Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
ONLY FOR PERSONAL USE This digital version of the ’DictaatRekenvaardigheden’-’Algebraic Skills’ is for personal use c because of copyright. 1 Algebraic Skills Department of Mathematics and Computer Science June 22, 2011 Preface Preface This text aims at refreshing the algebraic skills required for following courses in basic mathematics at an academic level. Familiarity with many basic concepts is implicitly assumed throughout. The topics covered in Chapters 1–10 show which algebraic skills freshmen students are assumed to have mastered already. The topics covered in the remaining Chapters 11–14 are typically beyond what is assumed as prior knowledge upon entering university, but nevertheless basic and essential to any course in calculus. As the main purpose of this text is to be used for self-study, answers to all the exercises are provided in the final chapter. Major deficiencies in algebraic skills and lack of familiarity with formulas can not be remedied within a few practice sessions. Therefore, to allow for extensive and repetitive practicing, many exercises of the same type are provided for each topic. To make sure that you master a certain topic the idea is that you do all the exercises and check that you can do these correctly and quickly! Note: the goal is that you can do the exercises without the use of a formula sheet or calculator. You should know the rules and formulas in boxes like this by heart or be able to derive these quickly, without access to a formula sheet or calculator. Finally, according to a long and widespread tradition, parentheses around the argument to the standard functions sin, log, etc. are omitted if no confusion arises. So y sin x = sin(x)y 6= sin x y = sin(x y), sin x cos x = sin(x) cos(x) 6= sin(x cos x) and sin x + y = sin(x)+ y 6= sin(x + y). Use of superfluous parentheses, especially when in doubt, is allowed. Note that these functions are typeset in a regular Roman font. ii Preface ii 1 Sets, Logic, Terms, and Factors 1 1.1 Sets and Logic . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Terms and Factors . . . . . . . . . . . . . . . . . . . . . 2 2 Powers 3 3 Simplifying Expressions 5 3.1 Removing Parentheses . . . . . . . . . . . . . . . . . . . 5 3.2 Factoring Polynomials . . . . . . . . . . . . . . . . . . . 7 3.3 Factoring Polynomials, continued . . . . . . . . . . . . . . . . 8 4 Fractions 9 5 Trigonometry 11 6 Trigonometric Identities 15 6.1 Basic Formulas . . . . . . . . . . . . . . . . . . . . . . 16 6.2 Factoring . . . . . . . . . . . . . . . . . . . . . . . . 17 6.3 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . 18 7 Differentiation 19 7.1 Derivatives of Elementary Functions . . . . . . . . . . . . . . . 19 7.2 Differentiation Rules . . . . . . . . . . . . . . . . . . . . 20 8 Antiderivatives 23 9 Graphing Functions 25 10 Equations and Inequalities 29 10.1 Polynomial Equations . . . . . . . . . . . . . . . . . . . . 29 10.2 Polynomial Inequalities . . . . . . . . . . . . . . . . . . . 31 10.3 Equations Involving Fractions . . . . . . . . . . . . . . . . . 34 10.4 Inequalities Involving Fractions . . . . . . . . . . . . . . . . 36 . . . . . . . . . . . . . . . . . . . 38 10.6 Exponential Inequalities . . . . . . . . . . . . . . . . . . . 40 10.7 Logarithmic Equations . . . . . . . . . . . . . . . . . . . 42 10.8 Logarithmic Inequalities . . . . . . . . . . . . . . . . . . . 44 10.5 Exponential Equations iii Contents 10.9 Trigonometric Equations and Inequalities . . . . . . . . . . . . . 46 10.10 Equations Involving Square Roots . . . . . . . . . . . . . . . 48 10.11 Inequalities Involving Square Roots . . . . . . . . . . . . . . . 50 11 Rationalizing Denominators (extra) 53 12 Partial Fraction Decomposition A (extra) 55 13 Partial Fraction Decomposition B (extra) 57 14 Inverse Trigonometric Functions (extra) 59 15 Answers to the Exercises 61 iv Chapter 1 Sets, Logic, Terms, and Factors 1.1 Sets and Logic A set may be defined by enumerating its elements: V = a, b, c, d . Example: 1, 4, 6, 7 is the set containing the numbers 1, 4, 6, and 7. If x is an element of the set V we write x ∈ V . Common sets of interest are: the set of Natural numbers N = 1, 2, 3, 4, . . . Integer numbers Z = . . . , −3, −2, −1, 0, 1, 2, 3, 4, . . . Rational numbers Q = all numbers that can be written in the form Real numbers p q with p ∈ Z and q ∈ N R = all numbers that can be written as an (infinite) decimal expansion Complex numbers C = all numbers that can be written in the form a + ib with a, b ∈ R If W is a subset of a set V , we write W ⊂ V . Hence, N ⊂ Z ⊂ Q ⊂ R ⊂ C. If W is defined in terms of a given condition B, we write W = x ∈ V B(x) . We say: “W consists of all elements x ∈ V such that B(x)”. Example: the natural numbers which are a multiple of 5: The union of sets A and B is defined as A ∪ B = all elements that are in A or in B . n ∈ N 51 n ∈ N . The intersection of sets A and B is defined as A ∩ B = all elements that are in A and in B . 1 1.2 Terms and Factors Subsets of R can be represented on the real line. A contiguous subset is called an interval. We use common notation for intervals. Examples: −3 5 U = x ∈ R −3 < x 6 5 = (−3, 5] 2 V = x ∈Rx >2 = [2, ∞) −2 W = x ∈ R x 6 −2 = (−∞, −2] Some intersections and unions of these intervals are = (−3, ∞) U ∪ V = x ∈ R x > −3 = [2, 5] U ∩ V = x ∈ R 2 6 x 6 5} V ∪ W = x ∈ R x 6 −2 ∨ x > 2 = (−∞, −2] ∪ [2, ∞) V ∩ W = x ∈ R x 6 −2 ∧ x > 2 = (−∞, −2] ∩ [2, ∞) = ∅ ∅ denotes the empty set (the set without any elements). ∨ denotes the logical or: a ∨ b is true if a is true or b is true (or both). ∧ denotes the logical and: a ∧ b is true if a is true and b is true. Note the parallel between ∨ and ∪ , and between ∧ and ∩ . 1.2 Terms and Factors We distinguish terms and factors. A term is a part of a sum (or difference); a factor is a part of a product. For example, 3 − a is a sum of the terms 3 and −a; 3a is a product of the factors 3 and a. Examples: • 2a 2 b − 3c consists of two terms, namely 2a 2 b and −3c. • 2a 2 b consists of three factors: 2, a 2 , and b. • −3c consists of two factors: −3 and c. • 2a(3b − 2cd) consists of three factors: 2, a, and (3b − 2cd). • 3b − 2cd is a sum of which the first term consists of three factors 3 and b; the second term consists of −2, c, and d. It is important to realize whether you are dealing with terms or factors since the rules of arithmetic are different! 2 Chapter 2 Powers The following rules hold, assuming that a > 0 and b > 0: a p · a q = a p+q , (ab) p = a p b p , 1 ap −n , = a = a p−q , (a p )q = a pq , an aq √ √ √ q √ √ n p an = a 2 , aq = a p , ab = a b. For example, using these rules we have: 1 (3a 2 b) 3 1 2a 4 b− 2 1 = 2 1 33 a 3 b3 1 2a 4 b− 2 1 10 5 = 3 3 · 2−1 a − 3 b 6 . The expression is reduced to a product of numbers and powers of the form C · a p b q cr · · · If x ∈ R then √ √ 3 x 2 = |x| and x 3 = x, where |x| denotes the absolute value of x ( |x| = Note: x if x > 0, −x if x < 0. √ c2 = |c| but x 2 = c2 ⇔ x = c ∨ x = −c. Powers (exponentials) and logarithms are inverses of each other. For instance: x ... 2x ... −6 −5 −4 −3 −2 −1 1 64 1 32 1 16 1 8 1 4 1 2 5 6 ... 0 1 2 3 4 1 2 4 8 16 32 64 . . . log2 y y For more properties of logarithms refer to Section 10.7, page 42. 3 2. Powers Exercises Reduce the expressions below to the form C · a n bm co . . .. All variables are positive numbers. Series A Series B 1. ( p 4 q 2 )3 · ( p 2 q 5 )2 = 2. (−a 5 b2 )4 = (a 3 b)3 1. ( p 3 q 4 )2 · ( p 3 q 2 )4 = 2. (−2cd 4 )3 = 2(3c2 d)2 √ 4. (−3a b)3 = √ √ 5. 2ab2 · 2 a = p 2 p 3 q2 6. p = 4 p3 q (−2c2 d 4 )4 = −2(3c2 d)3 √ 4. (−2ab b)5 = √ p 5. 2ab3 · 3 ab = p 2 p 3 q4 = 6. p p3 q 7. (a 2 b−3 )2 · −3a −7 b−2 = 7. (a −2 b3 )2 · −3a 3 b−2 = 3. 3. 1 1 8. (3a 2 b)− 4 · (6a 3 b2 ) 2 = 1 9. 3a − 3 b2 1 2a 2 b− 3 2 = 9. = 10. (2a)− 4 1 2a − 2 3a − 5 b2 1 2a 3 b− 2 = 1 1 10. 