. degree 1. 10. angular The angle shown is approximately 2 radians. 3. (a) Since 3 7 7 lies in Quadrant IV. < < 2, 2 4 4 5 11 11 lies in < < 3, 2 4 4 Quadrant II. (b) Since 272 2. The angle shown is approximately 4 radians. 5 5 < < 0, lies in 2 12 2 Quadrant IV. 4. (a) Since 3 13 13 < < , lies in 2 9 9 Quadrant II. (b) Since © Houghton Mifflin Company. All rights reserved. 9. linear Section 4.1 5. (a) Since < 1 < 0; 1 lies in Quadrant IV. 2 6. (a) Since < 3.5 < (b) Since < 2 < ; 2 lies in 2 Quadrant III. 7. (a) 13 4 Radian and Degree Measure (b) Since y 8. (a) 3 , 3.5 lies in Quadrant III. 2 < 2.25 < , 2.25 lies in Quadrant II. 2 y 7 4 3π 4 x x − 7π 4 (b) 4 3 y 5 (b) 2 y 4π 3 x x 9. (a) 11 6 − 5π 2 y 10. (a) 4 y 11π 6 4 x © Houghton Mifflin Company. All rights reserved. x (b) 2 3 (b) 3 y y 2π 3 x x 11. (a) Coterminal angles for : 6 −3 (b) Coterminal angles for 13 2 6 6 8 2 2 3 3 11 2 6 6 4 2 2 3 3 2 : 3 273 Chapter 4 Trigonometric Functions 12. (a) Coterminal angles for 7 : 6 13. (a) Coterminal angles for 7 19 2 6 6 9 2 4 4 7 5 2 6 6 9 7 4 4 4 (b) Coterminal angles for 5 : 4 (b) Coterminal angles for 5 13 2 4 4 3 5 2 4 4 15. Complement: 2 3 6 Supplement: 17. Complement: 2 6 3 Supplement: 19. Complement: 2 3 3 14. (a) Coterminal angles for 2 : 15 (b) Coterminal angles for 98 8 2 45 45 32 2 2 15 15 82 8 2 45 45 16. Complement: Not possible; (a)Supplement: Supplement: 8 : 45 3 is greater than . 4 2 3 4 4 18. Complement: Not possible; 2 is greater than . 3 2 2 3 3 2 Supplement: 2 1.14 20. Complement: None 2 > Supplement: 1 2.14 7 : 8 7 23 2 8 8 9 7 2 8 8 2 28 2 15 15 5 6 6 1 0.57 2 9 : 4 22. 21. The angle shown is approximately 210. 23. (a) Since 90 < 150 < 180, 150 lies in Quadrant II. (b) Since 270 < 282 < 360, 282 lies in Quadrant IV. 25. (a) Since 180 < 132 50 < 90, 132 50 lies in Quadrant III. (b) Since 360 < 336 30 < 270, 336 30 lies in Quadrant I. The angle shown is approximately 45. 24. (a) Since 0 < 87.9 < 90, 87.9 lies in Quadrant I. (b) Since 0 < 8.5 < 90, 8.5 lies in Quadrant I. 26. (a) Since 270 < 245.25 < 180, 245.25 lies in Quadrant II. (b) Since 90 < 12.35 < 0, 12.35 lies in Quadrant IV. © Houghton Mifflin Company. All rights reserved. 274 Section 4.1 y 27. (a) 30 Radian and Degree Measure 275 y (b) 150 150° 30⬚ x 28. (a) 270 x 30. (a) 450 29. (a) 405 y y y −450° 405° x x x −270° (b) 120 (b) 600 (b) 780 y y y 780° − 600⬚ x x x −120° 31. (a) Coterminal angles for 52: 52 360 412 114 360 474 52 360 308 114 360 246 (b) Coterminal angles for 36: © Houghton Mifflin Company. All rights reserved. 32. (a) Coterminal angles for 114: (b) Coterminal angles for 390: 36 360 324 390 720 330 36 360 396 390 360 30 34. (a) Coterminal angles for 445: 445 720 275 35. Complement: 90 24 66 Supplement: 180 24 156 33. (a) Coterminal angles for 300: 300 360 660 300 360 60 (b) Coterminal angles for 230: 230 360 590 230 360 130 36. Complement: Not possible Supplement: 180 129 51 445 360 85 (b) Coterminal angles for 740: 740 1080 340 740 720 20 37. Complement: 90 87 3 Supplement: 180 87 93 38. Complement: Not possible Supplement: 180 167 13 39. (a) 30 30 180 6 (b) 150 150 180 5 6 Chapter 4 Trigonometric Functions 40. (a) 315 315 7 4 2 3 180 (b) 120 120 180 42. (a) 270 270 43. (a) (b) 144 144 7 7 180 420 3 3 180 2.007 radians 180 0.014 radians 56. 4.2 4.2 58. 0.48 0.48 4 5 15 15 180 450 6 6 48. 83.7 83.7 180 3.776 radians 180 25.714 7 7 4 28 28 180 (b) 336 15 15 46. (a) 13 180 13 39 60 60 51. 0.78 0.78 180 3 720 180 180 540 (b) 3 3 49. 216.35 216.35 180 44. (a) 4 4 7 7 180 210 6 6 47. 115 115 53. 3 180 2 (b) 180 9 (b) 240 240 3 3 180 270 2 2 (b) 45. (a) 41. (a) 20 20 54. 756 180 50. 46.52 46.52 52. 395 395 180 0.812 radians 180 6.894 radians 8 8 180 110.769 13 13 57. 2 2 27.502 180 180 1.461 radians 55. 6.5 6.5 1170 180 114.592 180 59. 64 45 64 64.75 45 60 60. 124 30 124.5 30 61. 85 18 30 85 18 60 3600 85.308 62. 408 16 25 408.274 36 63. 125 36 125 3600 125.01 64. 330 25 330.007 65. 280.6 280 0.660 280 36 66. 115.8 115 48 67. 345.12 345 7 12 68. 310.75 310 45 © Houghton Mifflin Company. All rights reserved. 276 Section 4.1 69. 0.355 0.355 180 Radian and Degree Measure 70. 0.7865 0.7865 20.34 20 20 24 180 45.0631 45 0.063160 45 3 0.78660 45 3 47 71. s r 72. 6 5 73. 3s r 31 12 65 radians 74. s r 32 7 7 31 12 212 radians 32 4 3 7 4 7 radians s r 60 75 4 60 75 5 radians Because the angle represented is clockwise, this angle is 45 radians. 75. The angles in radians are: 135 © Houghton Mifflin Company. All rights reserved. 0 0 76. The angles in degrees are: 3 4 30 6 45 4 210 7 6 60 3 270 3 2 90 2 330 11 6 180 77. s r 78. 8 15 5 225 4 45 4 4 240 3 60 3 5 300 3 2 120 3 7 315 4 5 150 6 180 s 10 5 radian r 22 11 79. 8 radians 15 s 160 2 radians r 80 82. r 9 feet, 60 s r 9 s r 35 14.5 80. r 80 kilometers, s 160 kilometers 30 6 3 3 feet 3 70 2.414 radians 29 81. s r , in radians s 14180 180 14 43.982 inches 83. s r , in radians s 27 23 18 meters 56.55 meters 277 278 Chapter 4 Trigonometric Functions 84. r 12 centimeters, s r 12 3 4 85. r s 36 72 feet 22.92 feet 2 s 82 328 miles 34.80 miles 135180 3 34 9 centimeters 28.27 cm 86. r s 3 9 meters 0.72 meter 43 4 87. r 88. r 8 48 s inches 1.39 inches 330180 11 89. 42 7 33 25 46 32 16 21 1 0.28537 radian s r 40000.28537 1141.48 miles s 450 0.07056 radian 4.04 r 6378 91. 90. r 4000 miles 31 46 26 8 57 54 1.0105 rad 4 2 33.02 s r 40001.0105 4042.0 miles 93. 92. r 6378, s 400 94. s 2.5 25 5 radian 23.87 r 6 60 12 s 400 0.0627 rad 3.59 r 6378 s 24 4.8 rad 275.02 r 5 1 95. (a) single axel: 12 revolutions 360 180 540 2 3 radians 1 (b) double axel: 22 revolutions 720 180 900 1 (c) triple axel: 32 revolutions 1260 7 radians 96. Linear speed 97. (a) s r 6400 12502 436.967 kmmin t t 110 Revolutions 2400 40 revsec Second 60 Angular speed 240 80 radsec (b) Radius of saw blade Radius in feet Speed 7.5 3.75 in. 2 3.75 0.3125 ft 12 s r r r angular speed t t t 0.312580 78.54 ftsec 98. (a) Revolutions 4800 80 revsec Second 60 Angular speed 280 160 radsec (b) Radius of saw blade Radius in feet Speed 7.25 3.625 in. 2 3.625 0.3021 ft 12 s r r r angular speed t t t 0.3021160 151.84 ftsec © Houghton Mifflin Company. All rights reserved. 4 5 radians Section 4.1 99. (a) Radian and Degree Measure Revolutions 480 28,800 revhr Hour 160 Angular speed 2 28,800 57,600 radhr Radius of wheel Speed 252 5 miles 12 in.ft5280 ftmi 25,344 s r r r angular speed t t t 5 25,344 57,600 125 35.70 mileshr 11 (b) Let x spin balance machine rate. 70 rangular speed r 2 x 5 revolutions ≤ 500 minute 200 ≤ 100. (a) 160 25,344120 x ⇒ x 941.18 revmin 2 200 ≤ angular speed ≤ 2 500 400 radmin ≤ angular speed ≤ 1000 radmin (b) Speed s r r r angular speed 6angular speed t t t 6400 ≤ linear speed ≤ 61000 For the outermost track, 6000 cmmin 101. False, 1 radian 57.3, so one radian 180 102. No, 1260 is coterminal with 180. is much larger than one degree. © Houghton Mifflin Company. All rights reserved. 103. True: 2 8 3 180 3 4 12 12 104. (a) An angle is in standard position when the origin is the vertex and the initial side coincides with the positive x-axis. (b) A negative angle is generated by a clockwise rotation. (c) Angles that have the same initial and terminal sides are coterminal angles. (d) An obtuse angle is between 90 and 180. 105. If is constant, the length of the arc is proportional to the radius s r, and hence increasing. 1 1 107. A r 2 102 2 2 50 square meters 3 3 106. Let A be the area of a circular sector of radius r and central angle . Then A 1 ⇒ r 2. 2 r 2 2 108. Because s r, 12 . 15 1 12 1 90 ft 2. Hence, A r 2 152 2 2 15 279 280 Chapter 4 Trigonometric Functions 1 109. A 2 r 2, s r 8 ⇒ A 12 r 2 0.8 0.4r 2 (a) 0.8 s r r 0.8 A Domain: r > 0 s Domain: r > 0 0 The area function changes more rapidly for r > 1 because it is quadratic and the arc length function is linear. ⇒ A 12 10 2 50 (b) r 10 s r 10 12 0 Domain: 0 < < 2 320 Domain: 0 < < 2 A s 2 0 0 110. If a fan of greater diameter is installed, the angular speed does not change. 111. Answers will vary. 112. Answers will vary. y 113. y 114. 4 2 3 1 2 x −4 −3 −2 1 x −2 2 3 4 5 1 2 3 4 1 2 3 5 6 −2 6 −3 −2 −3 −4 −6 y 115. y 116. 5 4 4 3 3 2 1 1 −4 −3 −2 1 2 3 x −5 −4 −3 x 4 −2 −3 y 117. y 118. 3 4 2 3 1 2 x −4 −3 −2 1 −2 2 3 1 4 x −2 1 −2 −4 −3 −5 −4 2 3 © Houghton Mifflin Company. All rights reserved. −4 −3 Section 4.2 Section 4.2 ■ ■ ■ ■ Trigonometric Functions: The Unit Circle Trigonometric Functions: The Unit Circle You should know how to evaluate trigonometric functions using the unit circle. You should know the definition of a periodic function. You should be able to recognize even and odd trigonometric functions. You should be able to evaluate trigonometric functions with a calculator in both radian and degree mode. Vocabulary Check 1. unit circle 1. sin y 2. periodic 15 17 2. x, y 13, 13 12 5 8 17 sin y 5 13 tan y 15 x 8 cos x 12 13 cot x 8 y 15 tan y 513 5 x 1213 12 sec 1 17 x 8 csc 1 1 13 y 513 5 csc 1 17 y 15 sec 1 1 13 x 1213 12 cot x 1213 12 y 513 5 cos x 3. sin y © Houghton Mifflin Company. All rights reserved. 3. odd, even cos x y 5 x 12 cot x 12 y 5 sec 1 13 x 12 csc 1 13 y 5 4 3 4. x, y , 5 5 3 sin y 5 4 cos x 5 y 35 3 tan x 45 4 1 1 5 csc y 35 3 1 1 5 sec x 45 4 x 45 4 cot y 35 3 12 13 tan 5. t 5 13 2 2 corresponds to . , 4 2 2 6. t ⇒ 3 1 3 2, 2 281 Chapter 4 Trigonometric Functions 5 ⇒ 4 7. t 3 1 7 , . corresponds to 2 2 6 9. t 2 1 3 . corresponds to , 3 2 2 10. t 3 corresponds to 0, 1. 2 12. t ⇒ 1, 0 11. t 8. t 2 2 , 2 2 5 1 3 corresponds to , . 3 2 2 4 1 3 corresponds to , . 2 2 3 13. t 7 2 2 , . corresponds to 2 2 4 14. t 15. t 3 corresponds to 0, 1. 2 16. t 2 corresponds to 1, 0. 17. t 2 2 , . corresponds to 4 2 2 sin t y cos t x tan t 19. t 2 2 2 y 1 x 3 7 1 , . corresponds to 6 2 2 1 2 cos t x tan t 3 tan t 3 y 3 2 cos 1 x 3 2 tan y 32 3 3 x 12 20. t 3 2 1 2 y 3 x 22. t 2 2 5 , . corresponds to 4 2 2 tan t sin 2 2 cos t x 2 2 1 3 corresponds to , . 3 2 2 cos t x sin t y 3 1 y x 3 3 sin t y 1 3 corresponds to , . 3 2 2 18. t 2 sin t y 21. t 2 2 y 1 x 5 1 3 . corresponds to , 3 2 2 sin t y cos t x tan t 3 2 1 2 y 3 x © Houghton Mifflin Company. All rights reserved. 282 Section 4.2 23. t 5 1 3 . corresponds to , 3 2 2 sin t y cos t x tan t 25. t 1 2 2 2 2 3 y 1 4 x 3 2 1 2 y 3 x sin2 y 0 cos2 x 1 tan2 y is undefined. x 2 2 3 corresponds to , . 4 2 2 2 2 2 y 1 x 2 csc t 1 2 y sec t 1 2 x cot t x 1 y 4 1 3 . corresponds to , 3 2 2 30. t 2 corresponds to 1, 0. cos t x 0 cos t x 28. t tan t 3 corresponds to 0, 1. 2 tan t 2 cos t x y 1 x sin t y 2 3 x 4 2 2 2 , 2 . sin t y 2 sin t y 1 31. t 3 y x 3 tan 2 2 3 y 4 2 cos tan t 3 3 2 1 2 3 corresponds to 4 sin 2 2 7 corresponds to , . 4 2 2 tan t 26. t 1 2 3 y x 3 cos t x © Houghton Mifflin Company. All rights reserved. tan t sin t y cos t x 3 1 , . corresponds to 6 2 2 tan t 3 11 1 , . corresponds to 6 2 2 sin t y 2 y 3 x cos t x 29. t 24. t 3 sin t y 27. t Trigonometric Functions: The Unit Circle y 0 0 x 1 283 Chapter 4 Trigonometric Functions 3 1 5 corresponds to , . 6 2 2 32. t sin t y 33. t 1 2 cos t x 3 2 tan t 3 y 1 x 3 3 csc t 1 2 y sec t 1 2 23 x 3 3 cot t x 3 y sin t y 1 csc t 1 1 y cos t x 0 sec t 1 is undefined. x cot t x 0 y tan t 3 corresponds to 0, 1. 2 34. t corresponds to 0, 1. 2 35. t y is undefined. x 2 1 3 corresponds to , . 2 2 3 sin 3 y 1 2 sin t y cos 3 x0 2 cos t x tan 3 y 1 ⇒ undefined 2 x 0 tan t csc 1 3 1 1 2 y 1 sec 3 1 1 ⇒ undefined 2 x 0 cot 0 3 x 0 2 y 1 36. t 2 2 7 corresponds to , . 4 2 2 2 7 y 4 2 csc 7 1 2 4 y 2 7 x 4 2 sec 7 1 2 4 x 7 y 1 4 x cot 7 x 1 4 y cos tan 2 1 2 y 3 x 37. sin 5 sin 0 sin 3 csc t 23 3 sec 2 cot 3 3 © Houghton Mifflin Company. All rights reserved. 284 Section 4.2 38. Because 7 6 : Trigonometric Functions: The Unit Circle 39. cos cos 7 cos6 cos 1 40. Because sin 9 2 : 4 4 41. cos 3 13 11 cos cos 6 6 6 2 9 2 sin 2 sin 4 4 4 2 42. Because sin 19 5 4 : 6 6 2 56 12 44. Because cos 8 4 4 : 3 3 46. cos t 4 1 3 2 3 4 (b) sect 3 4 (a) sint sin t 1 1 4 cost cos t 3 (a) sin t sint 1 5 (b) sec t 49. sin t 3 8 4 5 4 5 4 5 (b) cost cos t 4 5 4 5 (b) sint sin t 51. sin (a) cos t cos t 1 5 1 5 cos t (a) sin t sin t 1 1 8 sint sint 3 1 3 (b) csc t csc t 3 (a) cos t cost 3 8 (b) csc t 1 3 47. cos t (a) cost cos t 48. sint 45. sin t 8 4 cos 4 3 3 cos 50. cos t 9 4 sin 4 2 43. sin 19 5 sin 4 6 6 sin © Houghton Mifflin Company. All rights reserved. 