1 8. (3a 2 b)− 3 · (6a 3 b2 ) 4 = 2 4 (−a 3 b2 )4 = (−a 4 b)3 (2a)− 3 1 2a − 2 = Chapter 3 Simplifying Expressions 3.1 Removing Parentheses We have: (a + b)(c + d) = ac + ad + bc + bd. Special forms of this rule are: (a + b)2 = a 2 + 2ab + b2 , (a − b)2 = a 2 − 2ab + b2 , (a − b)(a + b) = a 2 − b2 . Important for factoring a quadratic polynomial: (x + a)(x + b) = x 2 + (a + b)x + ab. Example: • (x + 3)(x − 7) = x 2 − 4x − 21, where −4 is obtained as +3 plus −7 , and −21 as +3 times −7 . √ √ √ • (3a√− 2 b)2 = 9a 2 − 12a b + 4b, where −12a b is twice the product of 3a and −2 b . We also need to reduce expressions involving square roots. Examples: √ √ √ √ 72 = 36 · 2 = 6 2 (factor 72 into a “square” times a number, √ √ 3 3 7 3√ • √ = 7 (multiply both the numerator and denominator with 7). = 7 7 7 • 5 3.1 Removing Parentheses Exercises Reduce the expressions below using the above rules. Make sure to remove all square roots from the denominators. Reduce square roots as much as possible. Series A 1. (3a − b)2 = 1. (−3a + 2b)2 = 2. (−2a 2 + 3a)2 = √ √ 3. (3 6 − 6 3)2 = 2. (2a 3 − 3a)2 = √ √ 3. (3 15 − 2 3)2 = 4. (m − 2n)(3m + n) = √ √ 5. (6 − 2 3)( 3 + 2) = 4. (2m − 3n)(3m + 2n) = √ √ 5. (1 − 2 5)( 5 + 2) = 6. (−3a 2 b3 + 31 a 4 b)2 = √ √ √ √ 7. (−2a 3 + 21)(2a 3 + 21) = 6. (−2a 4 b3 + 41 a 2 b)2 = √ √ √ √ 7. (−2a 3 + 30)(2a 3 + 30) = 8. (2a − b + 1)(3a + 2b − 5) = 2 9. √220 + √35 = 8. (2a − 3b + 1)(3a + 2b − 4) = 2 9. √220 + √345 = 10. (3a − 1)(3a + 1)(9a 2 + 1) = 6 Series B 10. (2a − 1)(2a + 1)(4a 2 + 1) = 3.2 Factoring Polynomials 3.2 Factoring Polynomials When factoring a polynomial the goal is to write the polynomial as a product of as many factors as possible. To do so, first move as many common factors as possible outside the parentheses, and then try to factor the remaining part. Examples: • x 2 + 7x − 44 = x 2 + 11x − 4x − 4 · 11 = (x + 11)(x − 4). Look for two numbers with sum +7 and product −44. • 2x 2 + 4x − 6 = 2(x 2 + 2x − 3) = 2(x 2 + 3x − x − 1 · 3) = 2(x + 3)(x − 1). Look for two numbers with sum +2 and product −3. • x 3 − 3x 2 − 28x = x(x 2 − 3x − 28) = x(x + 4)(x − 7) parentheses. So, first move x outside the • x 4 − 16 = (x 2 + 4)(x 2 − 4) = (x 2 + 4)(x + 2)(x − 2) Here we have the form a 2 − b2 twice. Note: a 2 + b2 cannot be factored any further! • x(x +2)−3(x +2) = (x +2)(x −3) Here you take (x +2) as factor outside the parentheses. • −x 2 − x + 2 = −(x 2 + x − 2) = −(x + 2)(x − 1) parentheses. Here you first take −1 outside the Exercises Factor the following polynomials (using factors with integer coefficients only). Series A. Series B. 1. 16x 4 − 81 = 1. 81x 4 − 16 = 2. 3x 5 − 12x 4 − 63x 3 = 2. 3x 4 − 15x 3 + 12x 2 = 3. x 16 − 1 = 3. x 12 − 16 = 4. x 4 + x 2 − 6 = 4. x 4 − x 2 − 20 = 5. x 2 − 19x + 34 = 5. x 2 − 21x + 38 = 6. x 2 − 15x − 34 = 6. x 2 − 17x − 38 = 7. x(x − 1) − (x − 1) = 7. 2x(x + 1) + 2(x + 1) = 8. x(x 2 − 1) + (x − 1) = 8. x(x 2 − 1) − (x − 1) = 9. (3x − 2)2 − (2x + 3)2 = 9. (5x − 3)2 − (3x + 5)2 = 10. x 6 − 6x 3 + 9 = 10. x 10 + 8x 5 + 16 = 7 3.3 Factoring Polynomials, continued 3.3 Factoring Polynomials, continued The exercises below are also about factoring polynomials. Examples: • 6x 3 − 18x 2 − x + 3 = 6x 2 (x − 3) − (x − 3) = (6x 2 − 1)(x − 3). Here, it turns out that if you take a factor outside parentheses for two terms at a time, these factors happen to coincide, and the polynomial can be split into two factors. • 2x 2 + x − 10. In cases like this, sometimes two number a and b can be found such that 2x 2 +x −10 = (2x +a)(x +b). Here, a times b must be equal to −10 and 2b+a must be equal to +1 . This is satisfied by a = 5 and b = −2, hence: 2x 2 + x −10 = (2x +5)(x −2). Exercises Factor the following polynomials (using factors with integer coefficients only). Series A. 1. 3x 2 − 20x + 12 = 1. 3x 2 − 14x + 15 = 2. 2x 2 + 7x + 6 = 2. 2x 2 + 9x + 9 = 3. 3x 4 − 11x 2 + 6 = 3. 3x 4 − 13x 2 + 12 = 4. −2x 2 + 7x + 15 = 4. −2x 2 + x + 21 = 5. 2x 4 − x 2 − 3 = 5. 2x 4 + 2x 2 − 4 = 6. x 3 − 4x 2 − x + 4 = 6. x 3 − 8x 2 − x + 8 = 7. 2x 3 − 6x 2 + x − 3 = 7. 3x 3 − 12x 2 + 2x − 8 = 8. x 3 + 5x 2 − 4x − 20 = 8. 3x 3 + 15x 2 − 4x − 20 = 9. −3x 3 + 6x 2 + 2x − 4 = 9. −2x 3 + 4x 2 + 3x − 6 = 10. x 7 + 2x 4 − 15x = 8 Series B 10. x 8 − 4x 5 − 12x 2 = Chapter 4 Fractions numerator , does not exist if the denominator is equal to 0, and it is indeterminate denominator if both the numerator and the denominator are equal to 0. Assume throughout this chapter that denominators are 6= 0. We have the following rules: A fraction, ab b = ac c a c ad bc ad + bc + = + = b d bd bd bd a c ac · = b d bd a d ad c d a c : = · = So, to divide by a fraction , multiply by its reciprocal . b d b c bc d c Simplify fractions by factoring its numerator and denominator. Examples: • • • a 2 + ab ab + b2 = b−a a−b = a(a + b) b(a + b) = −(a − b) a−b = −1 a b a 2 − b2 (a − b)(a + b) a−b = = 2 2 2 a + 2ab + b (a + b) a+b For the exercises below you need to write your answer as a single fraction. This is called “finding a common denominator”. Examples: • 1 2 2x − 3 2(x − 1) 2x − 3 − 2(x − 1) − = − = = x − 1 2x − 3 (x − 1)(2x − 3) (x − 1)(2x − 3) (x − 1)(2x − 3) 1 − (x − 1)(2x − 3) 9 4. Fractions • 1 3 x 3(x − 2)2 x − 3(x 2 − 4x + 4) − = − = = (x − 2)3 x(x − 2) x(x − 2)3 x(x − 2)3 x(x − 2)3 −3x 2 + 13x − 12 x − 3x 2 + 12x − 12 = x(x − 2)3 x(x − 2)3 Remarks on the above example: - Use the least common denominator, as this simplifies calculations considerably. Compare 1 8 1 17 this to 24 + 12 = 24 + 16 = 24 , where using 24 · 12 as denominator instead of 24 would also 24 complicate calculations. - Make sure to carefully multiply −3 with all terms of x 2 − 4x + 4 between the parentheses. - Usually, parentheses do not need to be removed from the denominator. Sometimes, the resulting fraction can be reduced further by also factoring the numerator. Exercises Series A. 1. 3 x + = 2x − 1 x + 1 2. √ 3. 1 1 +√ = x −1 x +1 3 1 + = x −1 x +3 1. 2 2x − = 2x − 1 x + 1 1 1 +√ = 2. √ 2x − 3 2x + 3 3. x2 x 2 + = − 3 2x + 3 4. −3 6x − = 1−x x +3 4. −3 6x + = 1−x x +2 5. 13 5 − = 2x + 3 x + 1 5. 7 5 − 2 = 2x + 3 x + 1 6. x 3 − = x − 2 2x − 4 6. x 3 − = x + 3 2x + 6 7. − x2 x 2 + = − 3 2x + 1 7. − x 2x + = x − 3 2x + 1 8. 1 2x − x + 1 (x + 1)3 8. 1 2x + x − 1 (x − 1)3 9. 1 1 1 + = + 2 x − 1 (x − 1) x +1 9. 1 1 1 + 2 + = x − 1 (x − 1) x + 1 10. 1 − 10 Series B. 1 3 + = 2x x +3 10. 1 − 2 3 + = x x −3 Chapter 5 Trigonometry The trigonometric functions sine, cosine, and tangent are introduced in terms of ratios of sides in right-angled triangles. This covers the case of angles between 0◦ and 90◦ . We have: tangent(x) = sine(x) / cosine(x). A natural generalization to arbitrary angles is obtained by using the unit circle. We define: A point P on the unit circle has x-coordinate cos(α) and y-coordinate sin(α), so P = (cos(α), sin(α)), or in a slightly different notation P = (cos α, sin α). y 1 P : Hcos Α, sin ΑL Α O 1 x We then have in general: tan α = sin α cos α and sin2 α + cos2 α = 1. Note that the second identity corresponds to Pythagoras’ theorem. The angle α is commonly measured in radians. In this case α is equal to the length of the arc on the unit circle corresponding to the angle α. For instance, 2π rad corresponds to 360◦ . Throughout this syllabus, we measure angles in radians. 11 5. Trigonometry Exact values of the sine, cosine, and tangent can be given for some special angles. These values can be found using the triangles depicted below. The table list these values for angles between 0 and 12 π . It is strongly recommended that you memorize this table. 1 π 4 1 π 6 2 √ 3 1 2 1 π 4 1 π 2 1 π 2 1 π 3 √ x 0 1 π 6 sin x 0 1 2 cos x 1 tan x 0 √ 1 3 2 √ 1 3 3 1 π 4 √ 2 √ 1 2 2 1 2 1 1 π 3 1 2 √ 3 1 2 √ 3 1 π 2 1 0 und. 1 1 Note that tan x is undefined (und.) for x = 21 π. For angles exceeding 12 π the corresponding trigonometric function values can be derived directly from the definitions. Example: • The coordinates of point Q which corresponds to an angle 76 π can be derived from the coordinates of point P corresponding to an angle of 16 π. 1 P 7Π 6 Π 6 O Q Therefore sin 67 π = − sin 16 π = − 21 √ cos 76 π = − cos 16 π = − 21 3 tan 67 π = sin 76 π cos 76 π = √ − 12 1 = 3 √ 3 − 12 3 We call this “reducing an angle to the first quadrant”. 12 1 5. Trigonometry Another type of question goes like this: √ Given: sin α = − 12 3. How large is α, under the restriction that 0 6 α < 2π? 1 0 1 1 !!! - 3 2 Use the unit circle By √ definition, sin α is equal to the y-coordinate of a point on the unit circle. Since − 21 3 is negative, we know that the y-coordinate is negative. The y-coordinate is negative in the third and fourth quadrant, so that is where angle α is to be found. Recall that: √ sin 31 π = 21 3. √ From the figure and the above table one can readily see that sin α = − 12 3 corresponds to angles π + 13 π and 2π − 13 π. Thus the answer is: α = 43 π ∨ α = 53 π . 13 5. Trigonometry Exercises Find the values of the following trigonometric expressions. Reduce angles to the first quadrant and use the above table. Series A Series B 1. sin( 43 π ) = 1. cos( 43 π ) = 2. tan(− 14 π ) = 2. sin(− 41 π ) = 3. cos( 56 π ) = 3. tan( 56 π ) = 4. sin( 23 π ) = 4. cos( 32 π ) = π) = 5. tan( 85 4 π) = 5. sin(− 85 4 6. sin( 32 π ) = 6. tan( 32 π ) = 7. cos(− 74 π ) = 7. sin(− 47 π ) = 8. tan( 65 π ) = 8. cos(− 56 π ) = 9. cos( 23 π ) = 9. tan( 32 π ) = π) = 10. sin( 37 4 π) = 10. sin( 34 3 14 Chapter 6 Trigonometric Identities The following identities can easily be found using the definition in terms of the unit circle: sin2 x + cos2 x = 1, sin(−x) = − sin x, sin(π − x) = sin x, sin x = cos( 12 π cos(−x) − x), = cos x, tan(−x) cos(π − x) = − cos x, cos x = sin( 12 π − x) = − tan x tan(π − x) = − tan x The following formulas are given without proof. These formulas are strongly connected. For instance, if you start from one formula you can find the other ones by using the simple identities above: sin(x + y) = sin x cos y + cos x sin y sin(x − y) = sin x cos y − cos x sin y cos(x + y) = cos x cos y − sin x sin y cos(x − y) = cos x cos y + sin x sin y tan x + tan y tan(x + y) = 1 − tan x tan y tan x − tan y tan(x − y) = 1 + tan x tan y sin 2x = 2 sin x cos x cos 2x = cos2 x − sin2 x = 2 cos2 x − 1 = 1 − 2 sin2 x 2 tan x tan 2x = 1 − tan2 x 15 6.1 Basic Formulas 6.1 Basic Formulas Exercises 1. Derive the formula for sin(x + y) from the formulas for sin(x − y), cos(x + y), and cos(x − y). 2. Derive: tan(x + y) = tan x + tan y , 1 − tan x tan y tan(x − y) = tan x − tan y . 1 + tan x tan y and 3. Derive from the formulas for sin(x + y), cos(x + y), and tan(x + y): • sin 2x = 2 sin x cos x • cos 2x = cos2 x − sin2 x = 2 cos2 x − 1 = 1 − 2 sin2 x 2 tan x • tan 2x = 1 − tan2 x 4. For an angle x ∈ [0, 12 π] we have: cos x = 1 2 √ 2. Find cos(x − 61 π ). 5. For an angle x ∈ [ 12 π, π] we have: cos 2x = 13 . Find sin x. 6. For an angle x ∈ [0, 12 π] we have: cos x = 43 . Find tan 2x. 7. Simplify as much as possible sin2 x cos2 x + cos2 x + sin4 x. 8. Simplify as much as possible 2(cos2 x − sin2 x)2 tan(2x). 16 6.2 Factoring 6.2 Factoring Exercises Use the formulas at the start of this chapter: Series A Series B 1. Factor: sin x + sin 2x = 1. Factor: 2 sin2 x − sin 2x = 2. Factor: 2. Factor: cos 2x − cos2 x = sin(x + y) + sin(x − y) = 3. Factor: 1 − sin 2x − sin2 x = 4. Factor: cos 2x + 7 = 3. Factor: cos 2x + sin2 x = 4. Factor: 1 + sin 2x − cos2 x = 5. Factor: sin2 x − sin x − 6 = 5. Factor: cos 2x − 1 = 6. Factor: cos2 x + 3 sin x + 9 = r 6. Factor: sin2 x − 5 sin x + 4 = 7. Eliminate the square root: 7. Factor: sin2 x + 5 cos x + 5 = 8. Find the exact value of sin 18 π. 8. Find the exact value of cos 18 π . 9. Simplify 2 9. Simplify 2 cos x cos x − . 1 − sin x 1 + sin x 10. f (x) = 1 − cos 2x − sin2 x can be written as f (x) = a + b cos(cx). Determine a, b en c. 1 − cos x = 1 + cos x cos4 x − 2 cos2 x sin2 x + sin4 x. 10. f (x) = 3 cos2 x − sin2 x can be written as f (x) = a + b cos(cx). Determine a, b en c. 17 6.3 Proofs 6.3 Proofs Exercises Use the formulas at the start of this chapter: Series A Series B 1. Show that cos2 12 x = 1 2 + 12 cos x. 2. Show that cos4 x − sin4 x = cos 2x. 3. Show that cos4 x + 12 sin2 2x + sin4 x = 1. 4. Show that cos2 x(1 + tan2 x) = 1. sin 2x 5. Show that tan x = . 1 + cos 2x 6. Show that tan x + tan y sin(x + y) = . tan x − tan y sin(x − y) 7. Show that tan2 x − sin2 x = tan2 x · sin2 x. 8. Show that tan x − 1 = sin2 x − cos2 x. tan2 x + 1 2 9. Show that tan( 14 π + x) = 1 + tan x . 1 − tan x 10. Show that 2 cos2 x − cos 2x = 1. 18 1. Show that sin2 21 x = 1 2 − 12 cos x. 2. Show that cos4 x(1 − tan4 x) = cos 2x. 3. Show that 4 sin2 x − 4 sin4 x = sin2 2x. 4. Show that cos4 x(1 + tan4 x) = 1 − 2 sin2 x cos2 x. 5. Show that tan x = 1 − cos 2x . sin 2x 6. Show that 1 + tan x tan y cos(x − y) = . 1 − tan x tan y cos(x + y) 7. Show that sin 2x − tan x = tan x cos 2x. 8. Show that sin 2x 1 − cos 2x = . 1 + cos 2x sin 2x 9. Show that tan( 14 π +x)+tan( 41 π −x) = cos2 2 . x − sin2 x 10. Show that 2 cos x − sin x cos x + sin x + = . cos x + sin x cos x − sin x cos 2x Chapter 7 Differentiation If a function f assigns the value f (x) to x, we also call f (x) the mapping rule. The graph of f is the curve in the (x, y)-plane given by the equation y = f (x). We will often use a function f , a mapping rule f (x), and the equation y = f (x) interchangeably, even though this is sloppy use of terminology. Under certain conditions we can take the derivative of a function f (x). In terms of the graph of f , the derivative f 0 (x) is equal to the slope of the tangent at x to the graph y = f (x). The derivative of y = f (x) with respect to x is denoted as f 0 (x) or 7.1 d f (x) or dx d f (x) dx or y0 or dy . dx Derivatives of Elementary Functions d n x dx d x e dx d ln x dx d x a dx d sin x dx d cos x dx d tan x dx = nx n−1 , = ex , = 1 , x = a x ln a, = cos x, = − sin x, = 1 = 1 + tan2 x, cos2 x 19 7.2 Differentiation Rules 7.2 Differentiation Rules We use the following rules to calculate derivatives: f (x) = u(x) + v(x) f (x) = cu(x) f (x) = u(x)v(x) t (x) f (x) = n(x) ⇒ f 0 = u 0 + v0 0 ⇒ f = cu 0 0 (Sum Rule) 0 (Rule for Constant Multiples) 0 ⇒ f =uv+vu nt 0 − tn 0 ⇒ f0 = n2 (Product Rule) (Quotient Rule) Given functions f (u) and u(x), the derivative with respect to x of the composite function y = f (u(x)) is equal to the derivative of f with respect to u multiplied by the derivative of f with respect to u: dy dy du = · dx du dx (Chain Rule) Examples: • Calculate the derivative of the function y = 6(3x 2 − 2)2 . Define: u(x) = 3x 2 − 2. Then we need to differentiate y = 6u 2 with respect to u and multiply the result by the derivative of u = 3x 2 − 2 with respect to x. We have: dy du = 12u and du dx = 6x. So dy dy du = · = 12u · 6x = 12(3x 2 − 2) · 6x. dx du dx Hence: y 0 = 72x(3x 2 − 2) • y = 3(x 2 − x)5 ⇒ y 0 = 15(x 2 − x)4 (2x − 1). Useful to memorize: y = u n ⇒ y 0 = nu n−1 · u 0 1 1 y= ⇒ y0 = − 2 · u0 u u √ 1 0 y = u ⇒ y = √ · u0 2 u 1 y = ln u ⇒ y 0 = · u 0 u 20 7.2 Differentiation Rules Examples: • y = 4(3x 2 − 1)2 ⇒ y 0 = 8(3x 2 − 1) · 6x = 48x(3x 2 − 1) • y= √ 1 3 6x − 1 ⇒ y 0 = √ ·6= √ 2 6x − 1 6x − 1 • y= 3 3 18x 2 0 2 ⇒ y = − · 6x = − 2x 3 − 1 (2x 3 − 1)2 (2x 3 − 1)2 • y = ln(1 − x) ⇒ y 0 = • y = 3x 2 −5 ⇒ y 0 = 3x 1 1 1 · −1 = − = 1−x 1−x x −1 2 −5 · ln 3 · 2x = 2x · ln 3 · 3x 2 −5 • y = (2 sin2 x − 1)3 ⇒ y 0 = 3(2 sin2 x − 1)2 · 4 sin x · cos x = 12 sin x cos x · (2 sin2 x − 1)2 21 7.2 Differentiation Rules Exercises Find the derivatives of: Series A Series B 1. y = −3(1 − 2x)5 2. y = √ x x2 −1 3. y = 3 5 − x2 4. y = 3 (3x − 1)3 5. y = 6 · 32x−1 6. y = 2 ex 2 −1 7. y = x ln(3x + 4) x 8. y = ln x +1 9. y = x 3 · 22x √ 10. y = 3x 3x − 1 11. y = ln x 1 − ln x 12. y = (x 2 − 3x) · ex 13. y = tan3 x 14. y = sin x − cos x sin x + cos x 15. y = sin x cos2 x − 1 22 1. y = 2x ln 3x ln x x √ 3. y = sin 2x 2. y = 1 4. y = √ 3x 2 + 1 5. y = x 2 − 7x − 8 x2 − 1 6. y = sin2 (2x − 61 π ) ln2 x sin x x 8. y = √ 2 x +1 √ 9. y = ln( 3x − 1) 7. y = 2 10. y = e2 sin 11. y = x−1 ex +1 ex 12. y = ln4 x 13. y = sin2 x · cos x sin x 1 − cos x cos x 15. y = cos2 x − 1 14. y = Chapter 8 Antiderivatives Antiderivatives play an essential role in integral calculus. Taking antiderivatives is the reverse operation of taking derivatives. Knowledge of differentiation is therefore required. Elementary formulas (with a 6= 0, n 6= −1, and c a constant of integration): Z a ax n dx = x n+1 + c n+1 Z ax −1 dx = a ln |x| + c Z 1 eax dx = eax +c a Z 1 sin(ax) dx = − cos(ax) + c a Z 1 cos(ax) dx = sin(ax) + c a Z 1 1 (ax + b)n dx = · (ax + b)n+1 + c a n+1 Z 1 1 dx = ln |ax + b| + c ax + b a Z 1 dx = tan x + c cos2 x Always make sure to check the antiderivative by differentiating it. 23 8. Antiderivatives Exercises Find the antiderivatives of the following functions. Series A Series B 1. (2x − 1)3 1. (3x + 2)3 2. (5 − x)2 √ 3. 3x − 4 2. (8 − 2x)2 √ 3. 2x − 3 4. 1 (2x + 3)4 5. sin 2(x − 16 π ) 6. √ 7. x +3 x2 + 1 x 1 (2x − 1)5 5. cos 12 (x − 31 π ) 6. √ 7. 2 x −5 x3 − 1 x 8. sin x + e3x 8. cos 2x + e2x 9. tan2 x 9. tan2 x + 2 10. 