2 1 8 cos 3 3 2 7 0.6428 9 4 5 285 286 Chapter 4 52. tan Trigonometric Functions 2 3.0777 5 53. cos 11 0.8090 5 54. sin 11 0.6428 9 55. csc 1.3 1.0378 56. cot 3.7 1 1.6007 tan 3.7 57. cos1.7 0.1288 58. cos2.5 0.8011 59. csc 0.8 1 1.3940 sin 0.8 60. sec 1.8 1 4.4014 cos 1.8 63. cot 2.5 1 1.3386 tan 2.5 61. sec 22.8 1 1.4486 cos 22.8 62. sin13.4 0.7404 64. tan 1.75 5.5204 65. csc1.5 1 1.0025 sin1.5 66. tan2.25 1.2386 67. sec4.5 1 4.7439 cos4.5 68. csc5.2 1 1.1319 sin5.2 70. (a) sin 0.75 y 0.7 69. (a) sin 5 1 (b) cos 2.5 x 0.8 (b) cos 2 0.4 72. (a) sin t 0.75 71. (a) sin t 0.25 73. I0.7 5e1.4 sin 0.7 t 4.0 or t 5.4 t 0.25 or 2.89 0.79 amperes (b) cos t 0.75 (b) cos t 0.25 I 5e2t sin t t 0.72 or t 5.56 t 1.82 or 4.46 74. At t 1.4, 75. y t 14 cos 6t I 5e21.4 sin 1.4 0.30 amperes. (a) y 0 14 cos 0 0.2500 ft (c) y12 14 cos 3 0.2475 ft 1 76. yt et cos 6t 4 1 1 (a) y0 e0 cos0 foot 4 4 (b) t 0.50 1.02 1.54 2.07 y 0.15 0.09 0.05 0.03 2.59 0.02 (c) The maximum displacements are decreasing because of friction, which is modeled by the et term. (d) 1 t e cos 6t 0 4 cos 6t 0 6t 3 , 2 2 t , 12 4 © Houghton Mifflin Company. All rights reserved. (b) y14 14 cos 32 0.0177 ft Section 4.2 43 3 Trigonometric Functions: The Unit Circle > 0 78. True 79. False. 0 corresponds to 1, 0. 80. True 81. (a) The points have y-axis symmetry. 82. (a) The points x1, y1 and x2, y2 are symmetric about the origin. 77. False. sin 2 (b) sin t1 sin t1 since they have the same y-value. (c) cos t1 cos t1 since the x-values have opposite signs. 83. cos 1.5 0.0707, 2 cos 0.75 1.4634 (b) Because of the symmetry of the points, you can make the conjecture that sint1 sin t1. (c) Because of the symmetry of the points, you can make the conjecture that cost1 cos t1. 84. sin0.25 sin0.75 0.2474 0.6816 0.9290 Thus, cos 2t 2 cos t. sin 1 0.8415 Therefore, sin t1 sin t2 sint1 t2. 86. sin y sin 85. cos x cos sec 1 1 sec cos cos y csc 1 csc y tan y tan x cot x cot y (x, y) θ x −θ (x, −y) 87. ht f tgt is odd. © Houghton Mifflin Company. All rights reserved. ht f tgt f tgt ht 287 88. f t sin t and gt tan t Both f and g are odd functions. ht f tgt sin t tan t ht sint tant sin ttan t sin t tan t ht The function ht f tgt is even. 288 Chapter 4 Trigonometric Functions f x 12 3x 2 89. 6 f y 12 3x 2 x 1 2 3y 90. f−1 −9 −9 f−1 9 x 1 14 y3 −6 −6 4x 1 y3 3 4x 1 y 1 y 3 4x 1 f 1x f 1x 3 x 1 2 f x x2 4, x ≥ 2, y ≥ 0 y x2 4 92. f x 2x , x > 1 x1 y 2x , x > 1 x1 7 x y2 4 f−1 x y 4 2 f x 14 y3 1 2 2x 2 3y 91. 6 1 y 4x3 1 9 2x 3y 2 2 3 x f x 14 x3 1 2 f −2 −3 9 −4 2y x y1 10 −1 x2 4 y2 4 xy x 2y x2 4 y, x ≥ 0 x 2y xy f 1x x2 4, x ≥ 0 x y2 x x y, x < 2 2x x ,x < 2 2x f 1x 2x x3 94. f x 5x 5x x x 6 x 3x 2 2 Asymptotes: x 3, x 2, y 0 Asymptotes: x 3, y 2 y y 10 8 6 4 8 7 6 5 4 3 x 4 6 8 10 1 −4 −3 −2 −1 x 2 4 5 6 7 8 −6 −8 −2 −3 −4 95. f x x2 3x 10 x 2x 5 2 2x 8 2x 2x 2 x5 , 2x 2 y 4 3 x2 1 Asymptotes: x 2, y 2 2 1 −7 −6 −5 −2 −1 −1 −2 −3 −4 x 1 © Houghton Mifflin Company. All rights reserved. 93. f x Section 4.3 96. f x x3 6x 2 x 1 x 7 15x 4 2x 2 5x 8 2 4 42x 2 5x 8 Slant asymptote: y 289 y 10 8 6 4 2 x 7 2 4 Vertical asymptotes: x 3.608, x 1.108 Right Triangle Trigonometry −8 −6 −4 −2 x 6 8 10 −8 −10 98. y ln x 4 97. y x2 3x 4 Domain: all real numbers Domain: all x 0 0 x 3x 4 x 4x 1 ⇒ x 1, 4 ln x4 0 ⇒ x 4 1 ⇒ x ± 1 Intercepts: 0, 4, 1, 0, 4, 0 Intercepts: 1, 0, 1, 0 No asymptotes Asymptote: x 0 2 100. f x 99. f x 3x1 2 Domain: all real numbers x7 x7 x 2 4x 4 x 22 Domain: all real numbers x 2 Intercept: 0, 5 Intercepts: 7, 0, 0, Asymptote: y 2 7 4 Asymptotes: x 2, y 0 Section 4.3 © Houghton Mifflin Company. All rights reserved. ■ opp adj adj (f) cot opp 1 csc 1 (d) sec cos sin (g) tan cos (b) csc 1 sin 1 (e) tan cot cos (h) cot sin (j) 1 tan2 sec2 (k) 1 cot2 csc2 nu θ You should know the following identities. (a) sin se (c) tan te adj hyp hyp (e) sec adj (b) cos yp o opp hyp hyp (d) csc opp (a) sin Opposite side You should know the right triangle definition of trigonometric functions. H ■ Right Triangle Trigonometry Adjacent side 1 sec 1 (f) cot tan (c) cos (i) sin2 cos2 1 ■ You should know that two acute angles and are complementary if 90, and cofunctions of complementary angles are equal. ■ You should know the trigonometric function values of 30, 45, and 60, or be able to construct triangles from which you can determine them. 290 Chapter 4 Trigonometric Functions Vocabulary Check 1. (a) iii (b) vi (c) ii (d) v 2. hypotenuse, opposite, adjacent (e) i (f) iv 3. elevation, depression 2. 1. 13 5 5 θ 3 b θ b 132 52 169 25 12 adj 52 32 16 4 sin opp 5 hyp 13 sin opp 3 hyp 5 cos adj 12 hyp 13 cos adj 4 hyp 5 tan opp 5 adj 12 tan opp 3 adj 4 csc csc hyp 5 opp 3 hyp 13 opp 5 sec sec hyp 5 adj 4 hyp 13 adj 12 cot cot adj 4 opp 3 adj 12 opp 5 3. 4. 8 152 opp 8 sin hyp 17 cos tan csc sec cot adj 15 hyp 17 opp 8 adj 15 hyp 17 opp 8 hyp 17 adj 15 adj 15 opp 8 17 C 182 122 468 613 sin 18 313 613 13 cos 12 213 613 13 tan 18 3 12 2 csc sec cot 13 3 13 2 2 3 © Houghton Mifflin Company. All rights reserved. 15 hyp c θ 12 θ 82 18 Section 4.3 5. opp 102 82 6 sin opp 6 3 hyp 10 5 cos adj 8 4 hyp 10 5 tan Right Triangle Trigonometry opp 2.52 22 1.5 sin opp 1.5 3 hyp 2.5 5 cos adj 2 4 hyp 2.5 5 opp 6 3 adj 8 4 tan opp 1.5 3 adj 2 4 csc hyp 10 5 opp 6 3 csc hyp 2.5 5 opp 1.5 3 sec hyp 10 5 adj 8 4 sec hyp 2.5 5 adj 2 4 cot adj 8 4 opp 6 3 cot adj 2 4 opp 1.5 3 10 θ 8 291 2.5 θ 2 The function values are the same since the triangles are similar and the corresponding sides are proportional. adj 7.52 42 © Houghton Mifflin Company. All rights reserved. 6. adj 152 82 161 sin opp 8 hyp 15 cos 15 8 161 7.5 2 θ sin opp 4 8 hyp 7.5 15 161 adj hyp 15 cos tan opp 8 8161 161 adj 161 161 161 adj hyp 2 7.5 15 tan csc hyp 15 opp 8 opp 4 8 8161 adj 161 161 1612 csc hyp 7.5 15 opp 4 8 sec hyp 15 15161 161 adj 161 sec cot 161 adj opp 8 hyp 7.5 15 15161 adj 161 161 1612 cot 161 161 adj opp 24 8 θ The function values are the same because the triangles are similar, and corresponding sides are proportional. 4 292 Chapter 4 Trigonometric Functions 7. adj 32 12 8 22 sin opp 1 hyp 3 θ adj 62 22 32 42 3 1 sin opp 2 1 hyp 6 3 6 2 θ cos adj 22 hyp 3 cos adj 42 22 hyp 6 3 tan 2 opp 1 adj 4 22 tan 2 opp 2 1 adj 4 42 22 csc hyp 3 opp csc hyp 6 3 opp 2 sec hyp 3 32 adj 4 22 sec hyp 6 3 32 adj 4 42 22 cot adj 22 opp cot adj 42 22 opp 2 The function values are the same since the triangles are similar and the corresponding sides are proportional. sin 5 opp 1 hyp 5 5 adj 2 25 cos hyp 5 5 θ 1 2 hyp 32 62 35 sin 3 35 5 1 5 5 3 θ 6 2 25 cos 35 5 5 6 tan opp 1 adj 2 tan 3 1 6 2 csc hyp 5 5 opp 1 csc 35 5 3 sec hyp 5 adj 2 sec 35 5 6 2 cot adj 2 2 opp 1 cot 6 2 3 The function values are the same because the triangles are similar, and corresponding sides are proportional. © Houghton Mifflin Company. All rights reserved. 8. hyp 12 22 5 Section 4.3 9. Given: sin 5 opp 6 hyp 10. hyp 52 12 26 52 adj2 62 6 5 adj 11 adj 5 526 hyp 26 26 opp 5 511 tan adj 11 11 tan opp 1 adj 5 11 adj cot opp 5 csc hyp 26 26 opp 1 sec hyp 26 adj 5 θ hyp 6 611 adj 11 11 csc hyp 6 opp 5 4 hyp 1 adj sin opp 15 cos 4 15 tan 15 4 1 1 4 tan 15 cot 15 1 15 15 csc 4 415 15 15 32 12 hyp 3 opp 1 adj 10 3 hyp 10 cos 10 cot csc 1 3 10 3 2 10 210 3 csc 7 710 210 20 sec 7 3 cot 3 310 210 20 θ opp 4 sin hyp 17 cos 273 adj hyp 17 tan opp 4 4273 273 adj 273 sec 1 17 17273 cos 273 273 cot 273 1 tan 4 1 10 sec 10 7 θ 3 14. adj 172 42 273 2 310 sin 10 210 7 θ 13. Given: tan 3 1 5 12. opp 72 32 40 210 opp2 12 42 sin 293 11 sec 11. Given: sec 4 26 θ 26 opp 1 sin hyp 26 26 cos 11 adj cos hyp 6 © Houghton Mifflin Company. All rights reserved. Right Triangle Trigonometry 17 θ 273 4 Chapter 4 Trigonometric Functions 15. Given: cot 42 92 9 adj 4 opp 4 hyp 2 tan sec csc 9 8 9 997 97 97 4 9 97 9 97 3 θ 55 55 adj cos hyp 8 4 497 97 97 cos 3 8 adj 82 32 55 θ hyp 97 sin 16. sin 97 tan opp 3 355 55 adj 55 csc 1 8 sin 3 sec 1 8 855 cos 55 55 cot 55 1 tan 3 4 (deg) Function (rad) 6 Function Function Value (deg) (rad) Function Value 2 1 2 18. cos 45 4 3 20. sec 45 4 2 22. csc 45 4 2 24. sin 45 4 26. tan 30 6 17. sin 30 19. tan 60 3 21. cot 60 3 3 23. cos 30 6 3 25. cot 45 4 3 2 1 2 2 2 1 3 27. sin 1 csc 28. cos 1 sec 29. tan 1 cot 30. csc 1 sin 31. sec 1 cos 32. cot 1 tan 33. tan sin cos 34. cot cos sin 35. sin2 cos2 1 36. 1 tan2 sec 2 37. sin90 cos 38. cos90 sin 39. tan90 cot 40. cot90 tan 41. sec90 csc 42. csc90 sec 43. sin 60 3 2 (a) tan 60 , cos 60 1 2 sin 60 3 cos 60 (c) cos 30 sin 60 3 2 (b) sin 30 cos 60 (d) cot 60 1 2 3 cos 60 1 sin 60 3 3 © Houghton Mifflin Company. All rights reserved. 294 Section 4.3 3 1 44. sin 30 , tan 30 2 3 (a) csc 30 Right Triangle Trigonometry 32 4 45. csc 3, sec 1 2 sin 30 (b) cot 60 tan90 60 tan 30 3 3 (a) sin 1 1 csc 3 (b) cos 1 22 sec 3 2 sin 13 cos 22 3 4 (c) cos 30 3 sin 30 12 3 tan 30 33 23 2 (c) tan (d) cot 30 3 33 1 3 tan 30 3 3 (d) sec90º csc 3 46. sec 5, tan 26 (a) cos 1 1 sec 5 (c) cot90 tan 26 (d) sin tan cos 26 6 1 1 (b) cot tan 26 12 47. cos 1 26 5 1 4 (a) sec 1 4 cos (c) cot (b) sin2 cos2 1 sin2 4 1 2 sin 14 154 15 1 15 15 1 4 (d) sin90 cos 15 4 lies in Quadrant I or III. 48. tan 5 (a) cot 15 16 cos sin 1 sin2 © Houghton Mifflin Company. All rights reserved. 5 1 1 tan 5 (b) sec2 1 tan2 ⇒ cos 1 1 tan2 (c) tan 90 cot 1 5 (d) csc 1 cot2 1 251 49. tan cot tan 51. tan cos tan 1 sin 1 cos cos sin 1 1 25 1 26 26 26 26 5 1 50. csc tan sin 52. cot sin sin 1 cos cos sec cos sin cos sin 295 296 Chapter 4 Trigonometric Functions 53. 1 cos 1 cos 1 cos2 54. csc cot csc cot csc2 cot2 sin2 cos2 cos2 1 sin2 sin cos sin2 cos2 cos sin sin cos 56. 1 sin cos 1 sin 1 58. (a) tan 18.5 0.3346 (b) cos 87 0.0523 59. (a) sec 42 12 sec 42.2 (b) cot 71.5 1 1.3499 cos 42.2 1 7 º 1.3432 sin48 60 61. Make sure that your calculator is in radian mode. (a) cot 1 5.0273 16 tan 16 (b) tan 0.4142 8 63. (a) sin 6 65. (a) sec 2 ⇒ 60 3 (b) cot 1 ⇒ 45 4 (b) sin 2 ⇒ 45 60. (a) cos 8 50 25 cos 8 50 25 60 3600 cos 8.840278 0.9881 (b) sec 8 50 25 62. (a) sec1.54 64. (a) cos 1 1.0120 cos 8 50 25 1 32.4765 cos1.54 2 2 ⇒ 45 (b) tan 1 ⇒ 45 (b) cos 4 68. (a) cot tan 4 4 66. (a) tan 3 ⇒ 60 23 ⇒ 60 3 3 2 1 0.3346 tan 71.5 (b) cos1.25 0.3153 1 ⇒ 30 2 6 (b) csc 2 ⇒ 30 67. (a) csc cot 1cot 1 cot 2 csc 2 1 csc sec cos 57. (a) sin 41 0.6561 (b) csc 48º 7 tan cot tan cot tan tan tan 3 1 ⇒ 60 2 3 3 3 3 3 ⇒ 60 3 3 (b) sec 2 cos 1 2 2 2 ⇒ 45 4 © Houghton Mifflin Company. All rights reserved. 55. Section 4.3 69. tan 30 cos 30 70. cos 30 y ⇒ y 105 tan 30 105 105 3 3 Right Triangle Trigonometry 353 105 105 105 210 ⇒ r 703 r cos 30 32 3 x ⇒ x 15 cos 30 15 15 3 2 153 2 sin 30 1 15 y ⇒ y 15 sin 30 15 15 2 2 71. cos 60 x 1 ⇒ x 16 cos 60 16 8 16 2 sin 60 72. cot 60 3 y ⇒ y 16 sin 60 16 83 16 2 x 1 383 ⇒ x 38 cot 60 38 38 3 3 38 38 38 763 ⇒ r r sin 60 32 3 sin 60 73. tan 45 20 20 ⇒ 1 ⇒ x 20 x x 74. tan 45 r 2 202 202 ⇒ r 202 75. tan 45 y y ⇒ 1 ⇒ y 10 10 10 r 2 102 102 ⇒ r 102 25 25 ⇒ 1 ⇒ x 25 x x r 2 252 252 20 20 40 ⇒ r 210 © Houghton Mifflin Company. All rights reserved. 76. tan 45 y y ⇒ 1 ⇒ y 46 46 46 r 2 462 462 96 96 192 ⇒ r 83 78. (a) 77. (a) h 30 6 16 (b) tan (c) h x θ 5 6 h h 6 and tan Thus, . 5 21 5 21 621 25.2 feet 5 75° (b) sin 75 x 30 (c) x 30 sin 75 28.98 meters 297 298 Chapter 4 79. tan Trigonometric Functions opp adj 80. cot 9 c h cot 3.5 w tan 58 100 h 13 c h 3.5° 13 9° w 100 tan 58 160 feet Subtracting, h 81. (a) tan 50 1 ⇒ 45 50 502 252 ftsec 6 3 rate down the zip line 13 1.295 1.3 miles. 