24 1 4. 2 3 − 2x 10. 3 2 − 3x Chapter 9 Graphing Functions The goal of the exercises below is to sketch the graphs of the given functions without using any electronic tools. The scales used for the x-axis and the y-axis do not have to be the same. Each time choose the domain such that the properties of the graph are clearly visible, such as points of intersection with the axes, asymptotes, periods, and so on. Also put values next to the points of intersection and asymptotes if these values can be calculated easily. From the graph of y = f (x) one can obtain the graphs of related functions by scaling the axes and by horizontal or vertical shifts. the graph of: a · f (x) is obtained from the graph of f (x) by multiplying the y-value by a f (x/b) „ multiplying the x-value by b f (x − c) „ shift it c units to the right f (x) + d „ shift it d units upward Note the order in which these steps are applied: If we want to construct the graph of y = a· f x − c +d b from the graph of y = f (x), then we have apply this order: first scale, then shift. 25 9. Graphing Functions Elementary Functions 4 3 2 2 2 y=x 1 1 0 0 −2 −1 0 1 y = |x| 1.5 2 1 y = √x 0.5 0 0 2 1 2 3 4 5 −0.5 −2 −1 0 1 2 5 2 4 2 y = exp(x) 3 1 1 2 0 0 1 y = x3 −1 y = ln(x) −1 0 −2 0 −2 2 0 1 2 3 4 5 −2 −2 y = sin(x) −1 0 1 y = cos(x ) 1 1 0 0 −1 −1 0 0.5π π 1.5π 2π 2.5π 3 0 0.5π 1 π 1.5π 2π 5 2 y = tan(x) y = 1/x 0 0 −1 −2 −3 26 2 −2 0 2 −5 −π 0.5π 0 0.5π π 1.5π 2π 2.5π 9. Graphing Functions The graph of y = tan(x) (see previous page) has the following properties: • periodic with period π; • zeros at x = kπ, k ∈ Z; • asymptotes at x = 12 π + kπ, k ∈ Z. Example of scaling and shifting: • The graph of y = tan 2(x − 14 π ) is obtained from the graph of y = tan x by shrinking the x-value by a factor of 2 (the period changes from π to 21 π) and shifting it by 14 π to the right. 2 1 0 −1 −2 − 34 π − 21 π − 41 π 0 1 π 4 1 π 2 3 π 4 27 9. Graphing Functions Exercises Series A Series B 1. f (x) = (x + 2)4 1. f (x) = 1 x 2. f (x) = (x − 2)2 + 3 2. f (x) = 4 x −2 3. f (x) = −x 3 + 8 3. f (x) = 3 + 4. f (x) = x 2 + 6x + 9 5. f (x) = 6(x + 1)5 Series C 4. f (x) = 3 x2 5. f (x) = 4 (2 − x)2 Series D 1. f (x) = 2x 1. f (x) = log2 x 2. f (x) = ( 12 )x + 3 2. f (x) = log2 (x + 2) 3. f (x) = 2x−2 + 1 3. f (x) = log x 2 4. f (x) = 3−x − 1 4. f (x) = 2 log x 5. f (x) = ex−1 5. f (x) = ln(x − e) Series F Series E 2. 3. 4. 5. √ x +2 √ f (x) = 4 − 2 x √ f (x) = 2 + x + 4 √ f (x) = 3 x √ 6 f (x) = x 2 − 1 1. f (x) = 28 1 x −3 1. f (x) = sin 3x 2. f (x) = 2 cos π x 3. f (x) = 12 + 8 sin 31 π(x − 1) 4. f (x) = sin2 x 5. f (x) = tan 12 (x + 14 π ) Chapter 10 Equations and Inequalities 10.1 Polynomial Equations The following rules apply when solving equations: ⇔ ⇔ ax = −b • A · B · C · .... = 0 ⇔ A = 0 ∨ B = 0 ∨ C = 0 ∨ .... • A2 = B 2 ⇔ A = B ∨ A = −B • A· B = A·C ⇔ A=0 ∨ B=C • Quadratic equation: ax + bx + c = 0 ⇔ x = 2 x =− b a • ax + b = 0 −b ± √ b2 − 4ac (quadratic formula) 2a We do not need to use the quadratic formula in simple cases such as ax 2 + c = 0, ax 2 + bx = 0, x 2 + 2bx + b2 = 0, or when the expression can easily be factored: 2x 2 +4x −6 = 2(x 2 +2x −3) = 2(x 2 −x +3x −3·1) = 2(x −1)(x +3) = 0 ⇔ x = −3 ∨ x = 1. Also completing the square1 may be a useful option: √ √ x 2 + 2x − 4 = (x 2 + 2x + 1) − 5 = (x + 1)2 − 5 = 0 ⇔ x + 1 = ± 5 ⇔ x = −1 ± 5. In general, polynomial equations can be written in the form (with n a positive integer): an x n + an−1 x n−1 + an−2 x n−2 + . . . + a1 x + a0 = 0. Solutions may sometimes be found by factoring the polynomial. 1 Note: the quadratic formula can be derived by completing the square: h i b x + ( b )2 − b 2 + c = a x + b 2 − b2 −4ac = 0. ax 2 + bx + c = a x 2 + ab x + ac = a x 2 + 2 2a a 2a 2a 2a (2a)2 29 10.1 Polynomial Equations Examples: • Solve: x 5 − 4x 3 − 27x 2 + 108 = 0 x 3 (x 2 − 4) − 27(x 2 − 4) = 0 (x 3 − 27)(x 2 − 4) = 0 (x 3 − 27)(x − 2)(x + 2) = 0 x = 3 ∨ x = 2 ∨ x = −2 • Solve: (x 2 − 14)(x + 4) = 5x(x + 4): (x 2 − 14)(x + 4) − 5x(x + 4) = 0 (x 2 − 14 − 5x)(x + 4) = 0 (x + 2)(x − 7)(x − 4) = 0 x = −2 ∨ x = 7 ∨ x = −4 • Solve: (x − 4)(x 2 + 8x + 12) = (2x + 3)(x 2 + 8x + 12): x 2 + 8x + 12 = 0 ∨ x − 4 = 2x + 3 (x + 6)(x + 2) = 0 ∨ − x = 7 x = −6 ∨ x = −2 ∨ x = −7 Exercises Solve the following equations: Series A 1. 2x 2 + 7x − 4 = 0 1. 3x 2 + 7x − 6 = 0 2. x 4 + 6 = 7x 2 2. x 4 = 2x 2 + 24 3. x 3 + 6x = 7x 2 3. x 4 − 24x 2 = 10x 3 4. x 4 − 42 = x 2 4. x 4 − 12 = x 2 5. x 4 − 39x 2 = 10x 3 5. x 4 − 33x 2 = 8x 3 6. x 3 − 3x 2 = (x − 3)(x + 20) 6. x 3 + x 2 = (x + 1)(x + 2) 7. (x − 2)3 = x − 2 7. 3x 2 + 4x − 4 = 0 8. 3x 3 − x 2 − 12x + 4 = 0 8. x 3 − 3x 2 = (x − 3)(x + 12) 9. (x 2 − 4)(x + 3) = (x − 2)(4 − x 2 ) 9. (x 2 − 4)(x − 3) = (x + 2)(x − 3) 10. x 6 − 4x 4 = 4x 2 − 16 30 Series B 10. 3(x − 1)2 (x + 1) = (x + 1)2 10.2 Polynomial Inequalities 10.2 Polynomial Inequalities Basic rules (assume a > 0) • A6B • A2 6 a A2 > a ⇔ A−C 6 B −C ⇔ aA 6 aB ⇔ √ √ − a6A6 a √ √ A6− a ∨ A> a ⇔ ⇔ −a A > −a B (inequality is reversed) Analogously for > and <. Examples: 4 3 as dividing or multiplying by a negative number reverses the inequality. Note: −3x + 8 < 4 0<x <y x <y<0 x <0<y ⇔ ⇔ ⇔ ⇔ − 3x < −4 0< 1 y 1 x < 1 y 1 x < ⇔ x> 1 x <0 <0< 1 y In all these cases we multiply by (x y)−1 . In the first two cases this is positive, while in the last case it is negative hence the inequality is reversed. For a quadratic inequality the solution set may consist of one or two intervals: √ √ x2 6 5 ⇔ − 5 6 x 6 5 √ √ x2 > 5 ⇔ x < − 5 ∨ x > 5 If the graph can be sketched quickly, one can also first solve the equation and then read out the solution to the inequality from the graph. Also take the domain into account. In more advanced cases of polynomial inequalities a sign chart is a useful tool. By means of + and − signs on the real line, sign charts show where a function is positive or negative. On the real line, we also indicate where the function is equal to zero. Sign changes only take place at the zeros on the real line. Two example sign charts: • f (x) = (x + 3)(x − 1)(x − 2) has sign chart: − 0 −3 + 0 1 − + 0 2 Evaluate the value of f (x) at simple values for x (other than the zeros). If the function value is positive (or negative) then the same holds everywhere between the neighboring zeros. At each zero on the real line, the sign changes. 31 10.2 Polynomial Inequalities • g(x) = (x + 3)3 (x − 1)(x − 2)2 has sign chart: + − 000 0 −3 + + 00 1 2 At −3 on the real line 0 is written three times to represent the solution to (x + 3)3 = 0, that is (x + 3)(x + 3)(x + 3) = 0. We call this a triple zero (or root). This also means that the sign changes three times, since the sign changes once for each zero. So, if g(x) is positive for x < 3 then g(x) will be negative for x > −3. At 2 on the real line 0 is written twice as (x − 2)2 can be written as (x − 2)(x − 2). Therefore the sign changes twice, which amounts to no change in sign at 2. Hence, at a zero of multiplicity n there is no change in sign if n is even, and the sign changes if n is odd. Examples • Solve: x 3 + 8x 6 6x 2 . First rewrite as: x 3 − 6x 2 + 8x 6 0. Next factor the left-hand side: x(x 2 − 6x + 8) = 0 x(x − 2)(x − 4) = 0 − 0 Sign chart: + 0 0 − 2 0 + 4 Hence the solution is: x 6 0 ∨ 2 6 x 6 4 or, in terms of intervals: (−∞, 0] ∪ [2, 4] • Solve x(x + 3)3 (x − 2)2 > (x + 3)3 (x − 2)2 x(x + 3)3 (x − 2)2 − 1(x + 3)3 (x − 2)2 > 0 (x − 1)(x + 3)3 (x − 2)2 = 0 + Sign chart: Hence the solution is: x 6 −3 ∨ x > 1 000 −3 or, in terms of intervals: (−∞, −3] ∪ [1, ∞) 32 − 0 1 + + 00 2 10.2 Polynomial Inequalities Exercises Solve the following inequalities: Series A Series B 1. x 2 6 25 1. x 2 > 16 2. (x − 3)2 > 1 2. 9x 2 6 16 3. (x − 2)2 6 3. (x − 2)2 > 1 4 1 9 4. 8 < x 2 + 2x 4. 15 < x 2 + 2x 5. 3(x + 1) − 2(2x + 3) > −(x − 2) 5. 3(x − 1) − 2(2x + 3) > 5(x − 2) 6. 35 < x 2 + 2x 6. x 2 − 1 > 9 − 3x 7. (x 2 − 4)(x − 4)2 6 0 7. (x 2 − 9)(x − 3)2 6 0 8. 3(x + 1) − 2(2x + 3) > 5(x − 2) 8. x 2 (3x − 5) − (2x + 3)(3x − 5) > 0 9. (x 2 − 7x + 12)(x 2 + 2x − 24) 6 0 9. (x − 1)(x − 2)2 (x − 3)3 > 0 10. x 6 − 9x 3 + 8 6 0 10. 3x 3 − 12x > x 4 − 4x 2 33 10.3 Equations Involving Fractions 10.3 Equations Involving Fractions The following rules apply when solving equations: • A =0 B ⇔ A = 0 ∧ B 6= 0. • A C = B D ⇔ A · D = B · C ∧ B 6= 0 ∧ D 6= 0 (cross-multiplication) Cross-multiplication and finding common denominators are important techniques when solving equations involving fractions. Make sure to check the solutions found, as the denominators should all be different from 0! Examples: • 2x + 8 x +5 = 3x − 6 5 Cross-multiplication yields: (3x − 6)(x + 5) = 5(2x + 8) 3x 2 + 9x − 30 = 10x + 40 3x 2 − x − 70 = 0 3x(x − 5) + 14(x − 5) = 0 (3x + 14)(x − 5) = 0 ∨ x = 5 (all solutions are valid) x = − 14 3 • x 2 − 3x + 2 =5 x −2 We obtain: x 2 − 3x + 2 = 5x − 10 x 2 − 8x + 12 = 0 (x − 2)(x − 6) = 0 x = 2 ∨ x = 6 (solution x = 2 is invalid) x =6 34 10.3 Equations Involving Fractions • 6 5 + =3 x −1 x +1 We obtain: 6(x + 1) + 5(x − 1) =3 (x − 1)(x + 1) 11x + 1 =3 x2 − 1 11x + 1 = 3x 2 − 3 3x 2 − 11x − 4 = 0 3x 2 − 12x + x − 4 = 0 3x(x − 4) + 1(x − 4) = 0 (x − 4)(3x + 1) = 0 x = − 13 ∨ x = 4 (all solutions are valid) Exercises Solve the following equations: Series A 1. 2. 3 2 = x +1 x +2 x −3 x −3= x −1 x +2 Series B 1. 2. x 2 + 3x − 2 =4 x +1 3x 2 + 5x − 2 =2 x 2 + 3x + 2 3. x −3 x −1 −2= x −1 x −3 3. 4. x 3 − 4x 2 =3 x −4 4. 5. 1 1 −2= x2 x 3x 3 + 6x =2 x2 + 2 5. 4 4 + =3 x2 x 6. 3 +x =4 2x − 1 6. 3x − 1 −3= x x −5 x x 7 − =− x −4 x +3 2 3x 2 + 6x + 1 =2 x2 + 2 7. 2x + 3 x + 1 − =7 x x −2 7. 8. 2x − 1 x 2 − 3 + =2 5 2x 8. 9. 1 x +8 = 3 (x + 1)2 x +2 x2 − 4 1 − =1 2 x +4 x −3 9. x 2x + =3 x −1 x +2 10. 3x − 4 x2 + =2 2 x +2 10. 1 1 1 + 2 − 3 =1 x x x 35 10.4 Inequalities Involving Fractions 10.4 Inequalities Involving Fractions Fractions may change in sign not only at zeros of the numerator, but also at zeros of the denominator. Sign charts therefore indicate both the zeros of the numerator (0) and the zeros of the denominator (×). The function is undefined for the zeros of the denominator. Example • 2 5 − 61 x −1 x +3 2(x + 3) 5(x − 1) (x − 1)(x + 3) − − 60 (x − 1)(x + 3) (x − 1)(x + 3) (x − 1)(x + 3) −x 2 − 5x + 14 60 (x − 1)(x + 3) (x + 7)(x − 2) >0 (x − 1)(x + 3) Sign chart: + 0 − −7 so x 6 −7 ∨ − 3 < x < 1 ∨ x > 2 . X −3 + X 1 − + 0 2 Again: if a zero of the numerator (0) or the denominator (×) occurs an even number of times, the sign of the function does not change. 36 10.4 Inequalities Involving Fractions Exercises Solve the following inequalities involving fractions. Series A Series B x −3 <0 − 3x − 28 1. x 2 − 2x − 15 60 x 2 + 4x + 3 1. 2. 1 >0 x 2 − 3x − 28 2. 3. 5 2 − 63 2x + 1 x − 3 3. 1 1 1 − 2 − > −1 3 x x x 4. x2 2x 2 − > −3 2x + 3 x + 2 4. x 6 + 62 2x − 5 x + 1 5. (x 2 − 1)(x + 3) 60 (x + 1)(x − 3)2 5. 6. 3x 2x − 5 > 2x − 1 x −2 x −2 x −1 6 +1 x x −3 x2 10x >1 +x x3 6. x x −3 −16 x +4 3 7. 3x − x 2 61 2x − 2 7. 8. 1 1 1 − <1 + 2 x − 1 (x − 1) (x − 1)3 x 2 − 4x + 3 5 > 2 x − x − 12 6 8. 9. x 2 − 2x − 15 −1>0 x 2 − 4x + 3 3 x + >1 3x − 1 2x + 1 9. 10. 2x + 3 3x − 8 −2> x x −2 10. x3 x 1 > − 2x 2 24 3 7 − < x +3 x −4 6 37 10.5 Exponential Equations 10.5 Exponential Equations For the exercises below you are required to reduce the given equation to an exponential equation, that is, an equation of the form a expression in x = a number with a > 0. Since a x is an increasing function (if a > 1) or a decreasing function (if a < 1), one can simply equate the exponents. Subsequently, solve the resulting equation. Use the rules for exponents, for example 4x = (22 )x = (2x )2 = 22x . Examples • ex+1 = 1 x−6 e ex+1 = e−1·(x−6) x + 1 = −x + 6 2x = 5 x = 2 12 • 2x+3 − 3 · 2x = 80 23 · 2x − 3 · 2x = 80 8 · 2x − 3 · 2x = 80 5 · 2x = 80 2x = 16 = 24 x =4 • 2x + 23−x = 6 2x + 8 · 2−x = 6. Suppose 2x = a, then a + 8 · a −1 = 6 a 2 − 6a + 8 = 0 (a − 2)(a − 4) = 0 a=2 ∨ a=4 2x = 2 ∨ 2x = 4 x =1 ∨ x =2 38 10.5 Exponential Equations Exercises Solve the following exponential equations. Series A Series B 2. ex+1 = ( e1 )x−2 1. 3x+3 = 6 + 3x+2 √ 2. 9x = 13 3 3. 3x+3 = 2160 + 3x−1 3. 3x+2 + 3x−1 = 4. e2x −12 · ex +25 = 0 4. 4 · 3x+1 − 32x = 27 5. 2x+3 = 60 + 2x−1 5. 1. 2x+1 + 2x+3 = 320 6. 163x+3 = 8x 2 +4 1 2 28 27 ex = 5 − e2x 6. 4 · 32x+1 − 33x = 3x+3 8. 33x − 2 · 32x+1 = 3x+3 7. 2log3 x = 41 √ 8. ( 13 3)x = 9 9. 2x + 23−x = 6 9. 6 · ( 14 )x = 23 ( 12 )x 7. 22x + 64 = 2x+4 10. ex = 2 · e−x +1 10. 600 · (0.4)x = 150 · (0.8)x 39 10.6 Exponential Inequalities 10.6 Exponential Inequalities For exponential inequalities you must be careful with bases smaller than 1. For instance, 2x > 24 ⇔ x > 4 but ( 21 )x > ( 21 )4 ⇔ x < 4. You may reach the same conclusion as follows: (2−1 )x > (2−1 )4 ⇔ 2−x > 2−4 ⇔ − x > −4 ⇔ x < 4. Examples √ • Solve: 5x−1 + 5x−2 > 6 5 √ 1 5x−1 + 5x−2 > 6 5 ⇔ 5x · 5−1 + 5x · 5−2 > 6 · 5 2 . Multiply both sides by 52 : 5 5 5 5 · 5x + 5x > 6 · 5 2 ⇔ 6 · 5x > 6 · 5 2 ⇔ x > . 2 • Solve: 3x + ( 13 )x−3 6 12 3x + ( 13 )x−3 6 12 ⇔ 3x + (3−1 )x−3 6 12 ⇔ 3x + 33−x 6 12 and 3x + 33 · 3−x 6 12 ⇔ 3x + 27 6 12. 3x Assume 3x = a and note that therefore a > 0 ! a+ 27 6 12 ⇔ a 2 + 27 6 12a. a This is valid because a > 0. a 2 − 12a + 27 6 0 ⇔ (a − 3)(a − 9) 6 0 ⇔ 3 6 a 6 9 Hence 31 6 3x 6 32 ⇔ 1 6 x 6 2. 40 10.6 Exponential Inequalities Exercises Solve the following exponential inequalities. Series A. Series B 1. ( 12 )2x−1 < 8 1. 1 − ( 12 )2x−2 > 0 2. 3 + 2x 6 2x+2 − 3 2. 9x + 3x+1 > 18 3. (2x − 4)(2x − 8) > 0 3. 4. 8x−1 > ( 41 )x 5. 2 + 32 · 2 x −x 4. 9x+1 > > 12 6−5 <1 51−x x 6. 7. 4x > 1 4 22x − 8 60 2x − 4 · 23x 1 27 5. 2x + 8 · 2−x > 9 6. 3x + 33−x < 12 7. 5x − 2 · 5x−1 < 75 8. 2x + 8 · 2−x > 6 8. ( 21 )3x − ( 21 )2x > 0 9. 26x − 4x+1 > 0 9. 6 · 5x − 52x < 5 10. 33−2x − 4 · 31−x + 3 > 0 10. ( 13 )2x−3 − 4 · ( 31 )x−1 − 15 < 0 41 10.7 Logarithmic Equations 10.7 Logarithmic Equations The logarithm is defined as (with a > 0 and a 6= 1): aL = x ⇔ L = loga x log10 x is commonly used in scientific texts, written as log x. loge x is called the natural logarithm and is usually written as ln x (in some mathematical texts also as log x !) Important rules: loga x exists only if x > 0 loga x is an increasing as a function of x if a > 1 and decreasing if 0 < a < 1 loga 1 = 0, loga a x = x loga a = 1, loga a 2 = 2, (etc.) a loga x = x provided x > 0 loga x + loga y = loga x y loga x − loga y = loga ( xy ) loga x r = r loga x loga x = loga p · log p x log p x ln x log x loga x = = = log p a ln a log a Note: y = n loga x ⇒ y = loga x n , but y = loga x n 6⇒ y = n loga x. Make sure to verify the validity of the solutions found, as the argument of a logarithm must be positive (larger than 0)! Examples: • Solve: log2 (x + 2) = 2 + log2 (2x − 1). Then we have: log2 (x + 2) = log2 4 + log2 (2x − 1) = log2 4(2x − 1) Under the condition that the arguments must be positive this is equivalent to: x + 2 = 8x − 4 ⇔ 6 = 7x ⇔ x = • Solve: 6 7 (check: the solution is valid). ln2 x − ln x 2 = 3. This is equivalent to (why?): ln2 x − 2 ln x − 3 = 0. Suppose ln x = a a 2 − 2a − 3 = 0 ⇔ (a + 1)(a − 3) = 0 ⇔ ⇔ ln x = −1 ∨ ln x = 3 42 a = −1 ∨ a = 3 ⇔ x = e−1 ∨ x = e3 10.7 Logarithmic Equations Exercises Solve the following equations. Series A Series B 1. logx 16 = 8 1. log2x 27 = 3 2. 3log2 (x−1) = 9 2. 4log4 (8−2x) = 2 3. ln(x 2 − 7x + 7) = 0 3. ln(x + e) − 2 = ln x 4. log2 x − 5 = log 1 (x + 14) 2 5. log2 (x − 1) + log2 (x + 13) = 5 6. log(x 2 − 20x) = 2 7. ln(7 − x) = 1 2 ln(x − 1) 8. ln(x + 1) − 2 · ln 5 = 3 9. ln2 x + 6 = ln x 5 10. ln2 x + 2 ln x − 3 = 0 4. log2 (5 − x) + log2 x = 2 5. 2 + log 1 (2x − 1) = 1 3 6. log x + log(x + 32 ) = 1 7. log2 (x + 1) + log 1 2 1 =5 x −3 8. ln(x + 3) − ln(x + 1) = 1 9. ln2 x − ln x 3 + 2 = 0 1 10. ln(x 2 − 8) = − ln −2 − x 43 10.8 Logarithmic Inequalities 10.8 Logarithmic Inequalities An important step in solving logarithmic inequalities is determining the domain. Of course, solutions need to be in the domain. Again, be careful: log2 x < log2 4 ⇒ 0 < x < 4 but log 1 x < log 1 4 ⇒ x > 4 ! 2 2 Just as for exponentials, the logarithm function is decreasing if the base is less than 1, and we need to reverse the inequality sign. Examples: • Solve: log 1 x > 3 + log 1 (x + 3). 2 2 Here: x > 0 ∧ x > −3, so D = (0, ∞). log 1 x > log 1 2 2 1 1 + log 1 (x + 3) ⇔ log 1 x > log 1 (x + 3) 2 2 2 8 8 hence 1 x 6 (x + 3) ⇔ 8x 6 x + 3 ⇔ 7x 6 3 ⇔ x 6 8 3 7 Taking into account the domain D, the solution is: (0, 37 ] • Solve: log3 (2x − 3) < 3 − log3 x. We have: (x > 32 ) ∧ (x > 0) ⇒ D = ( 23 , ∞). On this domain: log3 (2x − 3) + log3 x < log3 27 ⇔ log3 x(2x − 3) < log3 27 2x 2 − 3x − 27 < 0 ⇔ (2x − 9)(x + 3) < 0 ⇔ − 3 < x < Taking into account the domain D, the solution is: ( 23 , 92 ) 44 9 2 10.8 Logarithmic Inequalities Exercises Solve the following logarithmic inequalities. Series A Series B 1. log5 (2x + 1) 6 2 1. log2 (x 2 − x) 6 1 2. log4 (x 2 − 3x) > 1 2. log4 (x 2 + 6x) 6 2 3. log2 (x 2 − 4x − 5) 6 4 3. log2 (x 2 − 8x + 7) 6 4 2 − ln x >0 1 + ln x 2 − ln x 60 2 + ln x 4. 