16.3499 6.3138 82. (a) sin 35.4 x 896.5 x 896.5 sin 35.4 519.3 feet (b) 1693.5 519.3 1174.2 feet above sea level (c) 50 25 ftsec 6 3 13 cot 3.5 cot 9 h 13 cot 3.5 cot 9 (b) L2 502 502 2 502 ⇒ L 502 feet (c) c not drawn to scale vertical rate 896.5 minutes to reach top 300 Vertical rate 519.3 896.5300 173.8 feet per minute 83. (x1, y1) (x2, y2) 56 56 30° y1 56 60° y1 sin 3056 cos 30 1 56 28 2 x1 56 x1 cos 3056 x1, y1 283, 28 sin 60º y2 56 y2 sin 6056 3 2 56 283 cos 60 3 2 56 283 x2 56 x2 cos 6056 x2, y2 28, 283 256 28 1 © Houghton Mifflin Company. All rights reserved. sin 30 Section 4.3 84. x 9.397, y 3.420 Right Triangle Trigonometry 299 85. True sin 20 y 0.34 10 cos 20 x 0.94 10 tan 20 y 0.36 x cot 20 x 2.75 y sec 20 10 1.06 x csc 20 10 2.92 y sin 60 csc 60 sin 60 86. False 1 1 sin 60 87. True sin 45 cos 45 2 2 2 2 1 cot2 csc2 for all 2 1 88. No. tan2 1 sec2 , so you can find ± sec . 89. (a) 90. 0 20 40 60 80 sin 0 0.3420 0.6428 0.8660 0.9848 cos 1 0.9397 0.7660 0.5000 0.1736 tan 0 0.3640 0.8391 1.7321 5.6713 sin . cos 0 20 40 60 80 cos sin90 cos 1 0.9397 0.7660 0.5000 0.1736 and 90 are complementary angles. sin90 1 0.9397 0.7660 0.5000 0.1736 92. 7 −6 93. 1 −3 © Houghton Mifflin Company. All rights reserved. (c) In each case, tan 91. −6 −2 10 −4 97. 10 −4 −6 −1 4 −2 6 6 −3 96. 2 −6 6 4 94. 7 3 −1 95. (b) Sine and tangent are increasing, cosine is decreasing. 98. 4 −2 10 −4 4 −2 10 −4 Chapter 4 300 Section 4.4 ■ Trigonometric Functions Trigonometric Functions of Any Angle Know the Definitions of Trigonometric Functions of Any Angle. If is in standard position, x, y a point on the terminal side and r x2 y2 0, then: y r sin csc , y 0 r y x r cos sec , x 0 r x y x tan , x 0 cot , y 0 x y You should know the signs of the trigonometric functions in each quadrant. ■ 3 You should know the trigonometric function values of the quadrant angles 0, , , and . 2 2 ■ ■ ■ ■ ■ You should be able to find reference angles. You should be able to evaluate trigonometric functions of any angle. (Use reference angles.) You should know that the period of sine and cosine is 2. You should know which trigonometric functions are odd and even. Even: cos x and sec x Odd: sin x, tan x, cot x, csc x Vocabulary Check y r 2. csc 3. 5. cos 6. cot 7. reference y x 4. r x (b) x, y 8, 15 1. (a) x, y 4, 3 r 64 225 17 r 16 9 5 sin y 3 r 5 csc r 5 y 3 sin y 15 r 17 csc r 17 y 15 cos x 4 r 5 sec r 5 x 4 cos x 8 r 17 sec r 17 x 8 tan y 3 x 4 cot x 4 y 3 tan y 15 x 8 cot 8 x y 15 © Houghton Mifflin Company. All rights reserved. 1. Section 4.4 2. (a) x 12, y 5 (b) x 1, y 1 r 12 5 13 2 r 12 12 2 2 sin 5 y 5 r 13 13 sin 2 y 1 2 r 2 cos x 12 r 13 cos 2 x 1 2 r 2 tan y 5 5 x 12 12 tan y 1 1 x 1 csc r 13 13 y 5 5 csc 2 r 2 y 1 sec r 13 x 12 sec 2 r 2 x 1 cot 12 12 x y 5 5 cot x 1 1 y 1 3. (a) x, y 3, 1 (b) x, y 2, 2 r 4 4 22 r 3 1 2 sin y 1 r 2 csc r 2 y sin y 2 r 2 csc r 2 y cos x 3 r 2 sec r 23 x 3 cos 2 x r 2 sec r 2 x tan y 3 x 3 cot x 3 y tan y 1 x cot x 1 y 4. (a) x 3, y 1 r 32 12 10 © Houghton Mifflin Company. All rights reserved. Trigonometric Functions of Any Angle (b) x 2, y 4 r 22 42 25 sin 10 y 1 10 r 10 sin y 4 25 r 25 5 cos x 3 310 10 r 10 cos 5 x 2 r 25 5 tan y 1 x 3 tan y 4 2 x 2 csc 10 r 10 y 1 csc 5 r 25 y 4 2 sec 10 r x 3 sec r 25 5 x 2 cot x 3 3 y 1 cot x 2 1 y 4 2 301 Chapter 4 Trigonometric Functions 5. x, y 7, 24 6. x 8, y 15, r 49 576 25 r 82 152 17 sin y 24 r 25 csc 25 r y 24 sin y 15 r 17 cos x 8 r 17 cos 7 x r 25 sec 25 r x 7 tan y 15 x 8 csc r 17 y 15 tan y 24 x 7 cot x 7 y 24 sec r 17 x 8 cot x 8 y 15 7. x, y 5, 12 r 52 8. x 24, y 10 12 25 144 169 13 2 r 242 102 26 sin y 12 r 13 sin y 10 5 r 26 13 cos x 5 r 13 cos x 24 12 r 26 13 tan y 12 x 5 tan y 10 5 x 24 12 csc r 13 y 12 csc r 13 y 5 sec r 13 x 5 sec r 13 x 12 cot x 5 y 12 cot x 12 y 5 9. x, y 4, 10 r 16 100 229 10. x 5, y 6 r 52 62 61 sin y 529 r 29 sin y 6 661 61 r 61 cos x 229 r 29 cos 5 x 561 61 r 61 tan y 5 x 2 tan y 6 6 x 5 5 csc 29 r y 5 csc 61 r y 6 sec 29 r x 2 sec 61 r x 5 cot x 2 y 5 cot x 5 y 6 © Houghton Mifflin Company. All rights reserved. 302 Section 4.4 11. x, y 10, 8 12. x 3, y 9 r 102 82 164 2 41 sin Trigonometric Functions of Any Angle y 8 441 r 241 41 x 10 541 cos r 241 41 r 32 92 90 310 sin y 9 310 r 310 10 cos 10 x 3 r 310 10 tan y 8 4 x 10 5 tan y 9 3 x 3 csc 41 r y 4 csc 10 r y 3 sec r 41 x 5 sec r 10 x cot x 5 y 4 cot x 1 y 3 13. sin < 0 ⇒ lies in Quadrant III or Quadrant IV. cos < 0 ⇒ lies in Quadrant II or Quadrant III. sin < 0 and cos < 0 ⇒ lies in Quadrant III. 14. sec > 0 and cot < 0 r x > 0 and < 0 x y Quadrant IV 15. cot > 0 ⇒ lies in Quadrant I or Quadrant III. cos > 0 ⇒ lies in Quadrant I or Quadrant IV. cot > 0 and cos > 0 ⇒ lies in Quadrant I. 16. tan > 0 and csc < 0 y r > 0 and < 0 x y Quadrant III 17. sin y 3 ⇒ x2 25 9 16 r 5 © Houghton Mifflin Company. All rights reserved. in Quadrant II ⇒ x 4 18. cos x 4 ⇒ y 3 r 5 in Quadrant III ⇒ y 3 sin y 3 r 5 csc r 5 y 3 sin 3 y r 5 csc 5 3 cos x 4 r 5 sec r 5 x 4 cos x 4 r 5 sec 5 4 tan y 3 x 4 cot x 4 y 3 tan y 3 x 4 cot 4 3 303 Chapter 4 Trigonometric Functions 19. sin < 0 ⇒ y < 0 tan 20. csc y 15 ⇒ r 17 x 8 r 4 ⇒ x ± 15 y 1 cot < 0 ⇒ x 15 y 15 sin r 17 r 17 csc y 15 sin y 1 r 4 csc 4 x 8 cos r 17 r 17 sec x 8 cos 15 x r 4 sec tan 15 y x 15 cot 15 x 8 cot y 15 21. sec r 2 ⇒ y2 4 1 3 x 1 22. sin 0 and 3 ≤ ≤ ⇒ 2 2 cos cos 1 sin ≥ 0 ⇒ y 3 sin 0 cos sin y 3 r 2 csc r 23 y 3 tan cos x 1 r 2 sec r 2 x csc is undefined. tan y 3 x cot 3 x y 3 sec 1 cot is undefined. 24. tan is undefined and ≤ ≤ 2 ⇒ 23. cot is undefined ⇒ n. 3 ≤ ≤ ⇒ , y 0, x r 2 2 sin y 0 r csc r is undefined. y cos x r 1 r r sec r 1 x tan y 0 0 x x cot is undefined. x 1, y 1, r 2 2 1 2 2 cos 2 1 2 2 tan 1 csc 2 sec 2 cot 1 3 . 2 sin 1 cos 0 tan is undefined. csc 1 sec is undefined. cot 0 25. To find a point on the terminal side of , use any point on the line y x that lies in Quadrant II. 1, 1 is one such point. sin 415 15 © Houghton Mifflin Company. All rights reserved. 304 Section 4.4 26. x, 3 x Quadrant III, x > 0 1 r x 2 Trigonometric Functions of Any Angle 27. To find a point on the terminal side of , use any point on the line y 2x that lies in Quadrant III. 1, 2 is one such point. 10x 1 x2 9 3 x 1, y 2, r 5 sin y x3 r 10 10x3 sin cos x x 310 r 10 10x3 cos tan y 13 x 1 x x 3 tan csc r 10x3 10 y 13 x csc 10 10x 3 sec r x cot x x 3 y 13 x x 305 10 sec 3 cot 2 25 5 5 5 1 5 5 2 2 1 5 2 5 1 5 2 5 1 1 2 2 4 28. 4x 3y 0 ⇒ y x 3 x, 3 x Quadrant IV, x > 0 4 © Houghton Mifflin Company. All rights reserved. r x 2 16 2 5 x x 9 3 sin y 43 x 4 r 53 x 5 csc cos x x 3 r 53 x 5 sec tan y 43 x 4 x x 3 cot 29. x, y 1, 0 sec 32. csc 0 r 1 1 x 1 r 1 ⇒ undefined y 0 5 4 5 3 30. tan 3 4 y 1 ⇒ undefined 2 x 0 since corresponds to 0, 1. 2 cot x 1 ⇒ undefined y 0 cot 33. x, y 1, 0 sec 0 35. x, y 1, 0 31. x, y 0, 1 32 xy 10 0 34. csc r 1 1 x 1 36. csc 2 1 sin 2 1 1 1 3 2 1 1 1 3 1 sin 2 306 Chapter 4 Trigonometric Functions 37. 120 38. 225 180 45 y y 180 120 60 θ ′ = 60⬚ θ = 225⬚ θ = 120⬚ x x θ ′ = 45⬚ 40. 330 360 30 39. 135 is coterminal with 225. 225 180 45 y y θ = −330⬚ θ ′ = 30⬚ x θ ′ = 55⬚ x θ = − 235⬚ 5 5 , 2 3 3 3 42. y y θ = 5π 3 θ = 3π 4 θ ′ = π4 θ ′ = π3 43. 3 4 4 x x 5 7 is coterminal with . 6 6 7 6 6 44. 2 3 3 y y x x θ′= π 6 45. 208 θ = − 5π 6 θ ′ = π3 θ = − 2π 3 46. 322 y y 360 322 38 208 180 28 θ = 208° θ ′ = 28° θ = 322° x x θ ′ = 38° © Houghton Mifflin Company. All rights reserved. 41. Section 4.4 47. 292 48. 165 lies in Quadrant III. y 360 292 68 θ = −292° Trigonometric Functions of Any Angle y Reference angle: 180 165 15 θ ′ = 68° x 307 θ ′ = 15⬚ x θ = −165⬚ 49. 11 is coterminal with . 5 5 50. 17 14 3 7 7 7 y y 5 θ ′ = 3π 7 x θ′= π 5 θ = 17π 7 x θ = 11 π 5 51. 1.8 lies in Quadrant III. 52. lies in Quadrant IV. Reference angle: 1.8 1.342 Reference angle: 4.5 1.358 y y θ = 4.5 x θ ′ = 1.342 x θ = − 1.8 θ ′= 1.358 54. 300, 360 300 60, Quadrant IV © Houghton Mifflin Company. All rights reserved. 53. 45, Quadrant III sin 225 sin 45 2 cos 225 cos 45 sin 300 sin 60 2 2 cos 300 cos 60 2 2 1 2 tan 300 tan 60 3 tan 225 tan 45 1 55. 750 is coterminal with 330, Quadrant IV. 360 330 30 56. 495, 45, Quadrant III sin495 sin 45 sin750 sin 30 cos750 cos 30 3 1 2 cos495 cos 45 3 tan 495 tan 45 1 2 tan750 tan 30 2 3 3 2 2 2 Chapter 4 57. 5 , Quadrant IV 3 3 3 , 4 4 4 58. 5 3 3 sin 3 2 4 2 53 sin3 23 cos 2 3 4 2 53 cos3 12 tan 3 1 4 2 sin Trigonometric Functions cos tan 53 tan3 3 59. , Quadrant IV 6 6 sin 6 2 sin 1 6 cos 6 cos 3 2 61. sin cos 3 6 tan 6 3 tan 4 , 3 3 60. , Quadrant II 4 tan 3 4 3 2 4 1 3 2 4 3 3 10 4 is coterminal with . 3 3 62. sin 11 2 sin 4 4 2 cos 2 11 cos 4 4 2 sin 3 10 sin 3 3 2 tan 11 tan 1 4 4 cos 10 1 cos 3 3 2 tan 10 tan 3 3 3 63. 17 7 is coterminal with . 6 6 sin 17 1 sin 6 6 2 cos 3 17 cos 6 6 2 tan 3 17 tan 6 6 3 sin cos tan 20 , 3 3 64. 7 , Quadrant III 6 6 4 in Quadrant III. 3 3 20 3 3 2 20 1 3 2 20 3 3 © Houghton Mifflin Company. All rights reserved. 308 Section 4.4 sin 65. 3 5 66. 1 32 csc 2 cos2 1 sin2 3 1 5 cos2 1 cos2 10 csc 2 2 csc > 0 in Quadrant II. 10 csc 9 25 16 25 cos > 0 in Quadrant IV. cos 67. cot 3 1 cot 2 csc 2 sin2 cos2 1 cos2 Trigonometric Functions of Any Angle csc 1 sin sin 10 1 1 csc 10 10 4 5 68. cos csc 2 1 cot 2 csc 2 cot 2 csc 2 1 cot 2 22 1 cot 2 3 5 8 cos 1 1 ⇒ sec sec cos sec 1 8 58 5 cot < 0 in Quadrant IV. cot 3 69. sec 9 4 70. © Houghton Mifflin Company. All rights reserved. tan2 sec 2 1 4 tan 2 9 2 1 65 16 tan > 0 in Quadrant III. tan 65 4 5 4 ⇒ cot 4 5 1 cot2 csc2 1 tan2 sec 2 tan2 tan 1 16 csc2 25 csc ± 41 5 Quadrant IV ⇒ csc 41 5 309 310 Chapter 4 71. sin Trigonometric Functions 2 and cos < 0 ⇒ is in Quadrant II. 5 cos 1 sin2 1 254 21 5 tan sin 25 2 221 cs 215 21 21 csc 1 5 sin 2 sec 1 5 521 cos 21 21 cot 1 21 tan 2 3 72. cos and sin < 0 ⇒ is in Quadrant III. 7 1 499 7 40 27 10 tan sin 2107 210 cs 37 3 cot 1 3 310 tan 210 20 csc 1 7 710 sin 210 20 sec 1 7 cos 3 73. tan 4 and cos < 0 ⇒ is in Quadrant II. sec 1 tan2 1 16 17 cos 1 1 17 sec 17 17 sin tan cos 4 17 csc 17 1 17 sin 417 4 cot 1 1 tan 4 17 4 1717 74. cot 5 and sin > 0 ⇒ is in Quadrant II. tan 1 1 cot 5 sec 1 tan2 cos 1 251 5 26 1 5 526 sec 26 26 15526 26 sin tan cos csc 1 26 26 sin 26 26 26 © Houghton Mifflin Company. All rights reserved. sin 1 cos2 Section 4.4 1 2 csc 3 cos cos 1 sin2 1 49 5 1 3 sec 4 sin 1 cos2 3 1 169 47 sec 1 3 35 cos 5 5 csc 1 4 47 sin 7 7 tan sin 23 2 25 cos 53 5 5 tan sin 74 7 cos 34 3 cot 1 5 tan 2 cot 1 3 37 tan 7 7 77. sin 10 0.1736 80. csc 320 78. sec 235 1 1.5557 sin 320 311 4 76. sec and cot > 0 ⇒ is in Quadrant III. 3 3 75. csc and tan < 0 ⇒ is in Quadrant IV. 2 sin Trigonometric Functions of Any Angle 1 1.7434 cos 235 79. tan 245 2.1445 82. cot 220 81. cos110 0.3420 1 tan220 1.1918 83. sec280 1 cos280 84. csc 0.33 1 3.0860 sin 0.33 85. tan 29 0.8391 5.7588 86. tan 11 0.8391 9 87. csc 8 9 1 8 sin 9 88. cos 0.9749 15 14 © Houghton Mifflin Company. All rights reserved. 2.9238 89. (a) sin 1 ⇒ reference angle is 30 or 2 90. (a) cos 2 2 ⇒ reference angle is 45º or and is in Quadrant I or Quadrant II. 6 and is in Quadrant I or IV. 4 Values in degrees: 30, 150 Values in degrees: 45, 315 Values in radian: (b) sin 5 , 6 6 1 ⇒ reference angle is 30 or 2 and is in Quadrant III or Quadrant IV. 6 Values in degrees: 210, 330 Values in radians: 7 11 , 6 6 Values in radians: (b) cos 2 2 7 , 4 4 ⇒ reference angle is 45 or and is in Quadrant II or III. 4 Values in degrees: 135, 225 Values in radians: 3 5 , 4 4 Chapter 4 91. (a) csc Trigonometric Functions 23 ⇒ reference angle is 60 or 3 92. (a) csc 2 ⇒ sin 1 2 and is in Quadrant I or Quadrant II. 3 Reference angle is 45 or . 4 Values in degrees: 60, 120 Values in degrees: 225, 315 Values in radians: 2 , 3 3 5 7 , 4 4 Values in radians: (b) cot 1 ⇒ reference angle is 45 or (b) csc 2 ⇒ sin and is in Quadrant II or Quadrant IV. 4 Reference angle is Values in degrees: 135, 315 Values in radians: Values in degrees: 150, 210 Values in radians: Values in degrees: 120, 240 7 or 4 4 2 4 , 3 3 95. (a) f g sin 30 cos 30 (b) cos 30 sin 30 1 3 1 3 2 2 2 3 1 (d) sin 30 cos 30 (e) 2 sin 30 2 2 23 34 12 23 (b) cos 60 sin 60 2 (f) cos30 cos 30 3 2 1 3 1 2 2 3 4 12 1 2 96. (a) f g sin 60 cos 60 12 5 11 , 6 6 (b) Values in degrees: 45 or 315 Values in radians: (c) cos 60 2 or 30. 6 Values in degrees: 150, 330 5 7 , 6 6 1 (b) cos ⇒ reference angle is or 60, 2 3 and is in Quadrant II or Quadrant III. cos 3 sin 94. (a) cot 3 ⇒ Reference angle is (c) cos 30 2 5 , 6 6 Values in radians: 23 ⇒ reference angle is or 3 6 30, and is in Quadrant II or Quadrant III. Values in radians: or 30. 