5. 3 − log3 x > log3 (x − 6) 5. log2 (x − 2) < 3 − log2 x 6. log 1 x 2 > −2 6. 7. ln(x − e)2 > 1 7. log3 (22x + 1) 6 2 4. 3 8. x ln x 3 − ln x > 0 9. log3 (x − 1) 6 2 − log3 (x + 7) 10. ln |x| > ln(3 − 12 x) ln(x − 3) − 1 60 ln x 8. x log(x + 4) + 4 log(x + 4) 6 0 9. log2 (2x − 8) < 3 10. log(2x + 3) <2 log x 45 10.9 Trigonometric Equations and Inequalities 10.9 Trigonometric Equations and Inequalities A few rules: sin x = sin a cos x = cos a tan x = tan a ⇔ x = a + 2kπ ∨ x = π − a + 2kπ ⇔ x = a + 2kπ ∨ x = ⇔ x = a + kπ − a + 2kπ Here k ∈ Z, so k = 0, ±1, ±2, . . . Examples: • Solve: cos(x − 34 π ) = sin 2x cos(x − 34 π ) = sin 2x ⇔ cos(x − 34 π ) = cos( 12 π − 2x) x − 34 π = 12 π − 2x + k · 2π ∨ x − 43 π = − 21 π + 2x + k · 2π 3x = 45 π + k · 2π ∨ − x = 14 π + k · 2π x= 5 π 12 + k · 23 π ∨ x = − 14 π + k · 2π • Solve: 2 sin2 x = 3 cos x 2 sin2 x = 3 cos x ⇔ 2(1 − cos2 x) = 3 cos x ⇔ (a + 2)(2a − 1) = 0 ⇔ 2 cos2 x + 3 cos x − 2 = 0 Suppose cos x = a then 2a 2 + 3a − 2 = 0 ⇔ a = −2 ∨ a = 1 2 Note that cos x = −2 has no solution, hence cos x = 1 2 ⇔ x = ± 13 π + k · 2π Inequalities: 1. Determine where equality holds. 2. Determine where the function is undefined. 3. This yields all points where the inequality possibly reverses. These boundary points define the intervals where the inequality, or its reverse, holds. 4. Draw a sketch of the function and write down the solution. Example: • Solve: tan(2x − 12 π ) > 1. We have tan(2x − 12 π ) = 1 als 2x − 12 π = 14 π + kπ, dus x = 83 π + 21 kπ . The function is undefined if 2x − 12 π = 12 π + kπ, so x = 21 kπ . Consider the graph in Chapter 9 on page 27. Hence the solution is 38 π + 12 kπ 6 x < 21 π + 12 kπ. 46 10.9 Trigonometric Equations and Inequalities Exercises Solve the following trigonometric equations and inequalities. Use R as domain. Series A. Series B 1. sin 2x = sin x 1. cos 2x = cos 3x 2. tan 2x + tan x = 0 2. tan x = sin 2x 3. sin(2x + π4 ) + sin(3x − π4 ) = 0 3. cos(2x − 31 π ) + sin(x − 16 π ) = 0 4. cos 2x + cos 3x = 0 4. sin x − sin 3x = 0 5. cos2 x + 3 sin x = 3 5. cos2 x + 2 sin x cos x = sin2 x 6. 2 sin2 x cos x − sin x = 0 6. sin 2x = 2 cos2 x 7. tan 2x = 3 tan x 7. 2 tan x = tan 2x 8. sin 2x = 1 tan x 8. 2 sin 2x = 1 tan x 9. 3 cos2 x − sin2 x = 0 9. cos2 x + cos x = sin2 x 10. 2 sin2 x + sin 2x = 1 10. 2 sin2 2x + 6 sin2 x = 3 11. sin 2x − cos 2x = 1 11. 6 cos2 x + 11 sin x = 10 12. 2 cos x + 3 tan x = 0 √ 13. 2 − 2 cos 2x = − sin x 12. sin 2x − cos 2x = 1 14. (tan x − sin x)(tan x + sin x) = cos2 x 14. sin 2x − tan x = sin x 15. sin x · sin 2x = cos x 15. sin x + cos x = 0 Series C. 13. sin2 x + 2 cos2 x = 1 + sin x cos x Series D 1. 2 sin 12 x > 1 1. 2. tan 12 x > 1 2. tan 2x 6 0 3. sin2 x < cos2 x 3. tan x > sin x 1 2 cos 2x < 1 2 47 10.10 Equations Involving Square Roots 10.10 Equations Involving Square Roots Equations involving square roots are often solved by squaring both sides of the equation. However, this introduces additional solutions compared to the solutions to the original equation. Phrased differently: √ y = x ⇒ y 2 = x, but, in general, y 2 = x 6⇒ y = √ x. Always remember that the expression under the square root sign cannot be negative, and that the square root is a non-negative number too. Check the solution found by substituting it in the original equation. Examples: • Solve: √ 2x + 1 = 2x − 5 √ 2x + 1 = 2x − 5 ⇒ 2x + 1 = (2x − 5)2 2x + 1 = 4x 2 − 20x + 25 ⇔ 4x 2 − 22x + 24 = 0 2x 2 − 11x + 12 = 0 ⇔ (x − 4)(2x − 3) = 0 3 x =4 ∨ x = 2 Since 2x − 5 < 0 for x = 32 , only x = 4 remains as solution. √ √ • Solve: x + 2x + 1 = 5 p √ √ x + 2x + 1 = 5 ⇒ x + 2 2x 2 + x + 2x + 1 = 25 p 2 2x 2 + x = 24 − 3x ⇒ 8x 2 + 4x = 576 − 144x + 9x 2 x 2 − 148x + 576 = 0 ⇔ (x − 4)(x − 144) = 0 x = 4 ∨ x = 144. The only solution is x = 4. 48 10.10 Equations Involving Square Roots Exercises Solve the following equations involving square roots. Series A 1. 2. 3. Series B √ 4x + 1 = x − 1 1. √ 2x − 1 = x − 8 √ x −2= √ 2. 3. 2x + 3 − 2 √ 4. 2x − 3 14 − x = 8 4. x +3 5. √ =3 2x + 1 √ √ x +3 6. x x + 3 = x √ 7. x 2 − 3 13 + x 2 + 3 = 0 8. p x− √ 5. 6. 7. x −1= x √ √ √ 9. 4 4 − p − 13 ( 4 − p)3 − p 4 − p = 10. For which values of p is the graph of √ f (x) = 3x − 2x + 1 tangent to the graph of g(x) = 2x + p ? 8. 8 3 √ 2x + 1 = x − 7 √ 2x + 11 = 12 − x √ √ x − 1 = 2x + 5 − 2 √ x+ x √ =2 x− x √ x + 13 − x =1 2x − 1 √ √ 4x 2 + x = x x −1 √ x2 2x 2 + 3 = √ x2 2x 2 + 3 q √ 3 x − 8−x =2 2 √ √ √ 9. 4 2 + x − ( 2 + x)3 + 2x 2 + x = 27 10. For which values of p is the graph of √ f (x) = 5 − x tangent to the graph of g(x) = p − 21 x + 1? 49 10.11 Inequalities Involving Square Roots 10.11 Inequalities Involving Square Roots Sometimes it helps to draw two graphs and compute the points of intersection. But keep the domain in mind when determining the solution. √ For instance, for x − 1 < 2, the solution is [1, 5) because x > 1. Examples: √ • Solve: 2x + 3 x < 20 √ √ 2x + 3 x < 20 ⇔ 2x + 3 x − 20 < 0 with x > 0. First solve: √ √ 2x + 3 x − 20 = 0 ⇔ 3 x = 20 − 2x ⇒ 9x = 400 − 80x + 4x 2 4x 2 − 89x + 400 = 0 ∨ x = 16 . Only x = 25 satisfies the original The quadratic formula yields: x = 25 4 4 equation. If we now substitute, for example, x = 4 (4 < 25 ) in the inequality, we get a value less 4 than 20. But if we substitute, for example, x = 9 , we get a value larger than 20. The solution is: [0, 25 ). 4 • Solve: √ 3+ x 6 3. √ x −5 The domain is D = (5, ∞). Then the fraction is always positive. First solve: √ 3+ x = 3. √ x −5 We have: √ √ √ √ 3+ x = 3 ⇔ 3 + x = 3 x − 5 ⇒ 9 + 6 x + x = 9(x − 5) √ x −5 √ √ 6 x = 8x − 54 ⇔ 3 x = 4x − 27 ⇒ 9x = 16x 2 − 216x + 729 16x 2 − 225x + 729 = 0 81 The quadratic formula yields: x = 16 ∨ x = 9 . Only x = 9 satisfies the original equation. If we now substitute, for example, x = 6 (6 < 9) in the inequality, we get a value less than 3. But if we substitute, for example, x = 14 , we get a value larger than 3. This means that we need to take values larger than 9. The solution is: [9, ∞). 50 10.11 Inequalities Involving Square Roots Exercises Solve the following inequalities involving square roots. Series A 1. 2. 3. 4. 5. √ 2x + 7 6 x − 4 √ x −5 x +6<0 √ 5−x >1 √ 5+x √ x − 2x + 1 6 1 p (x − 3)2 > 13 √ 6. 7 + 3x − 6 > 2x √ 7. x 2 + x + 5 6 x + 1 √ 8. x + 2 6 |x| √ x+ x 9. √ <3 x− x √ 10. x + 1 < |x − 5| Series B 1. 2. 3. 4. 5. 6. 7. 8. √ x − 3 < 12 x − 1 √ x − x −3<5 √ 3x + 4 >2 √ 2x − 4 √ x − x −466 p (x − 3)2 > 1 √ √ 1 x2 + 3 < x 2 √ (x − 1) x − 1 >1 √ x +5 √ √ x > 2x − 7 − 3 9. √ 10. √ 6 x2 − 1 >3 x − 3 < |2x − 9| 51 52 Chapter 11 Rationalizing Denominators (extra) In the exercises below you need to remove the square roots from the denominators of the fractions. This is called rationalizing denominators. In case of just a square root, this is done by multiplying top and bottom by this square root. Example: √ √ 3 2 2 2 3 2√ = 3. √ =√ ·√ = 3 3 3 3 3 In more complex cases we can apply the rule: (a − b)(a + b) = a 2 − b2 . Example: √ √ √ 3+ 3 1 3+ 3 3+ 3 1 1√ 1 = = + 3 √ = √ · √ = √ 6 2 6 3− 3 3− 3 3+ 3 32 − ( 3)2 53 11. Rationalizing Denominators (extra) Exercises Rationalizing the denominators: Series A 1 2 1. √ − √ = 5 2−1 2 3 1. √ − √ = 3 5−1 1 2 2. √ − √ = 3 6 1 3 2. √ − √ = 6 2 3 1 √ +√ = 2 3 3 √ 2+ 3 4. √ = 3 √ √ 3+ 2 5. √ √ = 3− 2 3 1 √ −√ = 2 5 5 √ 3+ 6 4. √ = 3 √ √ 5− 2 5. √ √ = 5+ 2 3. 1 √ √ = 3 2−2 3 √ 2 7. √ √ = 18 − 8 6. 8. 1 = √ (1 + 2)2 1 = 9. √ 2−1 √ 3 10. √ = 2+ 3 54 Series B 3. 2 √ √ = 2 5− 3 √ 3 7. √ √ = 48 − 12 6. 8. 1 = √ (3 − 2)2 1 9. √ = 3−1 √ 5 10. √ = 1− 5 Chapter 12 Partial Fraction Decomposition A (extra) In the fractions given below, the denominator is a product of two factors or can be written as such. The goal is to split the given fraction into a sum of two fractions of which the denominators are these two factors, respectively. This is called partial fraction decomposition. Examples: • We have: x + 10 3 1 = − . (2x − 1)(x + 3) 2x − 1 x + 3 This can be checked easily afterwards, but how do we actually find the numerators? A B x + 10 by + where we need to compute A and B. We replace (2x − 1)(x + 3) 2x − 1 x + 3 Write this expression as a single fraction: A(x + 3) + B(2x − 1) (A + 2B)x + (3A − B) = . (2x − 1)(x + 3) (2x − 1)(x + 3) Then A + 2B = 1 and 3A − B = 10 must hold. If you solve this system of two equations, you get A = 3 and B = −1. • Consider: 3 =? (2x + 3)(x + 4) We put: 3 A B A(x + 4) + B(2x + 3) (A + 2B)x + (4A + 3B) = + = = . (2x + 3)(x + 4) 2x + 3 x + 4 (2x + 3)(x + 4) (2x + 3)(x + 4) Then A + 2B = 0 and 4A + 3B = 3 must hold. Solving this system yields A = B = − 53 . Therefore we can replace 6 5 and 3 6 3 by − . (2x + 3)(x + 4) 5(2x + 3) 5(x + 4) 55 12. Partial Fraction Decomposition A (extra) • Because of the double zero in the denominator, the next fraction is slightly different: 2x + 1 =? (x − 3)2 We change the numerator into the following form containing x − 3: 2x + 1 2(x − 3) + 7 2 7 = = + . 2 2 (x − 3) (x − 3) x − 3 (x − 3)2 The resulting partial fraction decomposition has as denominators all powers of (x − 3) up to the power (x − 3)2 occurring in the given fraction. Exercises Apply partial fraction decomposition to the following fractions: Series A Series B 1. 5 = (2x − 1)(x − 3) 1. 5 = (2x + 1)(x + 3) 2. 1 = x2 − 1 2. 1 = 4x 2 − 9 3. 2x = (x − 1)(x − 3) 3. 4x = (x + 1)(x − 3) 3x = x2 − x − 6 4. 5. 6. 7. x2 x = −x −2 4. x2 2x = − 2x 5. 2x = (x − 2)2 6. 9x 2 x +4 = − 6x + 1 7. 3x = + 3x −x 2 6x = (x − 3)2 4x 2 x +4 = − 4x + 1 8. x2 − 1 = (x − 1)2 8. x2 − 4 = (x − 2)2 9. 2x = (x − 1)2 9. 6x = (x − 3)2 10. x4 − 4 = (x 2 + 1)2 10. x4 − 9 = (x 2 + 3)2 56 Chapter 13 Partial Fraction Decomposition B (extra) Below a few more exercises are included, where a given fraction is decomposed into several parts. Examples • Consider 2 23 =3+ . 7 7 We may obtain this result in two ways: 21 + 2 21 2 2 23 = = + =3+ . 7 7 7 7 7 We also have: 7/23\3 21 2 hence: 23 2 =3+ . 7 7 The is always possible if the numerator exceeds the denominator. • The same applies to rational functions: Also: 3x + 1 3x + 9 − 8 8 = =3− x +3 x +3 x +3 x + 3/3x + 1\3 3x + 9 −8 hence: 3x + 1 8 =3− . x +3 x +3 57 13. Partial Fraction Decomposition B (extra) • We have: 2x − 1/ 12 x 2 −3x + 1\ 41 x − 1 2 x − 14 x 2 x +1 − 11 4 − 11 x + 11 4 8 − 38 hence: 11 8 − 3x + 1 = 14 x − 2x − 1 1 2 x 2 11 8 − 3 8 2x − 1 . The method used in the last two examples applies if the degree of the numerator is larger than or equal to the degree of the denominator. Exercises Apply partial fraction decomposition in the exercises below. Series A 1. 2. x 2 + 8x = 2x − 1 1. 2. 4x 2 + x − 5 = x −1 x 2 + 4x = 2x − 1 3. x 2 − 3x + 2 = x −2 3. x 2 + 5x − 14 = x −2 4. x3 = x2 − 1 4. x4 = x2 + 1 5. 6. 7. 8. 9. 10. 58 6x 2 − 11x + 5 = x −1 Series B x4 − 1 = x −1 x 2 + 2x − 3 = 1−x 2x 2 − 4x + 5 = x −1 x 3 − 3x 2 + 3x − 1 = x −1 x 3 − 2x 2 + 3x − 2 = x2 − 4 x 4 + x 2 − 2x 3 − 2x + 1 = x2 + 1 5. 6. 7. 8. 9. 10. x 4 − 16 = x +2 x 2 + 2x − 3 = 3+x 2x 2 − 4x + 5 = x −2 x 3 − 6x 2 + 5x + 6 = x −2 2x 3 − 2x 2 + 3x − 1 = x2 − 1 x 4 + x 2 + 2x 3 − 2x + 1 = x2 + 1 Chapter 14 Inverse Trigonometric Functions (extra) In high school you have already seen inverse functions. For instance, log x and 10x are inverses √ of each other and so are x and x 2 , for x > 0. On a scientific calculator, these function often share the same key. So you can tell that also ln x en ex are each other inverses. A property of inverse functions is that the graphs of a function and its inverse are reflections of each other in the line y = x. The domain and range of a function and its inverse need not be identical; you can check this for the above functions. The functions sin x, cos x and tan x have inverse functions . sin−1 x, cos−1 x and tan−1 x is often used on calculators; we will use arcsin x, arccos x and arctan x. We will now check the domain and range of these functions by reflecting their graphs. In the figure on the left you may recognize the graph of y = sin x reflected in the line y = x. π 1 π 2 1 π 4 y = arcsin(x) 1 π 2 3 π 4 1 π 4 − 14 π 1 π 4 − 12 π 0 −1 −0.5 0 1 π 2 0 0 0.5 1 − 41 π y = arccos(x) −1 −0.5 − 12 π −5 0 0.5 y = arctan(x) −4 −3 −2 −1 0 1 2 3 4 5 1 We note that we take only a small piece of the sin-graph, since otherwise the reflection of the graph would not be a function. If the domain for sin x is equal to D = [− 12 π, 12 π], the inverse is indeed a function. In choosing the domain we include the origin and ensure that all values for sin x are reached (from −1 to 1). See the figure above. The range of y = sin x is R = [−1, 1]. The inverse function of y = sin x is called y = arcsin x. Its domain is D = [−1, 1], while its range is R = [− 21 π, 21 π]. In this way we can also reflect the graphs of y = cos x and y = tan x in the line y = x. 1. Check that for y = arccos x the domain is D = [−1, 1] choosing as range R = [0, π]. 2. Check that for y = arctan x the domain is D = (−∞, ∞) choosing as range R = (− 21 π, 12 π ). 59 14. Inverse Trigonometric Functions (extra) √ Similar as before when we determined which x satisfy sin x = − 12 3, we can now determine a √ value for arcsin(− 21 3). The important difference is that we now get exactly one result, as a function may take on one value only. Therefore: √ arcsin(− 12 3) = − 31 π. Or, in general: y = arcsin x ⇒ x = sin y, but x = sin y 6⇒ y = arcsin x, and similarly for arccos and arctan. Exercises Give your answer in radians (in terms of π ). Series A Series B 1. arcsin( 12 ) = √ 2. arccos(− 12 2) = √ 3. arctan( 3) = √ 4. arccos( 12 3) = 1. arccos( 12 ) = √ 2. arcsin(− 21 2) = √ 3. arctan(− 3) = √ 4. arcsin( 12 3) = 5. arctan(1) = 5. arccos(1) = 6. arcsin(−1) = √ 7. arccos( 12 2) = √ 8. arctan( 13 3) = 6. arctan(−1) = √ 7. arcsin( 21 2) = √ 8. arccos( 12 3) = 9. arcsin(0) = 9. arctan(0) = 10. arccos(−1) = 10. arcsin(−1) = 60 Chapter 15 Answers to the Exercises 2 Powers Series B Series A 1. p 16 q 16 1. p 18 q 16 2. a 11 b5 2. −b5 3. − 49 c−1 d 10 8 2 13 c d 3. − 27 3 4. −27a 3 b 2 √ 5. 2 2ab 1 15 4. −32a 5 b 2 √ 5. 3 2ab 5 1 5 6. 2 p 4 q 12 6. 2 p − 2 q 6 7. −3a −3 b−8 7. −3a −1 b4 1 1 3 8. 3 4 2 2 ab 4 9. 3 − 83 73 a b 2 5 1 10. 2− 4 a 4 1 1 1 1 8. 3− 12 2 4 a 12 b 6 9. 5 3 − 17 a 5 b2 2 4 1 10. 2− 3 a 6 61 15. Answers to the Exercises 3.1 Removing Parentheses Series A Series B 1. 9a 2 − 6ab + b2 1. 9a 2 − 12ab + 4b2 2. 9a 2 − 12a 3 + 4a 4 √ 3. 162 − 108 2 2. 9a 2 − 12a 4 + 4a 6 √ 3. 147 − 36 5 4. 3m 2 − 5mn − 2n 2 √ 5. 2 3 + 6 4. 6m 2 − 5mn − 6n 2 √ 5. −3 5 − 8 6. 9a 4 b6 − 2a 6 b4 + 19 a 8 b2 6. 7. 21 − 12a 2 7. 30 − 12a 2 8. 7b − 7a + ab + 6a 2 − 2b2 − 5 8. 14b − 5a − 5ab + 6a 2 − 6b2 − 4 9. 16 5 10. 81a 4 − 1 9. 1 4 2 a b 16 − a 6 b4 + 4a 8 b6 4 5 10. 16a 4 − 1 3.2 Factoring Polynomials Series A 1. (2x − 3)(2x + 3)(4x 2 + 9) 1. (3x − 2)(3x + 2)(9x 2 + 4) 2. 3x 3 (x + 3)(x − 7) 2. 3x 2 (x − 1)(x − 4) 3. (x − 1)(x + 1)(x 2 + 1)(x 4 + 1)(x 8 + 1) 3. (x 3 − 2)(x 3 + 2)(x 6 + 4) 4. (x 2 − 2)(x 2 + 3) 4. (x 2 + 4)(x 2 − 5) 5. (x − 2)(x − 17) 5. (x − 2)(x − 19) 6. (x + 2)(x − 17) 6. (x + 2)(x − 19) 7. (x − 1)2 7. 2(x + 1)2 8. (x − 1)(x + x 2 + 1) 8. (x − 1)(x + x 2 − 1) 9. (5x + 1)(x − 5) 9. 4(4x + 1)(x − 4) 10. (x 3 − 3)2 62 Series B 10. (x 5 + 4)2 3.3 Factoring Polynomials, continued Series B Series A 1. (3x − 2)(x − 6) 1. (3x − 5)(x − 3) 2. (x + 2)(2x + 3) 2. (x + 3)(2x + 3) 3. (3x 2 − 2)(x 2 − 3) 3. (3x 2 − 4)(x 2 − 3) 4. (2x + 3)(5 − x) 4. (x + 3)(7 − 2x) 5. (2x 2 − 3)(x 2 + 1) 5. 2(x 2 + 2)(x − 1)(x + 1) 6. (x − 1)(x − 4)(x + 1) 6. (x − 1)(x − 8)(x + 1) 7. (x − 3)(2x 2 + 1) 7. (x − 4)(3x 2 + 2) 8. (x + 5)(x − 2)(x + 2) 8. (x + 5)(3x 2 − 4) 9. (2 − x)(3x 2 − 2) 9. (2 − x)(2x 2 − 3) 10. x(x 3 − 3)(x 3 + 5) 10. x 2 (x 3 + 2)(x 3 − 6) 4 Fractions Series A Series B −2x−1) 1. − 2(2x (2x−1)(x+1) 2 1. 2x 2 +2x+3 (2x−1)(x+1) 2. √ 2 x x−1 2. √ 2 2x 2x−9 3. 4x (x−1)(x+3) 3. 4x 2 +3x−6 (x 2 −3)(2x+3) −3x−3) 4. − 3(2x (x−1)(x+3) 4. 3(2x 2 −x+2) (x−1)(x+2) 2 5. 3x−2 (x+1)(2x+3) 5. (x−2)(7x+4) (x 2 +1)(2x+3) 6. 2x−3 2(x−2) 6. 2x−3 2(x+3) 7. x+6 (3−x 2 )(2x+1) 8. x 2 +1 (x+1)3 8. x 2 +1 (x−1)3 9. 2x 2 −x+1 (x−1)2 (x+1) 9. 2x+1 (x−1)(x+1) 10. 2x 2 +11x−3 2x(x+3) 10. 7x 7. − (x−3)(2x+1) x 2 −2x+6 x(x−3) 63 15. Answers to the Exercises 5 Trigonometry Series A √ 1. − 12 3 2. −1 √ 3. − 21 3 √ 4. 21 3 5. 1 6. −1 √ 7. 12 2 √ 8. − 13 3 9. − 12 √ 10. − 12 2 Series B 1. − 12 √ 2. − 12 2 √ 3. − 13 3 4. − 12 √ 5. 12 2 6. undefined. √ 7. 