6 Values in degrees: 30, 150 3 7 , 4 4 93. (a) sec Values in radians: 1 2 (d) sin 60 cos 60 (e) 2 sin 60 2 1 4 (f) cos60 cos 60 2 2 23 12 1 3 1 3 2 2 2 3 3 3 1 2 3 4 © Houghton Mifflin Company. All rights reserved. 312 Section 4.4 2 97. (a) f g sin 315 cos 315 2 (b) cos 315 sin 315 (c) cos 315 2 2 2 2 2 2 2 (f) cos315 cos315 2 2 2 2 1 2 © Houghton Mifflin Company. All rights reserved. (b) cos 300 sin 300 2 (d) sin 300 cos 300 101. (a) f g sin (b) cos 2 2 2 (f) cos225 cos225 (e) 2 sin 150 2 3 3 2 4 2 2 12 1 (f ) cos150 cos150 3 2 3 1 1 3 2 2 2 1 3 1 3 2 2 2 2 3 1 4 (e) 2 sin 300 2 2 312 4 3 (f) cos300 cos300 3 1 2 7 7 1 3 1 3 cos 6 6 2 2 2 7 3 1 1 3 7 sin 6 6 2 2 2 2 3 43 7 7 1 3 (d) sin cos 6 6 2 2 (c) (e) 2 sin 225 2 1 3 1 3 2 2 2 3 4 100. (a) f g sin 300 cos 300 12 2 3 1 1 3 2 2 2 (b) cos 150 sin 150 (d) sin 150 cos 150 2 99. (a) f g sin 150 cos 150 2 2 0 2 2 2 3 2 2 2 2 21 2 2 1 (d) sin 225 cos 225 2 2 2 (c) cos 225 2 2 (b) cos 225 sin 225 (c) cos 300 2 (d) sin 315 cos 315 2 2 cos 76 2 2 (e) 2 sin 3 4 313 2 2 22 12 2 2 (e) 2 sin 315 2 2 0 22 12 98. (a) f g sin 225 cos 225 (c) cos 150 2 Trigonometric Functions of Any Angle (f) cos 7 1 2 1 6 2 76 cos76 2 3 Chapter 4 Trigonometric Functions 5 5 1 3 1 3 cos 6 6 2 2 2 102. (a) f g sin (b) cos 5 5 3 1 1 3 sin 6 6 2 2 2 2 3 34 5 5 1 3 3 (d) sin cos 6 6 2 2 4 (c) cos 56 2 2 (c) 2 (c) 56 cos56 2 3 1 4 (e) 2 sin 12 3 4 (f) cos 4 3 2 3 3 2 43 cos43 12 5 5 3 1 1 3 cos 3 3 2 2 2 5 5 1 3 1 3 sin 3 3 2 2 2 cos 53 12 2 (d) sin 2 4 3 4 cos 3 3 2 104. (a) f g sin (b) cos 3 1 4 3 4 1 sin 3 3 2 2 2 cos 43 12 (d) sin (f) cos 5 1 1 2 6 2 4 4 3 1 1 3 cos 3 3 2 2 2 103. (a) f g sin (b) cos (e) 2 sin 2 1 4 5 5 3 cos 3 3 2 (e) 2 sin 12 4 3 105. (a) f g sin 270 cos 270 1 0 1 (f) cos 5 3 2 3 3 2 53 cos53 12 (d) sin 270 cos 270 10 0 (b) cos 270 sin 270 0 1 1 (e) 2 sin 270 21 2 (c) cos 270 02 0 (f) cos270 cos270 0 2 106. (a) f g sin 180 cos 180 0 1 1 (d) sin 180 cos 180 01 0 (b) cos 180 sin 180 1 0 1 (e) 2 sin 180 20 0 (c) cos 180 1 1 (f) cos180 cos180 1 2 2 107. (a) f g sin (b) cos (c) 7 7 cos 1 0 1 2 2 7 7 sin 0 1 1 2 2 cos 72 2 02 0 (d) sin 7 7 cos 10 0 2 2 (e) 2 sin (f) cos 7 21 2 2 72 cos72 0 © Houghton Mifflin Company. All rights reserved. 314 Section 4.4 108. (a) f g sin (b) cos (c) 5 5 cos 101 2 2 5 5 sin 0 1 1 2 2 cos 52 2 (f) cos 315 5 5 cos 10 0 2 2 (e) 2 sin 02 0 109. T 49.5 20.5 cos (d) sin Trigonometric Functions of Any Angle 5 21 2 2 52 cos52 0 6t 76 (a) January: t 1 ⇒ T 49.5 20.5 cos 61 76 29 (b) July: t 7 ⇒ T 70 (c) December: t 12 ⇒ T 31.75 110. S 23.1 0.442t 4.3 sin 6t, t 1 ↔ Jan. 2004 (a) S1 23.1 0.4421 4.3 sin 6 25.7 thousand (b) S 14 33.0 thousand (c) S 5 27.5 thousand (d) S 6 25.8 thousand Answers will vary. 111. sin 6 6 ⇒ d d sin (a) 30 © Houghton Mifflin Company. All rights reserved. d 6 6 12 miles sin 30 12 (b) 90 d 112. As increases from 0 to 90, x decreases from 12 cm to 0 cm and y increases from 0 cm to 12 cm. Therefore, sin y12 increases from 0 to 1, and cos x12 decreases from 1 to 0. Thus, tan yx begins at 0 and increases without bound. When 90, the tangent is undefined. 6 6 6 miles sin 90 1 (c) 120 d 6 6.9 miles sin 120 113. True. The reference angle for 151 is 180 151 29, and sine is positive in Quadrants I and II. 114. False. cot 34 1 1 and 4 1 cot 316 Chapter 4 115. (a) Trigonometric Functions 0 20 40 60 80 sin 0 0.3420 0.6428 0.8660 0.9848 sin180 0 0.3420 0.6428 0.8660 0.9848 (b) It appears that sin sin180 . 116. Function sin x cos x tan x Domain , , All reals except Range 1, 1 1, 1 , Evenness No Yes No Oddness Yes No Yes Period 2 2 Zeros n n 2 n Function csc x sec x Domain All reals except n All reals except Range , 1 1, , 1 1, , Evenness No Yes No Oddness Yes No Yes Period 2 2 Zeros None None n 2 n 2 cot x n 2 All reals except n 117. 3x 7 14 118. 44 9x 61 3x 21 9x 17 x7 119. x2 2x 5 0 x 2 ± 4 20 1 ± 6 2 x 3.449, x 1.449 17 x 9 1.889 120. 2x2 x 4 0 x 1 ± 1 442 1 ± 33 4 4 x 1.186, 1.686 © Houghton Mifflin Company. All rights reserved. Patterns and conclusions may vary. Section 4.5 3 x2 x1 9 121. 5 x4 x 2x 122. 27 x 1x 2 10x x2 4x x2 x 29 0 x x2 6x 0 1 ± 1 429 1 ± 117 2 2 xx 6 0 x6 x 5.908, 4.908 123. Graphs of Sine and Cosine Functions 43x 726 124. 3 x log4 726 (x 0 extraneous) 4500 50 4 e 2x 90 4 e2x x 3 log4 726 3 ln 726 1.752 ln 4 86 e2x 2x ln 86 x 1 ln 86 2.227 2 125. ln x 6 x e6 0.002479 0.002 126. ln x 10 12 lnx 10 1 ⇒ lnx 10 2 ⇒ x 10 e2 ⇒ x e2 10 2.611 © Houghton Mifflin Company. All rights reserved. Section 4.5 Graphs of Sine and Cosine Functions ■ ■ You should be able to graph y a sinbx c and y a cosbx c. Amplitude: a ■ Period: ■ Shift: Solve bx c 0 and bx c 2. ■ Key increments: 2 b 1 (period) 4 Vocabulary Check 1. amplitude 2. one cycle 3. 2 b 4. phase shift 317 318 Chapter 4 Trigonometric Functions 1. f x sin x (a) x-intercepts: 2, 0, , 0, 0, 0, , 0, 2, 0 (b) y-intercept: 0, 0 (c) Increasing on: 2, Decreasing on: 3 3 , , , , 2 2 2 2 2 3 3 , , , 2 2 2 2 (d) Relative maxima: 3 ,1 , ,1 2 2 3 Relative minima: , 1 , , 1 2 2 2. f x cos x (a) x-intercepts: 3 3 ,0 , ,0 , ,0 , ,0 2 2 2 2 (b) y-intercept: 0, 1 (c) Increasing on: , 0, , 2 Decreasing on: 2, , 0, (d) Relative maxima: 2, 1, 0, 1, 2, 1 Relative minima: , 1, , 1 Period: 2 2 Amplitude: 3 3 5. y 5 x cos 2 2 Period: 2 4 12 Amplitude: 7. y 5 5 2 2 2 sin x 3 Period: 4. y 2 cos 3x Xmin = -4 Xmax = 4 Xscl = Ymin = -3 Ymax = 3 Yscl = 1 6. y 3 sin Period: 2 2 3 3 2 2 b 3 Amplitude: a 2 Period: x 3 2 2 6 b 13 Amplitude: a 3 3 8. y 2 2 Amplitude: Xmin = -2 Xmax = 2 Xscl = 2 Ymin = -4 Ymax = 4 Yscl = 1 3 x cos 2 2 Period: 2 2 4 b 2 Amplitude: a 3 2 Xmin = - Xmax = Xscl = 4 Ymin = -3 Ymax = 3 Yscl = 1 Xmin = -6 Xmax = 6 Xscl = Ymin = -4 Ymax = 4 Yscl = 1 © Houghton Mifflin Company. All rights reserved. 3. y 3 sin 2x Section 4.5 9. y 2 sin x Period: 10. y cos 2 2 1 Period: Amplitude: 2 2 12. y 5 x cos 2 4 Period: Amplitude: a 5 2 2x 5 11. y 2 2 5 b 25 Amplitude: a 1 1 13. y 2 2 8 b 14 Graphs of Sine and Cosine Functions 1 sin 4x 3 Period: 2 1 4 2 Amplitude: 15. f x sin x gx sinx 1 2x cos 4 3 1 1 4 4 Amplitude: 3 x cos 4 12 Period: 1 1 3 3 2 3 23 Period: 14. y 319 2 2 24 b 12 Amplitude: a 3 4 16. f x cos x, gx cos x g is a horizontal shift of f units to the left. The graph of g is a horizontal shift to the right units of the graph of f (a phase shift). 17. f x cos 2x gx cos 2x The graph of g is a reflection in the x-axis of the graph of f. 19. f x cos x gx 5 cos x © Houghton Mifflin Company. All rights reserved. The graph of g has five times the amplitude of f, and reflected in the x-axis. 21. f x sin 2x gx 5 sin 2x 18. f x sin 3x, gx sin3x g is a reflection of f about the y-axis. (or, about the x-axis) 20. f x sin x, gx 12 sin x The amplitude of g is one-half that of f. g is a reflection of f in the x-axis. 22. f x cos 4x, gx 6 cos 4x g is a vertical shift of f six units downward. The graph of g is a vertical shift upward of five units of the graph of f. 23. The graph of g has twice the amplitude as the graph of f. The period is the same. 24. The period of g is one-half the period of f. 25. The graph of g is a horizontal shift units to the right of the graph of f. 26. Shift the graph of f two units upward to obtain the graph of g. Chapter 4 320 Trigonometric Functions 27. f x sin x 28. f x sin x Period: 2 gx sin Amplitude: 1 x 3 gx 4 sin x Period: 2 Amplitude: 4 4 x 0 2 3 2 2 sin x 0 1 0 1 0 x 3 0 1 2 3 y 4 1 2 3 2 f 1 − sin g y 3π 2 x π 2 2 −2 g f −3 −4 x 6π –2 30. f x 2 cos 2 x 29. f x cos x gx cos 4x Period: 2 Amplitude: 1 gx 4 cos x is a vertical shift of the graph of f x four units upward. y 6 x 0 4 2 3 4 2 cos 2x 2 0 2 0 2 cos 4x 1 1 1 1 1 g 4 y 3 2 2 f −1 2π g −2 π –2 1 x 31. f x sin 2 2 y 4 Period: 4 3 1 Amplitude: 2 1 x 1 sin is the graph of f x 2 2 shifted vertically three units upward. gx 3 g 2 − 4π −π −1 −2 −3 −4 f 2π 3π 4π x x © Houghton Mifflin Company. All rights reserved. − 2π f x Section 4.5 32. f x 4 sin x Graphs of Sine and Cosine Functions 33. f x 2 cos x gx 4 sin x 2 Period: 2 Amplitude: 2 x 0 1 2 1 3 2 2 f x 0 4 0 4 0 gx 2 2 2 6 2 gx 2 cosx is the graph of f x shifted units to the left. y 3 f y 4 3 2 −1 1 −2 π f g 2 x –3 1 −1 −2 g 35. f x sin x, gx cos x 34. f x cos x gx cos x 2 sin x cos x x 0 2 3 2 2 cos x 1 0 1 0 1 0 1 0 1 0 cos x 2 Amplitude: 1 2 f=g −2 2 −2 g 1 − 2π © Houghton Mifflin Company. All rights reserved. 2 2 Period: 2 y f x 2π 2π x −π π −1 36. f x sin x, gx cos x x 0 0 sin x cos x 2 2 1 0 2 2 f=g −2 3 2 2 1 0 2 −2 Conjecture: sin x cos x 0 1 0 1 0 2 321 Chapter 4 322 Trigonometric Functions 38. fx cos x, gx cosx 37. f x cos x gx sin x sin x cos x 2 2 Thus, f x gx. x 0 2 3 2 2 cos x 1 0 1 0 1 cosx 1 0 1 0 1 2 f=g −2 2 2 f=g −2 −2 2 −2 Conjecture: cos x cosx 40. y 39. y 3 sin x Period: 2 1 cos x 4 Period: 2 Amplitude: 3 3 , 3 , , 0, , 3 , 2, 0 Key points: 0, 0, 2 2 Amplitude: y 1 4 y 4 1 3 2 0.5 1 3π 2 − π 2 π 2 3π 2 π 2 −0.5 π 2π x −1 −4 41. y cos π 2 − x 2 42. y sin 4x Period: 4 Period: Amplitude: 1 Key points: 0, 1, , 0, 2, 1, 3, 0, 4, 1 2 4 2 Amplitude: 1 y y 2 3 1 2 −1 −2 −3 2π 4π x − 3π 8 π 8 −2 3π 8 5π 8 x © Houghton Mifflin Company. All rights reserved. − x Section 4.5 ; a 1, b 1, c 4 4 43. y sin x Graphs of Sine and Cosine Functions y 3 Period: 2 2 1 Amplitude: 1 Shift: Set x 0 and x 2 4 4 9 x x 4 4 3 5 7 9 Key points: ,0 , ,1 , ,0 , , 1 , ,0 4 4 4 4 4 44. y sinx −π x π –2 –3 y Horizontal shift units to the right 2 1 − π 2 −1 π 2 3π 2 x −2 45. y 8 cosx y 10 8 Period: 2 Amplitude: 8 2 Key points: , 8, , 0 , 0, 8, , 0 , , 8 2 2 46. y 3 cos x 2 © Houghton Mifflin Company. All rights reserved. −π π −2 −4 −6 −8 −10 47. y 2 sin Amplitude: 3 Horizontal shift − 2π 2π 2 x 3 Amplitude: 2 units to the left 2 Period: 2 3 23 y 4 4 3 −6 6 1 x − π 2 −2 π 2 3π 2 −4 −3 −4 Note: 3 cos x 3 sin x 2 x 323 Chapter 4 324 Trigonometric Functions 48. y 10 cos x 6 49. y 4 5 cos 50. y 2 2 sin Amplitude: 5 Amplitude: 10 Period: t 12 2 12 6 Period: Amplitude: 2 2 24 12 12 Period: 2 3 23 6 20 −18 18 2x 3 −30 30 −6 51. y 2 x cos 3 2 4 52. y 3 cos6x 2 Amplitude: 3 Period: −2 −20 −12 2 4 12 6 53. y 2 sin4x Amplitude: 3 Amplitude: 2 2 Period: 6 3 Period: 2 4 6 2 − − 4π π 2 π 2 5π − −4 −6 −2 54. y 4 sin 3x 3 2 55. y cos 2x 1 2 Amplitude: 1 Period: 1 Amplitude: 4 Period: 3 56. y 3 cos x 2 3 2 Amplitude: 3 Period: 4 3 1 8 −6 12 −3 6 3 −1 −7 −8 57. y 5 sin 2x 10 58. y 5 cos 2 x 6 1 59. y 100 sin 120 t Amplitude: 5 Amplitude: 5 Amplitude: Period: Period: Period: 20 1 60 0.02 12 − − 1 100 180 180 −4 − 0 −0.02 © Houghton Mifflin Company. All rights reserved. −12 Section 4.5 60. y 1 cos50 t 100 Amplitude: Period: Graphs of Sine and Cosine Functions 61. f x a cos x d 1 100 Amplitude: 62. f x a cos x d 1 8 0 4 2 Amplitude: Since f x is the graph of gx 4 cos x reflected about the x-axis and shifted vertically four units upward, we have a 4 and d 4. Thus, 1 25 0.04 −0.06 0.06 63. f x a cos x d Reflected in the x-axis: a 1 4 1 cos 0 d d 3 f x 4 cos x 4 y 3 cos x 65. f x a sinbx c 64. y a cos x d 1 Amplitude: 7 5 6 2 Graph of f is the graph of gx 6 cos x reflected about the x-axis and shifted vertically one unit upward. Thus, f x 6 cos x 1. Amplitude: 66. y a sinbx c Amplitude: a 3 1 2 Since the graph is reflected about the x-axis, we have a 3. Period: 2 Reflected in x-axis, a 1 2 2 ⇒ b2 b Phase shift: c 0 Period: d 4 y 4 1 cos x 2 Thus, f x 3 sin 2x. 67. f x a sinbx c Amplitude: 2 ⇒ a 2 Amplitude: a 1 Period: 4 Period: 2 ⇒ b 1 2 1 4 ⇒ b b 2 Phase shift: bx c 0 when x 1 Phase shift: c 0 © Houghton Mifflin Company. All rights reserved. 2 4 1 2 4 4 cos x. −0.04 y 2 sin 2 Thus, f x sin x 68. y a sinbx c y2 Period: 4 2 4 ⇒ b b 2 . 4 ⇒ c 4 . 4 69. y1 sin x Amplitude: 2 ⇒ a 2 c 1 ⇒ c b 2 x y 2 sin 2 2 4 c 0 x Phase shift: 325 1 2 In the interval 2, 2 , sin x 12 when x 5 7 11 , , , . 6 6 6 6 2 y1 −2 2 y2 −2 Chapter 4 326 Trigonometric Functions 71. v 0.85 sin 70. y1 cos x y2 1 (a) y1 y2 when x , . t 3 2 4 0 2 y1 −2 −2 2 y2 (b) Time for one cycle one period −2 (c) Cycles per min 2 6 sec 3 60 10 cycles per min 6 (d) The period would change. 72. S 74.50 43.75 cos (a) t 6 73. h 25 sin (a) 120 1 t 75 30 15 60 0 12 135 0 0 (b) Minimum: 30 25 5 feet (b) Maximum sales: December t 12 Maximum: 30 25 55 feet Minimum sales: June t 6 74. P 100 20 cos 8 t 3 Period: 130 3 2 83 4 4 1 heartbeat ⇒ heartbeatssecond 80 heartbeatsminute 34 3 1.5 60 75. C 30.3 21.6 sin (a) Period: 2t 365 10.9 2 2 365 days b 2365 (c) 60 This is to be expected: 365 days 1 year (b) The constant 30.3 gallons is the average daily fuel consumption. 0 365 0 Consumption exceeds 40 gallonsday when 124 ≤ x ≤ 252. (Graph C together with y 40.) (Beginning of May through part of September) © Houghton Mifflin Company. All rights reserved. 0 Section 4.5 76. (a) Yes, y is a function of t because for each value of t there corresponds one and only one value of y. Graphs of Sine and Cosine Functions 327 (c) One model is y 0.35 sin 4 t 2. (d) 4 (b) The period is approximately 20.375 0.125 0.5 seconds. 0 The amplitude is approximately 1 2 2.35 1.65 0.35 centimeters. y 77. (a) 0.9 0 y (c) 2.0 2.0 1.5 1.5 1.0 1.0 0.5 −10 x 10 20 30 40 50 60 70 − 0.5 −10 x 10 20 30 40 50 60 70 − 0.5 (b) y 0.506 sin0.209x 1.336 0.526 The model is a good fit. (d) The period is 2 30.06. 0.209 (e) June 29, 2007 is day 545. Using the model, y 0.2709 or 27.09%. 78. (a) At 19.73 sin0.472t 1.74 70.2 (b) (d) Nantucket: 58 Athens: 70.2 80 The constant term (d) gives the average daily high temperature. 0 12 0 (e) Period for Nt The model somewhat fits the data. (c) © Houghton Mifflin Company. All rights reserved. Period for At 95 2 11 211 2 13 0.472 You would expect the period to be 12 (1 year). 0 12 45 (f) Athens has greater variability. This is given by the amplitude. The model is a good fit. 79. True. The period is 20 2 . 310 3 80. False. The amplitude is 1 that of y cos x. 2 81. True 82. Answers will vary. 83. The graph passes through 0, 0 and has period . 84. The amplitude is 4 and the period 2. Since 0, 4 is on the graph, matches (a). Matches (e). 85. The period is 4 and the amplitude is 1. Since 0, 1 and , 0 are on the graph, matches (c). 86. The period is . Since 0, 1 is on the graph, matches (d). Chapter 4 328 Trigonometric Functions 87. (a) hx cos2 x is even. h(x) = cos2 x 2 2 − (c) hx sin x cos x is odd. (b) hx sin2 x is even. h(x) = sin2 x − 2 − −2 h(x) = sin x cos x −2 −2 88. (a) In Exercise 87, f x cos x is even and we saw that hx cos 2 x is even. Therefore, for f x even and hx f x 2, we make the conjecture that hx is even. (b) In Exercise 87, gx sin x is odd and we saw that hx sin 2x is even. Therefore, for gx odd and hx gx 2, we make the conjecture that hx is even. (c) From part (c) of 87, we conjecture that the product of an even function and an odd function is odd. 89. (a) x 1 0.1 0.01 0.001 sin x x 0.8415 0.9983 1.0 1.0 (b) 1.1 −1 1 0.8 0 0.001 0.01 0.1 1 sin x x Undef. 1.0 1.0 0.9983 0.8415 As x → 0, f x sin x approaches 1. x (c) As x approaches 0, 90. (a) x 1 0.1 0.01 0.001 1 cos x x 0.4597 0.05 0.005 0.0005 x 0 1 cos x x Undef. 0.0005 0.005 0.001 0.01 0.1 1 0.05 0.4597 (b) 0.5 −1 1 −0.5 As x → 0, 1 cos x approaches 0. x (c) As x approaches 0, 91. (a) (c) Next term for sine approximation: 2 −2 π 2π x7 7! Next term for cosine approximation: x6 6! −2 2 (b) 2 2 −2 π −2 π 2π −2 π 2π 2π −2 −2 sin x approaches 1. x −2 1 cos x approaches 0. x © Houghton Mifflin Company. All rights reserved. x Section 4.6 92. (a) sin1 0.8415 1 0.4794 (b) sin 2 0.3827 (c) sin 8 (d) cos1 0.5403 0.7071 (e) cos 4 1 (f ) cos 0.8776 2 Graphs of Other Trigonometric Functions y 93. 6 5 4 3 2 1 In all cases, the approximations are very accurate. −4 −3 −2 −1 −1 Slope (−1, 4) 4 (0, 1) x 1 2 3 4 71 3 20 95. 8.5 8.5 y 94. (2, 7) 7 487.014 180 3 2 1 −4 −3 −2 −1 −1 −2 x 1 2 3 4 (3, −2) −3 −4 m 2 4 6 3 31 4 2 96. 0.48 0.48 Section 4.6 © Houghton Mifflin Company. All rights reserved. ■ ■ ■ 27.502 180 97. Answers will vary. (Make a Decision) Graphs of Other Trigonometric Functions You should be able to graph: y a tanbx c y a cotbx c y a secbx c y a cscbx c When graphing y a secbx c or y a cscbx c you should know to first graph y a cosbx c or y a sinbx c since (a) The intercepts of sine and cosine are vertical asymptotes of cosecant and secant. (b) The maximums of sine and cosine are local minimums of cosecant and secant. (c) The minimums of sine and cosine are local maximums of cosecant and secant. You should be able to graph using a damping factor. Vocabulary Check 1. vertical 2. reciprocal 3. damping 329 Chapter 4 330 Trigonometric Functions 1. f x tan x (a) x-intercepts: 2, 0, , 0, 0, 0, , 0, 2, 0 (c) Increasing on: (b) y-intercept: 0, 0 2, 32, 32, 2 , 2 , 2 , 2 , 32, 32, 2 (d) No relative extrema Never decreasing (e) Vertical asymptotes: x 3 3 , , , 2 2 2 2 2. f x cot x (a) x-intercepts: 32, 0, 2 , 0, 2 , 0, 32, 0 (b) No y-intercepts (d) No relative extrema (c) Decreasing on: 2, , , 0, 0, , , 2 Never increasing (e) Vertical asymptotes: x 2, , 0, , 2 3. f x sec x 4. f x csc x (a) No x-intercepts (a) No x-intercepts (b) y-intercept: 0, 1 (b) No y-intercepts (c) Increasing on intervals: (c) Increasing on intervals: 2, 32, 32, , 0, 2 , 2 , 32, , , 2 , 2 , , , 32 Decreasing on intervals: Decreasing on intervals: , 2 , 2 , 0, , 32, 32, 2 2, 32, 2 , 0, 0, 2 , 32, 2 (d) Relative minima: Relative maxima: , 1, , 1 1 6. y tan x 4 Period: Period: 4 x y 1 2 0 4 0 1 2 and x 2 2 Asymptotes: x ± 2 y y 4 3 3 2 2 1 1 − π 2 π 2 π (e) Vertical asymptotes: x ± , ± 2 1 tan x 2 Two consecutive asymptotes: x 3 Relative maxima: , 1 , , 1 2 2 3 3 (e) Vertical asymptotes: x , , , 2 2 2 2 5. y 3 ,1 , ,1 2 2 x π −1 −2 −3 π x © Houghton Mifflin Company. All rights reserved. (d) Relative minima: 2, 1, 0, 1, 2, 1, Section 4.6 8. y 3 tan 4x 7. y 2 tan 2x Period: 2 Period: Two consecutive asymptotes: 2x 2x ⇒ x 2 4 y 6 x 8 0 8 y 2 0 2 4x − 3π 4 −π 4 π 4 3π 4 −8 ⇒ x 2 8 1 10. y 4 sec x 3 y 3 Period: 2 2 Period: 2 2 1 One cycle: 0 to 2 1 −π x π 11. y sec x 3 − 2π 1 x −2 −1 1 2 −3 One cycle: 0 to 4 2 4 2 π 2 6 4 −π 4 x 16 0 16 y 0.828 0 0.828 14. y csc 10 8 6 4 2 Period: x −8 −10 π 4 x y x ,x 8 8 y − 3π − 2π − π 2π 2 −5 2 Period: 4 12 Period: π Asymptotes: −4 x first. 2 −π 12. y 2 sec 4x 2 y Period: 2 © Houghton Mifflin Company. All rights reserved. −4 x y x 2 x π 2 −6 Graph y 12 cos x first. Graph y 3 sin 4 −4 9. y 12 sec x Shift graph of sec x down three units. 331 y Asymptotes: 4x ⇒ x 2 8 ⇒ x 2 4 13. y 3 csc Graphs of Other Trigonometric Functions π 2π 3π 4π x 3 x y 3 2 6 13 − 4π Asymptotes: −π −1 −2 x 0, x 3 −3 x 2 4 y 1.155 1.155 1.155 π 4π x Chapter 4 15. y Trigonometric Functions 1 x cot 2 2 16. y 3 cot x y 6 Period: 2 12 Period: −π Two consecutive asymptotes: Period: x 2 3 2 y 1 2 0 4 4 2 −6 −2 2 4 6 x x ⇒ x2 4 2 y 1 2 0 2 19. y 2 3 1 sec2x 2 2 1 1 4 x −1 4 0 1 4 0 −3 1 2 y 8 6 2 Asymptotes: x ± 1 x −π 2 −1 −2 Period: 2 3 Asymptotes: x ± 4 1 20. y secx y 2 Period: 2 y 3 Asymptotes: 1 1 x ,x 2 2 x ⇒ x 2 4 2 2 1 Period: 1 4 Two consecutive asymptotes: y x −1 1 18. y tan x 2 x 1 −2 1 2 6 0 −3 −3 y 1 1 −6 x 4 x 2 −4 x 0 ⇒ x0 2 x ⇒ x 2 2 17. y 2 tan 3 1 Asymptotes: x 0, x 1 x π y π 2 2 −2π −2 −4 −6 −8 21. y csc x y 6 Graph y sin x first. 4 Period: 2 2 Asymptotes: Set x 0 and x 2 x x −2π −π π 2π x 2π x © Houghton Mifflin Company. All rights reserved. 332 Section 4.6 22. y csc2x Period: 23. y 2 cot x 2 2 π 2 π 2 −1 −2 −3 −4 −5 π 25. y 2 csc 3x Period: y − −π 0 ⇒ x 2 2 x 3 ⇒ x 2 2 x 3 4 5 4 y 2 0 2 2 sin3x 2 Period: 3 −4 −6 26. y csc4x y 1 sin4x 10 − π 2 −2 −3 −4 −5 π 2 − 2 2 x 3π 2 −3 −10 3 10 − − 2 2 −3 © Houghton Mifflin Company. All rights reserved. −10 27. y 2 sec 4x y π −2 3 5 4 3 2 1 3π 2 y x x 1 24. y cotx 4 − Two consecutive asymptotes: y − 2 28. y 2 cos 4x 1 1 sec x 4 4 cos x 29. y 2 4 − 2 −2 2 1 x sec 3 2 2 1 x 3 cos 2 2 Period: 4 2 −2 2 2 −4 −6 −2 4 6 2 −2 − 2 333 Period: 5 4 3 −π Graphs of Other Trigonometric Functions 2 −2 2 −4 −6 6 −2 x Chapter 4 334 30. y Trigonometric Functions 1 csc2x 2 31. tan x 1 3 x 3 − − −3 −3 32. cot x 3 33. sec x 2 The solutions appear to be: x± 7 5 11 , , , 6 6 6 6 (or in decimal form: 3.665, 0.524, 2.618, 5.760) x 34. csc x 2 The solutions appear to be: 7 3 5 , , , 4 4 4 4 2 4 ,± 3 3 35. The graph of f x sec x has y-axis symmetry. Thus, the function is even. 7 5 3 , , , 4 4 4 4 (or in decimal form: 5.498, 3.927, 0.785, 2.356) 36. f x tan x 37. The function tanx tan x Thus, the function is odd and the graph of y tan x is symmetric with the origin. f x csc 2x has origin symmetry. Thus, the function is odd. 39. y1 sin x csc x and y2 1 38. f x cot 2 x f x cot2x 2 cos2x cos2x f x sin2x sin2x −3 3 Odd −2 Not equivalent because y1 is not defined at 0. sin x csc x sin x 40. y1 sin x sec x, y2 tan x 41. y1 sin x 1, 1 sin x 0 cos x 1 and y2 cot x tan x sin x 4 Equivalent −2 2 −4 cos x sin x −2 2 −4 It appears that y1 y2. sin x sec x sin x cot x 4 1 sin x tan x cos x cos x © Houghton Mifflin Company. All rights reserved. 1 sin 2x Section 4.6 42. y1 sec 2 x 1, y2 tan2 x Graphs of Other Trigonometric Functions 335 43. f x x cos x As x → 0, f x → 0. 3 Odd function − 3 2 3 2 f −1 32 0 Matches graph (d). It appears that y1 y2. 1 tan2 x sec2 x tan2 x sec2 x 1 44. f x x sin x 45. gx x sin x Matches graph (a) as x → 0, f x → 0, and f x ≥ 0 for all x. 46. gx x cos x As x → 0, gx → 0. Even function Odd function Matches graph (c) as x → 0, gx → 0. g2 0 Matches graph (b). 47. f x sin x cos x , gx 0 2 48. f x sin x cos x f x gx f=g −2 2 1 49. f x sin2 x, gx 1 cos 2x 2 50. f x cos2 2 gx © Houghton Mifflin Company. All rights reserved. f=g −2 2 cos2 x→ 2 sin x. 2 x 2 2 f=g 1 1 cos x 2 −2 −2 2 −3 6 f x → 0 as x → , f x → 0 −2 54. gx ex 2 sin x 2 2 2 Damping factor: ex 4 1 Damping factor: y ex 2 2 2 h → 0 as x → 3 −3 53. h x ex 4 cos x 2 x 1 1 cos x. 2 2 Damping factor: e2x −3 2 −3 52. f x e2x sin x 3 Damping factor: ex f=g −2 It appears that f x gx. That is, that −2 51. f x ex cos x 3 It appears that f x gx. That is, sin x cos x −2 f x gx gx 2 sin x 2 The graph is the line y 0. 2 −3 3 −2 ex 2 ≤ gx ≤ ex 2 2 x → ± , gx → 0 −8 8 2 −1 Chapter 4 336 55. (a) As x → Trigonometric Functions , f x → . 2 56. f x sec x (b) As x → , f x → . 2 (a) As x → , f x → . 2 (c) As x → , f x → . 2 (b) As x → , f x → . 2 (d) As x → , f x → . 2 (c) As x → , f x → . 2 (d) As x → , f x → . 2 58. f x csc x 57. f x cot x (a) As x → 0 , f x → (a) As x → 0 , f x → . . (b) As x → 0 , f x → . (b) As x → 0 , f x → . (c) As x → , f x → (c) As x → , f x → . . (d) As x → , f x → (d) As x → , f x → . . 59. As the predator population increases, the number of prey decreases. When the number of prey is small, the number of predators decreases. 60. Ht 54.33 20.38 cos t t 15.69 sin 6 6 Lt 39.36 15.70 cos t t 14.16 sin 6 6 (b) From the graph, it appears that the greatest difference between high and low temperatures occurs in summer. The smallest difference occurs in winter. 90 H L 0 (c) The highest high and low temperatures appear to occur around the middle of July, roughly one month after the time when the sun is northernmost in the sky. 12 0 Period of cos t 2 : 12 6 6 Period of sin t 2 : 12 6 6 Period of Ht : 12 Period of Lt : 12 61. tan x d 5 d 5 5 cot x tan x 62. cos x 36 0 −36 d 36 d 36 36 sec x cos x 72 − 2 36 2 © Houghton Mifflin Company. All rights reserved. (a) Section 4.6 63. (a) Graphs of Other Trigonometric Functions 337 (b) The displacement function is not periodic, but damped. It approaches 0 as t increases. 0.6 4 0 −0.6 64. (a) 1700 850 revmin 2 (e) Straight line lengths change faster. (b) The direction of the saw is reversed. 2 cot , 0 < < 2 (c) L 60 (d) (f) 0.3 0.6 0.9 1.2 1.5 L 217.9 195.9 189.6 188.5 500 2 0 306.2 0 3 and x is a vertical 2 2 2 asymptote for the tangent function. 65. True. 67. f x 2 sin x, gx (a) 66. True. For x → , 2x → 0. 1 csc x 2 (b) f x > gx for 3 f 5 < x < 6 6 (c) As x → , 2 sin x → 0 and 1 csc x → , since gx is the 2 reciprocal of f x. g 0 −1 68. (a) © Houghton Mifflin Company. All rights reserved. −3 4 1 1 1 sin x sin 3 x sin 5 x sin 7 x 3 5 7 (b) y3 2 3 2 −2 −3 3 2 −2 −3 3 (c) y4 y3 −2 69. (a) x 1 0.1 0.01 0.001 tan x x 1.5574 1.0033 1.0 1.0 4 1 sin 9 x 9 (b) 2 −1.1 1.1 0 x 0 0.001 0.01 0.1 1 tan x x Undef. 1.0 1.0 1.0033 1.5574 As x → 0, f x tan x → 1. x (c) The ratio approaches 1 as x approaches 0. Chapter 4 338 70. (a) Trigonometric Functions x 1 0.1 0.01 0.001 tan 3x 3x 0.0475 1.0311 1.0003 1.0 (b) 1.1 −1 1 −1.1 x 0 0.001 0.01 0.1 tan 3x 3x Undef. 1.0 1.0003 1.0311 0.0475 1 As x → 0, f x tan 3x → 1. 3x (c) The ratio approaches 1 as x approaches 0. and graph is increasing on , . 2 4 4 Matches (a). 71. Period is 73. y = tan(x) y= x+ and , 1 is on the graph. 2 8 Matches (b). 74. 2 x 3 16 x 5 + 3! 5! 72. Period is y=1+ x 2 5x 4 + 2! 4! 4 y = sec(x) 2 −3 3 −3 3 0 −2 2x3 16x5 The graphs of y1 tan x and y2 x 3! 5! are similar on the interval , . 2 2 The graphs of y1 sec x and y2 1 are similar on the interval , . 2 2 76. 77 1 1 75. Distributive Property x 2 5x 4 2! 4! 77. Additive Identity Property Multiplicative Inverse Property 78. a b 10 a b 10 80. Not one-to-one 79. Not one-to-one 81. y 3x 14, x ≥ 14 3, y ≥ 0 x 3y 14, y ≥ 14 3, x ≥ 0 x 2 3y 14 y 13 x 2 14 1 f 1x 3 x 2 14, x ≥ 0 82. One-to-one y x 513 x y 513 x3 y 5 f 1x x 3 5 © Houghton Mifflin Company. All rights reserved. Associative Property of Addition Section 4.7 Section 4.7 ■ ■ Inverse Trigonometric Functions Inverse Trigonometric Functions You should know the definitions, domains, and ranges of y arcsin x, y arccos x, and y arctan x. Function Domain Range y arcsin x ⇒ x sin y 1 ≤ x ≤ 1 y arccos x ⇒ x cos y 1 ≤ x ≤ 1 0 ≤ y ≤ y arctan x ⇒ x tan y < x < ≤ y ≤ 2 2 < y < 2 2 You should know the inverse properties of the inverse trigonometric functions. sinarcsin x x, 1 ≤ x ≤ 1 and arcsinsin y y, ≤ y ≤ 2 2 cosarccos x x, 1 ≤ x ≤ 1 and arccoscos y y, 0 ≤ y ≤ tanarctan x x and arctantan y y, ■ < y < 2 2 You should be able to use the triangle technique to convert trigonometric functions or inverse trigonometric functions into algebraic expressions. Vocabulary Check 2. y arccos x, 0 ≤ y ≤ 1. y sin1 x, 1 ≤ x ≤ 1 3. y tan1 x, < x < © Houghton Mifflin Company. All rights reserved. 1. (a) arcsin 1 2 6 2. (a) y arccos , 2 < y < 2 (b) arcsin 0 0 1 1 ⇒ cos y for 0 ≤ y ≤ ⇒ y 2 2 3 (b) y arccos 0 ⇒ cos y 0 for 0 ≤ y ≤ ⇒ y 3. (a) arcsin 1 because sin 1 and ≤ ≤ . 2 2 2 2 2 (b) arccos 1 0 because cos 0 1 and 0 ≤ 1 ≤ . 4. (a) arctan 1 because tan 1 and < < . 4 4 2 4 2 (b) arctan 0 0 because tan 0 0 and < 0 < . 2 2 2 339 Chapter 4 340 5. (a) arctan Trigonometric Functions 3 6 3 (b) arctan1 4 (b) y arctan 3 ⇒ tan y 3 ⇒ y 2 8. (a) y arccos 1 2 (b) y arcsin 2 ⇒ cos y ⇒ sin y 2 3 9. (a) y sin1 2 2 (b) arcsin 7. (a) y arctan 3 ⇒ tan y 3 for ⇒ sin y 2 2 3 2 3 2 4 6. (a) arccos 2 4 < y < ⇒ y 2 2 3 3 1 2 for 0 ≤ y ≤ ⇒ y 2 3 for for ≤ y ≤ ⇒ y 2 2 4 ≤ y ≤ ⇒ y 2 2 3 3 3 ⇒ tan y 3 3 ⇒ y 6 (b) y tan1 10. (a) x 1.0 0.8 0.6 0.4 0.2 y 1.5708 0.9273 0.6435 0.4115 0.2014 y (b) 2 1 x 0 0.2 0.4 0.6 0.8 1 y 0 0.2014 0.4115 0.6435 0.9273 1.5708 (c) x –1 1 –1 –2 2 −1 1 (d) 0, 0, symmetric to the origin 11. y arccos x (a) x 1 0.8 0.6 0.4 0.2 y 3.1416 2.4981 2.2143 1.9823 1.7722 (b) y 4 3 x 0 0.2 0.4 0.6 0.8 1.0 y 1.5708 1.3694 1.1593 0.9273 0.6435 0 1 x (c) 4 –2 −1 1 0 2 , 1, 0, no symmetry (d) Intercepts: 0, –1 1 2 © Houghton Mifflin Company. All rights reserved. −2 Section 4.7 12. (a) Inverse Trigonometric Functions y (b) x 10 8 6 4 2 y 1.4711 1.4464 1.4056 1.3258 1.1071 341 2 1 x y 0 2 4 6 8 10 0 1.1071 1.3258 1.4056 1.4464 1.4711 (c) x –10 –5 5 10 –2 2 −10 10 −2 (d) Horizontal asymptotes: y ± 2 13. y arctan x ↔ tan y x 14. y arccos x x 1 ⇒ y , cos 1 3, 3 , 33, 6 , 1, 4 x y cos 6 23 3 ⇒ x , 6 2 15. cos10.75 0.72 16. sin1 0.56 0.59 17. arcsin0.75 0.85 18. arccos0.7 2.35 19. arctan6 1.41 20. tan1 5.9 1.40 21. tan x 8 22. cos x arctan © Houghton Mifflin Company. All rights reserved. 1 2 2 1 ⇒ y , cos 2 3 3 2 23. sin x 8 8 x2 5 24. tan 5 x+2 tan x x ⇒ arcsin 2 2 4 x 2 2 x 4 x 2 ⇒ arccos ⇒ arctan θ 4 x+1 x1 arctan 10 θ 10 26. Let y be the third side. Then y2 22 x 2 4 x 2 ⇒ y 4 x2 cos 4 x x1 10 θ 25. Let y be the third side. Then sin x arccos θ x2 arcsin 5 4 x y2 32 x 2 9 x 2 ⇒ y 9 x2. sin 4 x 2 2 x 4 x 2 cos tan x x ⇒ arcsin 3 3 9 x 2 3 x 9 x 2 ⇒ arccos ⇒ arctan 9 x 2 3 x 9 x 2 342 Chapter 4 Trigonometric Functions 27. Let y be the hypotenuse. Then y 2 x 12 22 x 2 2x 5 ⇒ y x 2 2x 5. sin cos tan x 2 x1 x1 ⇒ arcsin 2 x 2x 5 2x 5 2 ⇒ arccos x 2 2x 5 2 x 2 2x 5 x1 x1 ⇒ arctan 2 2 28. Let y be the hypotenuse. Then y 2 x 22 32 x 2 4x 13 ⇒ y x 2 4x 13. sin cos tan x2 x 2 4x 13 3 x 2 4x 13 ⇒ arcsin x2 x 2 4x 13 ⇒ arccos 3 x 2 4x 13 x2 x2 ⇒ arctan 3 3 31. cosarccos0.3 0.3 30. tanarctan 35 35 29. sinarcsin 0.7 0.7 33. arcsinsin 3 arcsin0 0 32. sinarcsin0.1 0.1 Note: 3 is not in the range of the arcsine function. 7 arccos0 2 2 35. arctan tan 3 11 arctan 6 3 5 sin1 1 2 2 5 sin1 1 4 2 2 7 arcsin 4 2 4 37. sin1 sin 3 cos1 0 2 2 39. sin1 tan 3 cos11 4 41. tanarcsin 0 tan 0 0 36. arcsin sin 38. cos1 cos 40. cos1 tan 4 42. cosarctan1 cos 2 2 4 22 44. sinarctan1 sin 6 arccos 12 23 46. arccos sin 6 43. sinarctan 1 sin 4 © Houghton Mifflin Company. All rights reserved. 34. arccos cos 2 2 6 arcsin 23 3 45. arcsin cos 4 47. Let y arctan . Then 3 4 tan y , 0 < y < , and 3 2 4 sin y . 5 5 4 y 3 Section 4.7 3 48. Let u arcsin , 5 sin y 3 u 24 7 , and cos y . 25 25 25 24 4 3 sec u 5 hyp 5 adj 4 12 , 5 50. Let u arctan tan u 5 343 24 . Then 25 49. Let y arcsin 3 sin u , 0 < u < . 5 2 sec arcsin Inverse Trigonometric Functions y 7 5. Then, 3 51. Let y arctan 34 3 tan y , < y < 0 and sec y . 5 2 5 12 , < u < 0. 5 2 y 5 x y 5 u 13 −3 34 −12 csc arctan 12 5 csc u opp 12 hyp 13 4 , 52. Let u arcsin 3. Then, 3 53. Let y arccos 3 sin u , < u < 0. 4 2 2 5 2 cos y , < y < and sin y . 3 2 3 © Houghton Mifflin Company. All rights reserved. y 7 u 5 4 3 −3 y −2 3 4 tan u 7 tan arcsin 3 5 54. Let u arctan , 8 5 tan u , 0 < u < . 8 2 37 7 55. Let y arctan x. Then, 89 u 5 8 cot arctan cot u 8 5 x 8 5 x2 + 1 1 tan y x and cot y . x x y 1 344 Chapter 4 Trigonometric Functions x 56. Let u arctan x, tan u x . 1 57. Let y arccosx 2, cos y x 2. Opposite side: 1 x 22 sin y x2 + 1 1 x 22 1 x 1 x2 4x 3 1 − (x + 2)2 u 1 y opp x sinarctan x sin u 2 hyp x 1 58. Let u arcsinx 1, sin u x 1 x+2 x1 . 1 x x 59. Let y arccos . Then cos y , and 5 5 tan y 1 25 x 2 x x −1 u 5 2x − x 2 . 25 − x 2 y hyp 1 secarcsin x 1 sec u 2x x2 adj 4 4 60. Let u arctan , tan u . x x x 61. Let y arctan csc y x 2 + 16 x 7 7 x 2 x . Then tan y x 7 and . 4 7 + x2 u x x cot arctan 4 adj x cot u x opp 4 62. Let u arcsin xh xh , sin u . r r 7 63. Let y arctan sin y r x−h 14 y u x r 2 − (x − h) 2 r 2 x h 2 xh cos u r r 14 14 . Thus, y arcsin . 2 196 x 196 x 2 196 + x 2 cos arcsin 14 14 . Then tan y and x x © Houghton Mifflin Company. All rights reserved. y Section 4.7 64. If arcsin 36 x 2 6 u, then sin u 36 x 2 6 . 65. Let y arccos cos y 6 Inverse Trigonometric Functions 3 y arcsin u x 36 x2 arcsin 6 66. If arccos arccos 3 . Then, 2x 10 x2 2x 10 and sin y 36 − x 2 x2 345 x 1 3 x 12 9 x 12 9 x 1 x 12 9 . Thus, arcsin x 1 x2 2x 10 . x 6 x2 x2 u, 2 < x < 4 then cos u . 2 2 67. y 2 arccos x Domain: 1 ≤ x ≤ 1 Range: 0 ≤ y ≤ 2 Vertical stretch of f x arccos x 2 4x − x 2 2 u x−2 −2 arccos 4x x x2 arctan , since 2 < x < 4 2 x2 68. y arcsin x 2 69. The graph of f x arcsinx 2 is a horizontal translation of the graph of y arcsin x by two units. Domain: 2 ≤ x ≤ 2 2 Range: ≤ y ≤ 2 2 © Houghton Mifflin Company. All rights reserved. 2 0 2 2 0 −3 4 3 − 2 − 2 70. gt arccost 2 71. f x arctan 2x Domain: 3 ≤ t ≤ 1 Domain: all real numbers This is the graph of y arccos t shifted two units to the left. Range: < y < 2 2 2 −3 −4 3 0 0 − 2 Chapter 4 346 Trigonometric Functions 72. f x arccos x 4 Domain: 4, 4 Range: 0, −5 5 0 74. f t 4 cos t 3 sin t 73. f t 3 cos 2t 3 sin 2t 32 32 sin 2t arctan 3 3 42 32 sin t arctan 32 sin2t arctan 1 32 sin 2t 4 5 sin t arctan 4 3 4 3 The graph suggests that 6 A cos t B sin t A2 B2 sin t arctan −2 2 is true. A B 6 −6 −9 9 The graphs are the same. −6 75. As x → 1, arcsin x → . 2 76. As x → 1, arccos x → 0. 77. As x → , arctan x → . 2 78. As x → 1 , arcsin x → . 2 79. As x → 1 , arccos x → . 80. As x → , arctan x → . 2 10 10 ⇒ arcsin s s (b) s 52: arcsin s 26: arcsin 0.1935, 11.1 10 52 0.3948, 22.6 10 26 83. (a) tan 82. (a) 11 ft s 750 arctan 34 ft 11 (b) tan ⇒ 0.5743 or 32.9 17 (c) tan0.5743 h ⇒ h 20 tan0.5743 20 12.94 feet 750s (b) When s 400, arctan 0.49 radian, 28. 400 750 When s 1600, 1.13 radians, 65. © Houghton Mifflin Company. All rights reserved. 81. (a) sin Section 4.7 84. arctan (a) Inverse Trigonometric Functions 3x ,x > 0 x2 4 (b) is maximum when x 2 feet. 1.5 0 (c) The graph has a horizontal asymptote at 0. As the camera moves further from the picture, the angle subtended by the camera approaches 0. 6 −0.5 6 x 85. (a) tan 86. (a) tan arctan 6x arctan (b) When x 10, arctan 87. False. arcsin x 20 (b) When x 5, arctan 6 0.54 radian, 31. 10 5 14.0, (0.24 rad). 20 When x 12, When x 3, arctan x 20 63 1.11 radians, 63. arctan 1 2 6 88. False. tan x 89. y arccot x if and only if cot y x, < x < and 0 < y < . 12 31.0, 0.54 rad. 20 sin x cos x 90. y arcsec x if and only if sec y x where x ≤ 1 x ≥ 1 and 0 ≤ y < 2 and 2 < y ≤ . The domain of y arcsec x is , 1 1, and the range is 0, 2 2, . y π y © Houghton Mifflin Company. All rights reserved. π 2 −2 π x −1 1 π 2 2 −2 91. y arccsc x if and only if csc y x. 1 y Domain: , 1 1, Range: x −1 π 2 2 , 0 0, 2 −2 x −1 1 −π 2 2 2 347 348 Chapter 4 Trigonometric Functions 92. (a) y arccot x if and only if x cot y, < x < Thus, and 0 < y < . 1 1 tan y and y arctan . x x arctan1x, x < 0 Hence, graph y 2, x 0. arctan1x, x > 0 (b) y arcsec x if and only if x sec y, x ≤ 1 or x ≥ 1, and 0 ≤ y < 1 1 1 cos y and y arccos . Hence graph y arccos , x , 1 1, . x x x (c) y arccsc x if and only if x csc y, x ≤ 1 or x ≥ 1, and Thus, ≤ y < 0 or 0 < y ≤ . 2 2 1 1 1 sin y and y arcsin . Hence, graph y arcsin , x , 1 1, . x x x 93. y arcsec 2 ⇒ sec y 2 and 0 ≤ y < 94. y arcsec 1 ⇒ sec y 1 and 0 ≤ y < < y ≤ ⇒ y 2 2 4 < y ≤ ⇒ y0 2 2 95. y arccot 3 ⇒ cot y 3 and 0 < y < ⇒ y 96. y arccsc 2 ⇒ csc y 2 and 5 6 ≤ y < 00 < y ≤ ⇒ y 2 2 6 97. Let y arcsinx. Then, sin y x y arctanx 98. tan y x, sin y x < y < 2 2 tan y x siny x y arcsin x tany x, y arcsin x. Therefore, arcsinx arcsin x. < y < 2 2 arctantany arctan x y arctan x y arctan x 99. arcsin x arccos x 2 Let arcsin x ⇒ sin x. Let arccos x ⇒ cos x. Hence, sin a cos ⇒ a and are complementary angles ⇒ a ⇒ arcsin x arccos x . 2 2 © Houghton Mifflin Company. All rights reserved. Thus, or < y < . 2 2 Section 4.7 Inverse Trigonometric Functions 100. Area arctan b arctan a (a) a 0, b 1 (b) a 1, b 1 Area arctan 1 arctan 0 Area arctan 1 arctan1 0 0.785 4 4 (c) a 0, b 3 Area arctan 3 arctan1 1.25 0 1.25 103. 42 2 1 2 2 102. 23 3 6 3 105. sin 104. 5 6 6 5 © Houghton Mifflin Company. All rights reserved. 23 33 sin cos 23 3 2 5 2 25 5 5 5 2 θ 5 1 5 2 sec 5 6 11 611 11 cot 1 2 11 5 3 4 108. sec 3, 0 < < 4 3 7 4 θ sin 22 3 cos 1 3 3 37 7 7 csc 4 3 csc sec 4 47 7 7 cot 7 3 2 3 7 tan cot 55 55 5 52 4 210 225 22 csc Adjacent side: 16 9 7 cos 5 11 csc 107. sin θ 6 5 511 11 11 cot 6 11 tan sec 2 3 106. tan 2, 0 < < Adjacent side: 62 52 11 cos 4 2.03 1.25 1.25 4 (d) a 1, b 3 Area arctan 3 arctan 0 101. 1.571 4 4 2 θ 1 tan 22 3 22 1 22 32 4 2 4 2 2 349 Chapter 4 350 Section 4.8 ■ ■ ■ Trigonometric Functions Applications and Models You should be able to solve right triangles. You should be able to solve right triangle applications. You should be able to solve applications of simple harmonic motion: d a sin wt or d a cos wt. Vocabulary Check 1. elevation, depression 2. bearing 3. harmonic motion 1. Given: A 30, b 10 B 90 30 60 tan A a ⇒ a b tan A 10 tan 30 5.77 b cos A b b 10 ⇒ c 11.55 c cos A cos 30 2. Given: B 60, c 15 A 90 60 30 sin B b 153 ⇒ b c sin B 15 sin 60 12.99 c 2 cos B 15 a ⇒ a c cos B 15 cos 60 7.50 c 2 tan B b b 14 ⇒ a 4.82 a tan B tan 71 b 14 b ⇒ c 14.81 sin B c sin B sin 71 A 90 71 19 5. Given: a 6, b 12 c2 a2 tan A b2 ⇒ c 36 144 13.42 6 1 1 a ⇒ A arctan 26.57 b 12 2 2 B 90 26.57 63.43 4. Given: A 7.4, a 20.5 B 90 7.4 82.6 tan A a a 20.5 ⇒ b 157.84 b tan A tan 7.4 sin A a a 20.5 ⇒ c 159.17 c sin A sin 7.4 6. Given: a 25, c 45 b c2 a2 1400 1014 37.42 sin A a 25 ⇒ A arcsin 33.75 c 45 cos B a 25 ⇒ B arccos 56.25 c 45 © Houghton Mifflin Company. All rights reserved. 3. Given: B 71, b 14 Section 4.8 7. Given: b 16, c 54 a c2 cos A b2 Applications and Models 8. Given: b 1.32, c 18.9 2660 51.58 a c2 b2 355.4676 18.85 16 16 b ⇒ A arccos 72.76 c 54 54 B 90 72.76 17.24 9. A 12 15, c 430.5 cos A 1.32 1.32 b ⇒ A arccos 86.00 c 18.9 18.9 sin B b 1.32 ⇒ B arcsin 4.00 c 18.9 B c = 430.5 a B 90 12 15 77 45 12°15′ b C A a sin 12 15 430.5 a 430.5 sin 12 15 91.34 cos 12 15 b 430.5 b 430.5 cos 12 15 420.70 10. Given: B 65 12, a 145.5 A 90 65 12 24 48 cos B a a 145.5 ⇒ c 346.88 c cos B cos65 12 tan B b ⇒ b a tan B 145.5 tan65 12 314.89 a © Houghton Mifflin Company. All rights reserved. 11. tan h b2 12. tan h b2 1 h b tan 2 1 h b tan 2 1 h 8 tan 52 5.12 in. 2 1 h 12 tan 18 1.95 meters 2 13. tan h b2 14. tan h b2 1 h b tan 2 1 h b tan 2 1 h 18.5 tan 41.6 8.21 ft 2 1 h 3.26 tan 72.94 5.31 cm 2 (b) tan 15. (a) 60 ft θ L 351 L 60 L 60 tan 60 cot (c) 10 20 30 40 50 L 340 165 104 72 50 (d) No, the shadow lengths do not increase in equal increments. The cotangent function is not linear. Chapter 4 352 Trigonometric Functions (b) tan 16. (a) L 850 ft 850 tan 850 cot θ L (c) 850 L 10 20 30 40 50 L 4821 2335 1472 1013 713 17. sin 80 (d) No, the cotangent function is not a linear function. h 20 h 58.2 18. tan13 h 20 sin 80 20 h 58.2 tan13 13.44 meters h 19.70 feet h 80° 13° 58.2 meters 19. sin 50 h 100 20. sin 31.5 x 4000 x 4000 sin 31.5 h 100 sin 50 76.6 feet 100 31.5° x 4000 2089.99 feet h 50° h a 100 tan 39.75 47° 40′ 35° as 100 a s 100 tan 39.75 50 ft s 100 tan 39.75 a (b) Let the height of the church x and the height of the church and steeple y. Then: x y tan 35 and tan 47 40 50 50 ⇒ a 100 tan 28 100 tan 39.75 100 tan 28 30 feet s x 50 tan 35 and y 50 tan 47 40 h y x 50tan 47 40 tan 35 39.75° a (c) h 19.9 feet 100 28° © Houghton Mifflin Company. All rights reserved. 22. tan 28 21. (a) Section 4.8 23. (a) l 2 1002 20 3 h2 24. (a) sin 60 l 1002 17 h2 h θ 60° h l d (b) tan 20 ft θ 3 ft 100 ft (c) If 35, then l tan 25 ≤ tan ≤ tan 30 tan 25 ≤ 100 122.077. Then cos 35 h ≤ tan 30 d h h ≥ d ≥ tan 25 tan 30 17 h2 100 2 l 2 17 h2 l 2 1002 4902.906 55.72 ≥ d ≥ 45.00 17 h 70.02 d is in the interval 45.0, 55.72. h 53.02 feet 53 feet, h 153 25.98 d d d 25 ≤ ≤ 30 (c) 100 100 (b) cos l ⇒ arccos l 1 inch. 4 75 95 27. sin 26. (a) arctan h ⇒ h 30 sin 60 30 θ 30 25. tan 353 153 25.98 ft h 2 34h 10,289 3 ft Applications and Models 15 38.29 19 1 12 2 ft 4000 ⇒ 14.03 16,500 90 75.97 θ 1 17 3 ft 16,500 1 12 (b) tan 21 173 © Houghton Mifflin Company. All rights reserved. 75 α θ 4000 1 (c) arctan θ 95 28. tan 250 2.55280 arctan 122 35.8 1713 29. Since the airplane speed is 250 1.09 2.55280 275 sec60 min 16,500 min, ft sec ft after one minute its distance travelled is 16,500 feet. 2.5 miles θ 250 feet not drawn to scale sin 18 a 16,500 a 16,500 sin 18 5099 ft 16500 18° a 354 Chapter 4 30. sin 18 s Trigonometric Functions h 275s 31. sin 9.5 275(s) h h 275 sin 18 18° x 4 4 x 9.5° x 4 sin 9.5 0.66 mile 10,000 If h 10,000, s 117.7 seconds. 275 sin 18 If h 16,000, s 32. sin25.2 16,000 188.3 seconds. 275 sin 18 1808 L L 1808 ⇒ L 4246.3 feet sin25.2 1808 25.2° 33. 90 29 61 N 206 120 nautical miles sin 61 a ⇒ a 120 sin 61 104.95 nautical miles 120 b 61° W a b cos 61 ⇒ b 120 cos 61 58.18 nautical miles 120 E 120 S 34. c 6001.5 900 y 900 sin 38 554.1 miles 35. 32, 68 c 52° 38° x y Note: ABC forms a right triangle. N (a) 90 32 58 B φ C γ β α 50 β Bearing from A to C: N 58 E d (b) 32 90 22 C 54 tan C d d ⇒ tan 54 ⇒ d 68.82 m 50 50 W θ A S E © Houghton Mifflin Company. All rights reserved. x 900 cos 38 709.2 miles Section 4.8 36. tan 14 tan 34 d ⇒ x d cot 14 x 37. tan 45 3 ⇒ 56.31 30 2 N 30 d cot 14 d Port d cot 34 30 d cot 14 d 355 Bearing: N 56.31 W d d d ⇒ y 30 x 30 d cot 14 cot 34 Applications and Models 45 30 θ W E Ship 30 5.46 kilometers cot 34 cot 14 S 85 ⇒ 27.98 160 38. tan 39. tan 6.5 Bearing: S 27.98 W tan 4 N 350 ⇒ D 5005.23 ft D Distance between ships: D d 1933.3 ft Plane 85 W 350 ⇒ d 3071.91 ft d E 6.5° θ 160 4° 350 θ S2 S1 d D Airport S 40. 41. tan 57 28° 10 km 55° P1 T1 55° d 28° a tan 16 x 556 T2 D © Houghton Mifflin Company. All rights reserved. cot 55 d ⇒ d 7 kilometers 10 cot 16 D d 18.8 7 11.8 kilometers h h 10° 2.5° x not drawn to scale h h h 18 tan 10 18 tan 2.5 tan 10 tan 10 h tan 10 h tan 2.5 18tan 10tan 2.5 h x 550 60 55 6 ⇒ a 3.23 miles 17,054 feet h h 42. tan 2.5 , tan 10 x x 18 h h ,x 18 tan 2.5 tan 10 a 16° a cot 57 556 a a cot 16 a cot 57 Distance between towns: P2 57° H a tan 16 a cot 57 556 D cot 28 ⇒ D 18.8 kilometers 10 x a ⇒ x a cot 57 x 18tan 10tan 2.5 1.04 miles 5515 feet tan 10 tan 2.5 x − 18 not drawn to scale Chapter 4 356 Trigonometric Functions 44. (a) Using the two triangles with acute angle , 43. (a) 3 3 and sin . L1 L2 cos 50 + 6 = 56 Hence, L L 1 L 2 3 sec 3 csc . θ 40 3 β 56 arctan 54.5 40 L1 β L2 Similarly for the back row, arctan 56 20.5. 150 (b) 3 20 (b) For 45, you need to be 56 feet away since 56 45. 56 2 0 0 (c) The least value is 0.785. 3 5 3 45. L1: 3x 2y 5 ⇒ y x ⇒ m1 2 2 2 L2 x 5y 4 ⇒ m2 1 32 52 5 1 132 12 tan arctan 5 78.7 m2 m1 1 m2m1 arctan arctan 48. tan 47. The diagonal of the base has a length of a2 a2 2a. Now, we have: 1 tan 2a 2 49. cos 30 1 2 35.3 2 θ 2a a 50. b 30° r y 3r c 35 17.5 2 sin 15º a c c 15° a c sin 15 17.5 sin 15 4.53 2 x y 2b a2 2 a θ r 2 23r 2 arctan323 74.7 1 152 1 5 a b r 2 m2 m1 1 m2m1 a b cos 30r b 1 5 arctan 2 54.7º a arctan 46. L1 2x y 8 ⇒ m1 2 L2: x y 1 ⇒ y x 1 ⇒ m2 1 tan 4 3r Distance 2a 9.06 centimeters a © Houghton Mifflin Company. All rights reserved. arctan Section 4.8 51. d 0 when t 0, a 8, period 2 Applications and Models 52. Displacement at t 0 is 0 ⇒ d a sin t. Use d a sin t since d 0 when t 0. Amplitude: a 3 2 2 ⇒ Period: Thus, d 8 sin t. 2 6 ⇒ 3 d 3 sin 53. d 3 when t 0, a 3, period 1.5 t 3 54. Displacement at t 0 is 2 ⇒ d a cos t Use d a cos t since d 3 when t 0. Amplitude: a 2 2 4 1.5 ⇒ 3 2 Period: 10 ⇒ 5 Thus, d 3 cos 43 t. 357 d 2 cos t 5 55. d 4 cos 8t (a) Maximum displacement amplitude 4 (b) Frequency 8 2 2 (c) d 4 cos8 5 4 (d) 8t 1 ⇒ t 2 16 4 cycles per unit of time 56. d 1 cos 20 t 2 57. d (a) Maximum displacement: a (b) Frequency: 20 10 2 2 © Houghton Mifflin Company. All rights reserved. (c) When t 5, d 1 1 2 2 1 1 cos20 5 . 2 2 (d) Least positive value for t for which d 0: 1 cos 20 t 0 2 cos 20 t 0 20 t 2 t 2 1 1 20 40 1 sin 140t 16 (a) Maximum displacement amplitude (b) Frequency 140 2 2 70 cycles per unit of time (c) d 0 (d) 140t ⇒ t 1 140 1 16 Chapter 4 358 58. d Trigonometric Functions 1 sin 792 t 64 (a) Maximum displacement: a 792 (b) Frequency: 396 2 2 1 1 64 64 (d) Least positive value for t for which d 0: 1 sin 792 t 0 64 sin 792 t 0 1 (c) When t 5, d sin792 5 0. 64 792 t t 59. d a sin t Period 60. At t 0, buoy is at its high point ⇒ d a cos t. 1 2 frequency Distance from high to low 2 a 3.5 7 a 4 2 1 264 Returns to high point every 10 seconds: 2264 528 Period d 61. y 1 cos 16t, t > 0 4 (a) 1 792 792 (b) Period: 0.5 2 10 ⇒ 5 7 t cos 4 5 2 seconds 16 8 (c) 0 1 cos 16t 0 when 4 16t ⇒ t seconds. 2 32 62. (a) 0.1 0.2 0.3 0.4 L1 L 2 L1 L2 2 sin 0.1 3 cos 0.1 23.0 2 sin 0.2 3 cos 0.2 13.1 2 sin 0.3 3 cos 0.3 9.9 2 sin 0.4 3 cos 0.4 8.4 (c) L L1 L2 2 3 sin cos (b) 0.5 2 sin 0.5 3 cos 0.5 7.6 0.6 2 sin 0.6 3 cos 0.6 7.2 0.7 2 sin 0.7 3 cos 0.7 7.0 0.8 2 sin 0.8 3 cos 0.8 7.1 The minimum length of the elevator is 7.0 meters. (d) 12 0 0 2 From the graph, it appears that the minimum length is 7.0 meters, which agrees with the estimate of part (b). © Houghton Mifflin Company. All rights reserved. −0.5 Section 4.8 Applications and Models 359 (c) A 12 b1 b2 h 63. (a), (b) Base 1 Base 2 Altitude Area 8 8 16 cos 10 8 sin 10 22.1 8 8 16 cos 20 8 sin 20 42.5 8 8 16 cos 30 8 sin 30 59.7 8 8 16 cos 40 8 sin 40 72.7 8 8 16 cos 50 8 sin 50 80.5 8 8 16 cos 60 8 sin 60 83.1 8 8 16 cos 70 8 sin 70 80.7 12 8 8 16 cos 8 sin 641 cos sin (d) Maximum area is approximately 83.1 square feet for 60. 100 0 90 0 Maximum 83.1 square feet 15 2 12 ⇒ b b 6 12 9 6 Shift: d 14.3 6.3 8 3 t 2 4 6 S Average sales (in millions of dollars) 1 (b) a 14.30 1.70 6.3 2 S Average sales (in millions of dollars) 64. (a) 15 12 9 6 3 t S d a cos bt 8 10 12 Month (1 ↔ January) 2 12 6 This corresponds to the 12 months in a year. Since the sales of outerwear is seasonal, this is reasonable. (c) Period: S 8 6.3 cos 2 4 6 8 10 12 Month (1 ↔ January) t 6 The model is a good fit. © Houghton Mifflin Company. All rights reserved. (d) The amplitude represents the maximum displacement from the average sale of 8 million dollars. Sales are greatest in December (cold weather holidays) and least in June. 65. St 18.09 1.41 sin (a) 6t 4.60 22 0 (b) The period is 12 2 12 months, which is 1 year. 6 (c) The amplitude is 1.41. This gives the maximum change in time from the average time 18.09 of sunset. 14 66. False It means 24 degrees east of north. 67. False. The other acute angle is 90 48.1 41.9. Then tan41.9 opp adj a ⇒ a 22.56 22.56 tan41.9. Chapter 4 360 Trigonometric Functions y 2 4x 1 69. 68. False y 0 12x 13 70. 2y x 13 4x y 6 0 3x 6y 1 0 71. Slope 62 4 2 3 5 72. m 4 y 2 x 3 5 13 23 1 4 12 14 34 3 y 2 4 1 x 3 3 4 3y 2 4x 1 5y 10 4x 12 4x 3y 1 0 4x 5y 22 0 74. Domain: , 73. Domain: , 75. Domain: , 76. Domain: 7 x ≥ 0 or x ≤ 7 Review Exercises for Chapter 4 2. 250 or 4.4 radians y 3. (a) (b) Quadrant III (c) 4π 3 y 4 10 2 3 3 (b) Quadrant III (c) x − 5π 6 7. Complement: 3 2 8 8 Supplement: 9. Complement: 7 8 8 3 2 10 5 Supplement: (b) Quadrant IV (c) 11 π 6 4 2 2 3 3 x 5. (a) y 4. (a) 3 7 10 10 5 7 2 6 6 17 5 2 6 6 11 2 6 6 x y 6. (a) 11 23 2 6 6 (b) Quadrant I (c) − 7π 4 x 8. Complement: 5 2 12 12 Supplement: 10. Complement: 11 12 12 2 17 2 21 42 Supplement: 2 19 21 21 7 2 4 4 7 15 2 4 4 © Houghton Mifflin Company. All rights reserved. 1. 40 or 0.7 radian Review Exercises for Chapter 4 11. (a) y 12. (a) y 210° 45° x x (b) Quadrant I (b) Quadrant III (c) 45 360 405 (c) 210 360 570 210 360 150 45 360 315 13. (a) 361 y 14. (a) y −405° x x − 135° (b) Quadrant III (b) Quadrant IV (c) 135 360 225 (c) 405 720 315 135 360 495 405 360 45 15. Complement of 5: 90 5 85 16. Complement of 84: 90 84 6 Supplement of 5: 180 5 175 18. Complement of 136: not possible 17. Complement: not possible © Houghton Mifflin Company. All rights reserved. Supplement: 180 171 9 19. 135 16 45 135 21. 5 22 53 5 Supplement of 84: 180 84 96 Supplement of 136: 180 136 44 16 45 135.279 60 3600 53 22 5.381 60 3600 20. 234 40 234 22. 280 8 50 280 40 234.011 3600 8 50 60 3600 280 0.13 0.01 280.147 23. 135.29 135 0.2960 135 17 24 24. 25.8 25 48 25. 85.36 85 0.3660 85 21 36 26. 327.93 327 55 48 27. 415 415 rad 83 rad 7.243 rad 180 36 28. 355 355 rad 180 71 rad 6.196 rad 36 362 Chapter 4 Trigonometric Functions 29. 72 72 31. 5 5 180 128.571 7 7 33. 3.5 3.5 35. rad 2 rad 1.257 rad 180 5 30. 94 94 32. 200.535 180 rad 47 rad 1.641 rad 180 90 3 3 180 108 5 5 34. 1.55 1.55 88.808 180 36. s r ⇒ s r s 245 49 4.083 radians r 60 12 25 12 25 2.083 12 38. s r 15 37. s r s 20138 5 15.71 cm 3 180 s 48.171 m t 40. (a) 28 miles per hour 13 73 Circumference of wheel: C 2 1 1 3 minutes 60 seconds. 500 500 25 Linear speed Number of revolutions per minute: s 12 100 cmsec t 325 2464 7392 336.1 revmin 73 7 (b) 41. t 2 2 7 corresponds to , . 4 2 2 42. cos 7392 14,724 2 2112 rad/min t 7 7 2 3 2 3 , sin 4 2 4 2 x, y 43. cos sin 3 5 6 2 285280 2464 ft/min 60 44. t 2 2 2 , 2 4 1 3 . corresponds to , 3 2 2 5 1 6 2 x, y 45. t 3 1 2 , 2 2 1 3 corresponds to , . 3 2 2 46. t 3 1 7 corresponds to , . 6 2 2 © Houghton Mifflin Company. All rights reserved. 39. In one revolution, the arc length traveled is s 2 r 2 6 12 cm. The time required for one revolution is Review Exercises for Chapter 4 47. t 2 2 5 , . corresponds to 4 2 2 cot 7 3 6 cos 3 7 6 2 sec 7 2 23 6 3 3 tan 1 cot 4 4 tan 3 7 1 6 3 3 csc 7 2 6 sec 2 csc 4 4 sin 2 y 0 x cot 2 , undefined y cos 2 x 1 sec 2 y 0 x 1 1 x 1 csc 2 , undefined y 3 1 11 , . corresponds to 6 2 2 53. t 2 cos 4 2 4 50. sin 52. t corresponds to 1, 0. 51. t 2 corresponds to 1, 0. tan 2 cos x 1 tan 5 6 5 6 5 6 5 x 3 6 y 5 1 23 6 x 3 5 1 2 6 y 11 6 11 6 11 x 3 6 y cot 11 1 23 6 x 3 sec 11 1 2 6 y csc cos tan 3 yx 3 cos 2 tan 3 cot sec csc 55. t sin x corresponds to 0, 1. 2 2 y 1 cot 2 x 0 sec 2 yx, undefined csc sin cos tan 2 xy 0 2 1x, undefined 2 1y 1 y 0 x 3 5 1 , . corresponds to 6 2 2 54. t 11 6 y 21 x cot , undefined y 1 sec 1 x 1 csc , undefined y sin y 0 sin 3 5 1 corresponds to , . 6 2 2 7 1 6 2 49. sin © Houghton Mifflin Company. All rights reserved. 48. t 363 y 21 x 23 yx 3 3 Chapter 4 56. t Trigonometric Functions 2 2 corresponds to , . 4 2 2 4 y 22 cot 4 xy 1 4 x sec sin cos 4 1x 2 2 2 4 yx 1 4 1y 2 tan 57. sin 114 sin34 59. sin csc 2 58. cos 4 cos 0 1 2 17 7 1 sin 6 6 2 61. sin t 60. cos 3 5 62. cos t (a) sint sin t (b) csct 63. sint 3 5 1 5 sint 3 67. cos 5 13 (b) sect 2 3 64. cost 23 23 (b) csc t (a) cost cos t 1 3 sin t 2 5 8 (b) sect 1 0.8935 tan 2.3 66. sec 4.5 5 1 3 2 68. tan 69. The opposite side is 92 42 81 16 65. sin opp 65 hyp 9 csc 1 9 965 sin 65 65 cos adj 4 hyp 9 sec 1 9 cos 4 tan opp 65 adj 4 cot 1 4 465 tan 65 65 5 13 1 13 cost 5 (a) cos t cost (a) sin t sint 65. cot 2.3 13 5 1 cos 3 3 2 5 8 1 8 cost 5 1 4.7439 cos 4.5 11 0.5774 6 © Houghton Mifflin Company. All rights reserved. 364 Review Exercises for Chapter 4 70. sin 15 541 41 341 cos 12 441 41 341 71. The hypotenuse is 122 102 244 261. sin opp 10 5 561 hyp 261 61 61 cos adj 12 6 661 hyp 261 61 61 tan opp 10 5 adj 12 6 3 41 15 15 5 12 4 tan θ 41 csc 41 541 sec 41 41 4 441 csc 61 1 sin 5 cot 4 5 sec 61 1 cos 6 cot 1 6 tan 5 72. sin cos tan 12 5 2 1 10 5 csc 5 46 26 10 5 sec 2 46 6 cot 12 73. csc tan 5 26 sin 1 79. tan 62 125 1 sin cos cos sec 56 12 12 26 6 10 2 θ 96 = 4 6 74. tan cot tan 1 1 tan2 sec2 cot cot © Houghton Mifflin Company. All rights reserved. 76. (a) csc52 12 (b) sec54 7 75. (a) cos 84 0.1045 (b) sin 6 0.1045 1 1 1.2656 sin52 12 sin 52.2 1 1 1.7061 cos54 7 cos54.1167 77. (a) cos 0.7071 4 78. (a) tan (b) sec 1.4142 4 (b) cot 320 0.5095 320 tan3120 1.9626 (b) sin 30 80. (a) 152 ft 30⬚ 365 h (c) h 152 h ⇒ h 152 sin 30 152 12 76 feet x 125 tan 62 235 feet 366 Chapter 4 Trigonometric Functions 81. x 12, y 16, r 144 256 400 20 y 4 r 5 csc r 5 y 4 cos x 3 r 5 sec r 5 x 3 tan y 4 x 3 cot x 3 y 4 82. x 2, y 10, r 4 100 104 226 83. x 7, y 2, r 49 4 53 sin y 10 526 r 26 226 sin y 2 253 r 53 53 cos 26 x 2 r 26 226 cos x 7 753 r 53 53 tan y 10 5 x 2 tan y 2 x 7 csc 26 r y 5 csc sec r 26 x sec x 1 y 5 cot cot 84. x 3, y 4, r 32 42 5 y 4 sin r 5 85. x 53 2 53 7 7 2 2 5 and y , r 3 8 23 58 2 sin y 58 15481 48124 r 481 cos x 3 r 5 cos tan y 4 x 3 x 23 16481 48124 r 481 tan csc x 5 y 4 y 58 15 x 23 16 csc sec r 5 x 3 481 r y 15 sec cot r 3 y 4 481 r x 16 cot x 16 y 15 2 481 24 © Houghton Mifflin Company. All rights reserved. sin Review Exercises for Chapter 4 86. x 10 2 ,y ,r 3 3 103 23 2 2 226 3 sin y 23 1 26 r 26 2 263 26 csc r 26 y cos x 103 5 526 r 26 2263 26 sec 26 r x 5 tan y 23 1 x 103 5 cot x 5 y 6 87. sec , tan < 0 ⇒ is in Quadrant IV. 5 y θ r 6, x 5, y 36 25 11 sin 11 y r 6 csc cos x 5 r 6 sec tan 11 y x 5 cot © Houghton Mifflin Company. All rights reserved. 88. tan 5 611 11 x − 6 11 6 5 511 11 y 12 ⇒ r 13, sin > 0 ⇒ y 12, x 5 x 5 sin y 12 r 13 csc r 13 y 12 cos x 5 r 13 sec r 13 13 x 5 5 cot x 5 y 12 3 89. sin , cos < 0 ⇒ is in Quadrant II. 8 y y 3, r 8, x 55 y 3 r 8 csc cos 55 x r 8 sec tan y 3 355 x 55 55 cot sin 8 3 8 3 − 8 855 55 55 55 3 θ x 55 367 368 Chapter 4 90. cos Trigonometric Functions x 2 ⇒ y ± 21, sin > 0 ⇒ y 21 r 5 sin y 21 r 5 sec r 5 5 x 2 2 tan 21 y x 2 cot x 2 221 y 21 21 csc r 5 521 y 21 21 y 91. Reference angle: 92. 635 is coterminal with 275. 264 180 84 Reference angle: y 360 275 85 θ = 264⬚ x θ = 635° θ ′ = 84⬚ x θ ′ = 85⬚ y 93. Coterminal angle: 6 4 5 5 y Reference angle: θ′= π 5 Reference angle: x θ = − 6π 5 4 5 5 95. 240 is in Quadrant III with reference angle 60. sin 240 sin 60 3 cos 240 cos 60 tan 240 17 5 is coterminal with . 3 3 5 3 3 θ = 17π 3 x θ′= π 3 96. 315 is in Quadrant IV with reference angle 45. sin 315 sin 45 2 1 2 cos 315 cos 45 32 3 12 2 2 2 2 tan 315 tan 45 1 97. 210 is coterminal with 150 in Quadrant II with reference angle 30. 98. 315 is coterminal with 45 in Quadrant I. sin315 1 sin210 sin30 2 cos210 cos30 2 3 2 3 12 1 tan210 3 3 32 cos315 2 2 2 tan315 1 2 © Houghton Mifflin Company. All rights reserved. 2 94. Review Exercises for Chapter 4 99. 94 is coterminal with 74 in Quadrant IV with reference angle 4. 100. 116 is in Quadrant IV. 116 12 2 9 sin sin 4 4 2 sin 2 9 cos cos 4 4 2 cos 9 1 4 22 tan tan 22 101. sin4 sin0 0 102. sin cos4 1 73 sin3 cos tan4 0 tan 104. csc 105 1 1.0353 sin 105 3 2 116 33 3 103. tan 33 0.6494 2 73 21 12 1 3.2361 5 cos125 9 0.3420 106. sin 108. f x 2 cos x y 4 Amplitude: 3 116 73 3 105. sec 107. f x 3 sin x 369 y 3 Amplitude: 2 3 2 2 1 x π − 2π 2π −π π −1 2π x −2 −3 −4 109. f x 14 cos x Amplitude: 14 © Houghton Mifflin Company. All rights reserved. 110. f x 72 sin x y 1 Amplitude: 7 2 1 2 y 4 3 2 1 − 2π x 2π − x π −1 111. Period: 2 2 Amplitude: 5 2π 1 2 112. Period: −4 2 4 12 Amplitude: 3 2 113. Period: 2 2 Amplitude: 3.4 114. Period: 2 4 2 Amplitude: 4 370 Chapter 4 Trigonometric Functions 115. y 3 cos 2x 3 Amplitude: 3 Period: 2 1 2 Period: 116. y 2 sin x y 1 1 2 2 Period: –3 x 12 0 1 2 y 2 0 2 y 6 4 Period: 2 2 5 25 –2 x 118. f x 8 cos 4 y 6π x 1 –1 Reflected in x-axis −3 Amplitude: 5 1 1 −2 2x 117. f x 5 sin 5 2 2 Amplitude: 2 2 x −1 y 3 8 2 8 14 4π 8π x x Amplitude: 8 –2 –4 –6 Reflected in y-axis –8 –6 Amplitude: Period: 2 8 14 121. f x 2 0 2 4 y 8 0 8 0 8 1 x 120. f x sin 2 4 y 5 4 3 2 1 5 2 4 Amplitude: − 4π 4π 8π 1 1 2 x x −6 Period: 8 122. f x 3 cosx 4 –1 –2 –3 –4 4 3 2 1 Shift: π x Amplitude: 3 1 π This is the graph of y 3 cos x shifted to the left units. x 0 and x 2 x 3 6 y Period: 2 3 Period: 2 2 −1 y 5 Amplitude: 2 −2 −1 2 −3 −4 −5 5 sinx 2 x y x f x 3 0 2 –3 –4 0 2 3 0 3 x © Houghton Mifflin Company. All rights reserved. 5 x 119. f x cos 2 4 x Review Exercises for Chapter 4 123. f x 2 cos x 2 124. f x y 4 1 sin x 3 2 Amplitude: 2 x −4 −3 −2 −1 −1 1 2 3 4 −2 −4 2x 4 1 2 4 Period: −4 π x 2π 3π y 2 8 6 4 2 −3 −4 π 2 −3 −2 4 π 4 −2 Period: 2 2 2 −1 Amplitude: 2 3 127. f x 2 cos x 1 126. f x 4 2 cos4x y −π x −1 Vertical shift downward three units −3 125. f x 3 cos y −2 3 371 −π 2 −π 4 −2 2 128. f x a cosbx c 129. f x 4 cos 2x x Amplitude: 3 Period: ⇒ f x 3 cos2x 130. f x a cosbx c Amplitude: 1 2 Period: 2 ⇒ f x © Houghton Mifflin Company. All rights reserved. 131. S 48.4 6.1 cos 132. S 56.25 9.50 sin t 6 56 Maximum sales: t 6 (June) 1 cos x 2 t 6 133. f x tan 70 Maximum sales: t 3 (March) Minimum sales: t 9 (September) 0 12 45 0 Minimum sales: t 12 (December) 12 40 x 4 y 6 Period: 4 4 4 2 x −6 Asymptotes: x 2, x 2 −4 −2 −2 −4 Reflected in x-axis x 1 0 1 y 1 0 1 −6 2 4 6 Chapter 4 372 Trigonometric Functions 135. f x 134. f x 4 tan x 1 tan x 4 2 136. f x 2 2 tan x 3 y y y 6 4 4 3 2 2 6 4 2 1 x 1 − 3π 2 −1 π 2 x 3π 2 −3π −2π −2 Period: 138. f x y 6 2 12 1 x cot 2 2 1 2 tan 4 −4π x 2 y 2 Two consecutive asymptotes: x −6 −4 x 2 3π 4π −4 −3 137. f x 3 cot π −2π 2π 4π x 2 1 x 0 ⇒ x0 2 x −2 −1 1 2 x ⇒ x 2 2 139. f x 1 cot x 2 2 140. f x 4 cot x y 5 4 3 Period: 4 4 tan x 4 y x x −2 π 0 ⇒ x 2 2 − π −1 π 2π x 4 − 2π −π 1 sec x 4 142. f x Period: 2 x 1 1 csc x 2 2 sin x y 2 y 1 2 1 −π 2π −2 2π 3 ⇒ x 2 2 141. f x −1 π π x −2 2π 3π x © Houghton Mifflin Company. All rights reserved. Two consecutive asymptotes: Review Exercises for Chapter 4 143. f x 1 csc 2x 4 144. f x 1 1 sec 2 x 2 2 cos 2 x Period: y y 3 2 x −1 1 x π 145. f x sec x 4 1 −1 146. f x y 3 1 1 csc2x 2 2 sin2x y 2 Secant function shifted to right 4 1 −π π 2π x −π −π 2 π 2 x π −1 147. f x 1 x tan 4 2 148. f x tan x 1 −π −2π © Houghton Mifflin Company. All rights reserved. −1 4 tan2x 150. f x 2 cot4x 10 2 tan4x 4 −π 2 π −10 π 2 −4 151. f x 2 secx 2 cosx 152. f x 2 cscx 10 8 2π −10 2π −4 149. f x 4 cot2x − 2π 4 π −π 4 −2π 2π −8 2 sinx 373 374 Chapter 4 Trigonometric Functions 1 2 sin3x 2 153. f x csc 3x 3 4 sin2x 4 154. f x 3 csc 2x 4 8 −π π −π π −8 −4 156. f x ex cos x 155. f x ex sin 2x Damping factor: y ex Damping factor: ex 5 20 −4 −4 4 4 −5 −20 157. f x 2x cos x 158. f x x sin x Damping factor: gx 2x 6 As x → , f oscillates between x and x. 14 −9 9 −6 −10 10 −14 As x → , f oscillates between 2x and 2x. 12 6 because sin 6 12. 160. (a) arcsin (b) arcsin 4 does not exist because the domain of arcsin is 1, 1. (b) arcsin 3 2 3 because 3 23. sin 22 4 because cos 4 22. 3 5 3 5 (b) arccos because cos . 2 6 6 2 161. (a) arccos 162. (a) arctan 3 (b) arctan1 3 4 163. arccos0.42 1.14 164. arcsin 0.63 0.68 165. sin10.94 1.22 166. cos10.12 1.69 167. arctan12 1.49 168. arctan 21 1.52 169. tan10.81 0.68 170. tan1 6.4 1.42 171. sin x3 x3 ⇒ arcsin 16 16 172. tan x 1 ⇒ arctan x 1 20 20 © Houghton Mifflin Company. All rights reserved. because sin 1. 2 2 159. (a) arcsin1 Review Exercises for Chapter 4 x x 174. Let u arccos , cos u . 2 2 173. Let y arcsinx 1. Then, sin y x 1 sec y x1 and 1 tan arccos x tan u 2 1 x2 2x x2 2x x2 2x 1 4 x2 2 x sin y . y u x x2 x2 and . Then cos y 2 4x 4 x2 4 x22 x22 4 x2 176. Let u arcsin 10x, sin u 10x. cscarcsin 10x csc u . 16 8x2 4 x2 24 2x2 . 4 x2 177. sin1 10 4 − x2 u x2 1 − 100x 2 a 3.5 3.5 a 1° 10' not drawn to scale 12 100 arctan sin 12 100 0.1194 or 6.84 h 4 h 4 θ h 4 sin0.1194 0.48 miles or 2534 feet (answer depends on angle accuracy) 179. tan 14 tan 58 1 (4 − x 2 ) 2 − (x 2) 2 © Houghton Mifflin Company. All rights reserved. 1 hyp opp 10x y 7 a 3.5 sin1 10 3.5 sin 0.0713 or 71 meters 6 178. tan 4 − x2 x−1 1 − (x − 1) 2 175. Let y arccos 375 y ⇒ y 37,000 tan 14 9225.1 feet 37,000 32° xy ⇒ x y 37,000 tan 58 59,212.4 feet 37,000 x 59,212.4 9225.1 49,987.2 feet The towns are approximately 50,000 feet apart or 9.47 miles. 76° 58° 37,000 14° x y 10x 376 Chapter 4 Trigonometric Functions d1 ⇒ d1 483 650 180. sin 48 d2 ⇒ d2 734 cos 25 810 d3 cos 48 650 ⇒ d3 435 d4 ⇒ d4 342 sin 25 810 tan N d1 d2 1217 48° W d3 A d3 d4 93 B 25° 48° 65° 810 650 D θ d1 d2 E d4 C S 93 ⇒ 4.4 1217 sec 4.4 D ⇒ D 1217 sec 4.4 1221 1217 The distance is 1221 miles and the bearing is N 85.6 E. 182. Use a cosine model with amplitude 181. Use cosine model with amplitude 3 feet. Period: 15 seconds Period: 3 seconds 2 t y 3 cos 15 y 0.75 cos 183. False. y sin is a function, but it is not one-to-one. (a) 23 t 184. False. The sine and cosine functions are useful for modeling simple harmonic motion. 0.672s 2 3000 s 10 20 30 40 50 60 1.28 5.12 11.40 19.72 29.25 38.88 (b) increases at an increasing rate. The function is not linear. 186. (a) (b) Next term: 10 − −10 x9 9 arctan x x 10 x3 x 5 x7 x9 3 5 7 9 The accuracy of the approximation increases as more terms are added. − −10 © Houghton Mifflin Company. All rights reserved. 185. tan 1.5 0.75. 2 Practice Test for Chapter 4 Chapter 4 377 Practice Test 1. Express 350 in radian measure. 2. Express 59 in degree measure. 3. Convert 135 14 12 to decimal form. 4. Convert 22.569 to D M S form. 5. If cos 23, use the trigonometric identities to find tan . 6. Find given sin 0.9063. 7. Solve for x in the figure below. 8. Find the magnitude of the reference angle for 65. 35 20° x 10. Find sec given that lies in Quadrant III and tan 6. 9. Evaluate csc 3.92. x 11. Graph y 3 sin . 2 12. Graph y 2 cosx . 13. Graph y tan 2x. 14. Graph y csc x 15. Graph y 2x sin x, using a graphing calculator. 16. Graph y 3x cos x, using a graphing calculator. 17. Evaluate arcsin 1. 18. Evaluate arctan3. © Houghton Mifflin Company. All rights reserved. 19. Evaluate sin arccos . 4 4 . 35 20. Write an algebraic expression for cos arcsin For Exercises 21–23, solve the right triangle. 21. A 40, c 12 22. B 6.84, a 21.3 B c A b a C 24. A 20-foot ladder leans against the side of a barn. Find the height of the top of the ladder if the angle of elevation of the ladder is 67. 25. An observer in a lighthouse 250 feet above sea level spots a ship off the shore. If the angle of depression to the ship is 5, how far out is the ship? 23. a 5, b 9 x . 4