12 2 √ 8. − 12 3 √ 9. − 3 √ 10. − 12 3 6.1 Trigonometric Identities: Basic Formulas 1. We have: sin(x − y) = sin(x + (−y)) = sin x cos(−y) + cos x sin(−y) = sin x cos y − cos x sin y cos(x + y) = sin( 12 π − x − y) = sin(( 21 π − x) − y) = sin( 12 π − x) cos y − cos( 12 π − x) sin y = cos x cos y − sin x sin y cos(x − y) = cos(x + (−y)) = cos x cos(−y) − sin x sin(−y) = cos x cos y + sin x sin y 2. We have: sin(x + y) sin x cos y + cos x sin y tan x + tan y = = cos(x + y) cos x cos y − sin x sin y 1 − tan x tan y tan x + tan(−y) tan x − tan y tan(x − y) = tan(x + (−y)) = = . 1 − tan x tan(−y) 1 + tan x tan y tan(x + y) = 3. We have: sin 2x = sin(x + x) = sin x cos x + cos x sin x = 2 sin x cos x cos 2x = cos(x + x) = cos x cos x − sin x sin x = cos2 x − sin2 x = = (1 − sin2 x) − sin2 x = 1 − 2 sin2 x = cos2 x − (1 − cos2 x) = 2 cos2 x − 1 2 tan x tan x + tan x tan 2x = tan(x + x) = = . 1 − tan x tan x 1 − tan2 x 4. We have: cos(x − 16 π ) = cos x cos 16 π + sin x sin 16 π. Since x lies in the first quadrant also √ √ √ √ √ √ sin x = 21 2. So cos x cos 16 π + sin x sin 16 π = 12 2 · 12 3 + 21 2 · 21 = 14 6 + 41 2. √ 5. We have: cos 2x = 1 − 2 sin2 x = 13 ⇒ 13 = 1 − 2 sin2 x ⇒ sin2 x = 13 ⇒ sin x = ± 31 3. √ Since x ∈ [ 21 π, π] we find: sin x = 13 3. 64 9 7 6. sin2 x = 1 − cos2 x = 1 − 16 = 16 , hence sin x = √ √ 1 So tan x = 3 7, and tan 2x = 3 7 q 7 16 because x ∈ [0, 21 π ]. 7. sin2 x cos2 x + sin4 x + cos2 x = sin2 x(cos2 x + sin2 x) + cos2 x = sin2 x + cos2 x = 1. 8. 2(cos2 x − sin2 x)2 tan(2x) = 2 cos(2x)2 sin(2x)/ cos(2x) = 2 cos(2x) sin(2x) = sin(4x). 6.2 Trigonometric Identities: Factoring Series A Series B 1. (2 cos x + 1) sin x 1. 2 sin x(sin x − cos x) 2. 2 sin x cos y 2. (cos x − 1)(cos x + 1) = − sin2 x 3. (1 − sin x)(1 + sin x) = cos2 x 3. (cos x − 2 sin x) cos x 4. sin x(sin x + 2 cos x) 5. 2(cos x − 1)(cos x + 1) = −2 sin2 x 4. −2(sin x − 2)(sin x + 2) 5. (sin x + 2)(sin x − 3) 7. (cos x + 1)(6 − cos x) p √ 8. 21 2 + 2 6. (sin x + 2)(5 − sin x) 1 − cos x 1 = tan x 7. 2 sin x p √ 8. 12 2 − 2 9. 2 sin x 9. cos2 2x 6. (sin x − 1)(sin x − 4) 10. 1 , − 12 2 en 2 10. 1, 2, 2 65 15. Answers to the Exercises 7.2 Differentiation Series A. Series B 1. 30(1 − 2x)4 2. − 1. 2 ln x + 2 ln 3 + 2 1 (x 2 − 1) 2. 3 2 1 − ln x x2 1 3. 6x(x 2 − 5)−2 3. cos 2x(sin 2x)− 2 4. −27(3x − 1)−4 4. −3x(3x 2 + 1)− 2 5. 4 ln 3 · 32x 5. 7(x − 1)−2 6. 4x ex 2 −1 7. ln(3x + 4) + 8. 3x 3x + 4 1 x + x2 9. x 2 · 22x (2x ln 2 + 3) 10. 27x − 6 √ 2 3x − 1 1 11. x(ln x − 1)2 12. ex (x 2 − x − 3) 13. 3(tan2 x)(tan2 x + 1) 2 14. sin 2x + 1 cos x 15. − 2 cos x − 1 66 3 6. 2 sin(4x − 13 π ) 7. 2 ln x sin x − x ln2 x cos x x sin2 x 3 8. (x 2 + 1)− 2 9. 3(6x − 2)−1 10. 2 sin(2x) e− cos 2x 11. − e−x 12. 4 ln3 x x 13. sin x(2 cos2 x − sin2 x) 14. 1 cos x − 1 15. 1 + cos2 x sin3 x 8 Antiderivatives Series A 1. Series B 1 (2x 8 − 1)4 2. − 13 (5 − x)3 3. 2 (3x 9 3 − 4) 2 1. 1 (3x 12 + 2)4 2. − 16 (8 − 2x)3 3. 1 (2x 3 3 − 3) 2 4. − 16 (2x + 3)−3 4. − 18 (2x − 1)−4 5. − 12 cos 2(x − 16 π ) √ 6. 2 x + 3 5. 2 sin 21 (x − 13 π ) √ 6. 4 x − 5 − ln |x| 7. 1 3 x 3 8. − cos x + 13 e3x 8. 1 2 9. tan x − x 9. x + tan x 7. 1 2 x 2 + ln |x| 10. − ln |3 − 2x| sin 2x + 12 e2x 10. − ln |2 − 3x| 67 15. Answers to the Exercises 9 Graphing Functions f HxL f HxL f HxL f HxL f HxL 9 8 7 3 -1 -2 f HxL = Hx + 2L4 x O O A1 2 f HxL = Hx - 2L2 + 3 f HxL f HxL x f HxL = 8 - x3 A2 f HxL x O O x A3 O f HxL = 6 Hx + 1L5 A4 -2 1 O 4 f HxL = x-2 1 f HxL = x B1 x 3 f HxL f HxL f HxL = 2x B3 f HxL B4 f HxL = 3 + 2-x O C1 f HxL = 1 + 2x-2 x C2 B5 f HxL x f HxL = logHxL O f HxL = logHx2 L 2 D1 D2 f HxL x 1 O f HxL = 2 logHxL D3 D4 D5 f HxL -1 2 x O f HxL E1 4 !!! f HxL = 4 - 2 x f HxL 2 x O -4 !!!!!!!!!!! f HxL = x + 4 + 2 E2 E3 O E4 f HxL 20 E5 f (x) f (x) 1 4 0.8 f (x) = tan 12 (x + 41 π ) 2 0.6 Π 3 2Π 3 x O 1 2 3 2 x -1 f HxL = sinH3 xL F1 -2 f HxL = 2 cosHΠ xL F2 –6 0.4 0.2 4 68 x 1 -1 6 !!!!! f HxL = x2 - 1 3 !!! f HxL = x x 1 O x ã+1 4 2 x ã f HxL = 2 lnHx - ãL f HxL f HxL 4 O C5 f HxL x f HxL = logHx + 2L 2 O x O f HxL = ãx-1 C4 1 -1 1ã -1 f HxL = -1 + 3-x f HxL x -2 x C3 f HxL 1 !!! f HxL = x + 2 x 4 f HxL O x O O O 2 4 f HxL = 2 H2 - xL 3 f HxL = 2 x 1 x O f HxL O 3 1 O x O 1 f HxL = 3 + x-3 B2 f HxL f HxL A5 f HxL f HxL 3 x 2 -3 f HxL = x2 + 6 x + 9 x 2 x O O 1 7 1 f HxL = 8 sinJ Π Hx - 1LN + 12 3 F3 x –4 –2 0 –4 –2 0 2 –2 2 4 –4 f (x) = sin2 x F4 F5 4 6 10.1 Polynomial Equations Series A Series B 1. x = −4 or x = 1 2 2. x = 1 √ or x = −1 or or x = − 6 x = √ 6 1. x = −3 or x = 2. x = 2 3 √ √ 6 or x = − 6 3. x = 0 or x = −2 or x = 12 3. x = 0 or x = 1 or x = 6 √ √ 4. x = 7 or x = − 7 4. x = 2 or x = −2 5. x = 0 or x = −3 or x = 13 5. x = 0 or x = −3 or x = 11 6. x = 5 or x = −4 or x = 3 7. x = 1 or x = 2 or x = 3 8. x = 2 or x = 1 3 or x = −2 9. x = 2 or x = − 12 or x = −2 √ 10. x = 2 or x = −2 or x = 2 or √ x =− 2 6. x = 2 or x = −1 7. x = −2 or x = 2 3 8. x = −3 or x = 3 or x = 4 9. x = −2 or x = 3 10. x = 2 or x = 1 3 or x = −1 69 15. Answers to the Exercises 10.2 Polynomial Inequalities Series A Series B 1. [−5, 5] 1. [4, ∞) ∪ (−∞, −4] 2. (−∞, 2] ∪ [4, ∞) 2. [− 34 , 43 ] 3. [ 23 , 52 ] 3. (−∞, 35 ] ∪ [ 73 , ∞) 4. (2, ∞) ∪ (−∞, −4) 4. (3, ∞) ∪ [−∞, −5) 5. ∅ 5. (−∞, 16 ) 6. (5, ∞) ∪ (−∞, −7) 6. [2, ∞) ∪ (−∞, −5] 7. {4} ∪ [−2, 2] 7. [−3, 3] 8. (−∞, 67 ) 8. (−1, 53 ) ∪ (3, ∞) 9. {4} ∪ [−6, 3] 9. {2} ∪ (−∞, 1] ∪ [3, ∞) 10. [−2, 0] ∪ [2, 3] 10. [1, 2] 10.3 Equations Involving Fractions Series A Series B 1. x = −4 1. x = −2 or x = 3 2. x = 0 or x = −1 √ √ 3. x = 1 + 2 or x = 1 − 2 √ √ 4. x = 3 or x = − 3 2. x = 3 √ √ 3. x = 2 3 − 3 or x = −2 3 − 3 4. x = 5. x = −1 or x = 5. x = − 23 or x = 2 6. x = 1 or x = 1 2 7 2 6. x = −2 or x = 7 7. x = 1 7. x = −4 or x = 3 8. x = − 59 or x = 3 8. x = −10 or x = 2 9. x = − 65 or x = − 12 9. x = 2 10. x = − 85 or x = 2 70 2 3 10. x = −1 or x = 1 10.4 Inequalities Involving Fractions Series A Series B 1. (−1, 5] 1. (3, 7) ∪ (−∞, −4) 2. (−∞, −4) ∪ (7, ∞) 2. (−3, 0) ∪ (0, 3) 3. [ 32 , 2] ∪ (3, ∞) ∪ (−∞, − 12 ) 3. (−∞, −1) ∪ (0, 1) ∪ (1, ∞) 4. (−∞, −2) ∪ (− 32 , ∞) 4. (−∞, −1) ∪ [5, ∞) ∪ [ 43 , 25 ) 5. (2, 5] ∪ ( 21 , 1] 5. [−3, −1) ∪ (−1, 1] 6. (0, 2] ∪ (3, ∞) ∪ (−∞, −3] 6. (−4, −1] ∪ [0, ∞) 7. [−1, 1) ∪ [2, ∞) 7. (4, 6) ∪ (−∞, −3) ∪ (13, ∞) 8. (1, 2) ∪ (−∞, 0) ∪ (2, ∞) 8. ( 13 , 2] ∪ (− 12 , 14 ] √ √ 9. ( 2, 2] ∪ [−2, − 2) 9. (1, 3) ∪ (9, ∞) 10. (2, 3) ∪ (0, 23 ) 10. (4, 6) ∪ (−∞, −3) ∪ (13, ∞) 10.5 Exponential Equations Series A Series B 1. x = 5 1. x = −1 2. x = 1 2 2. x = − 14 3. x = 4 3. x = −2 4. x = ln 4 or x = ln 8 4. x = 1 or x = 2 5. x = 3 5. x = ln 2 6. x = 0 or x = 4 6. x = 1 or x = 2 7. x = 3 7. x = 8. x = 2 8. x = −4 9. x = 1 or x = 2 9. x = 2 10. x = ln 2 1 9 10. x = 2 71 15. Answers to the Exercises 10.6 Exponential Inequalities Series A Series B 1. (−1, ∞) 1. [1, ∞) 2. [1, ∞) 2. (1, ∞) 3. (−∞, 2) ∪ (3, ∞) 3. [ 32 , 2) 4. [ 35 , ∞) 4. [− 25 , ∞) 5. (−∞, 2] ∪ [3, ∞) 5. (−∞, 0] ∪ (3, ∞) 6. (−∞, 0) ∪ (1, ∞) 6. (1, 2) 7. (−∞, 2) 7. (−∞, 3) 8. (−∞, 1] ∪ [2, ∞) 8. (−∞, 0] 9. ( 21 , ∞) 9. (−∞, 0) ∪ (1, ∞) 10. (−∞, ∞) 10. (0, ∞) 10.7 Logarithmic Equations Series A 1. x = Series B √ 2 3 2 2. x = 5 2. x = 3 3. x = 1 or x = 6 3. x = e /(e2 −1) 4. x = 2 4. x = 1 or x = 4 5. x = 3 5. x = 2 √ √ 6. x = 10 − 10 2 or x = 10 + 10 2 6. x = 7. x = 5 7. x = 7 8. x = 25 e3 −1 8. x = 9. x = e2 or x = e3 9. x = e or x = e2 10. x = e or x = e−3 72 1. x = 5 2 e −3 1−e 10. x = −3 10.8 Logarithmic Inequalities Series A Series B 1. (− 12 , 12] 1. [−1, 0) ∪ (1, 2] 2. (−∞, −1) ∪ (4, ∞) 2. [−8, −6) ∪ (0, 2] 3. [−3, −1) ∪ (5, 7] 3. [−1, 1) ∪ (7, 9] 4. (0, e−2 ) ∪ [e2 , ∞) 4. (e−1 , e2 ) 5. (6, 9] 5. (2, 4) 6. (−3, 0) ∪ (0, 3) √ √ 7. (−∞, e − e) ∪ (e + e, ∞) 6. (3, e +3] 8. (0, 31 ) ∪ (1, ∞) 8. (−4, −3] 9. (1, 2] 9. (3, 4) 10. (−∞, −6] ∪ [2, 6) 7. (−∞, 32 ] 10. (0, 1) ∪ (3, ∞) 73 15. Answers to the Exercises 10.9 Trigonometric Equations and Inequalities Series A Series B 1. {2kπ} ∪ { 13 π + 32 kπ } 1. {2kπ} ∪ { 52 kπ} 2. { 13 kπ} 2. {kπ} ∪ { 41 π + 12 kπ} 3. { 52 kπ} ∪ { 32 π + 2kπ } 3. { 32 kπ } 4. { 15 π + 25 kπ} 4. {kπ} ∪ { 14 π + 12 kπ} 5. { 12 π + 2kπ} 5. { 83 π + 12 kπ} 6. {kπ } ∪ { 41 π + kπ} 6. { 21 π + kπ } ∪ { 14 π + kπ} 7. {kπ } ∪ { 16 π + kπ} ∪ { 56 π + kπ } 7. {kπ} 8. { 12 π + kπ} ∪ { 14 π + 12 kπ } 8. { 61 π + 13 kπ} 9. { 13 π + kπ} ∪ { 23 π + kπ } 9. { 31 π + 23 kπ} 10. { 18 π + 12 kπ} 10. { 61 π + kπ } ∪ { 56 π + kπ} 11. { 14 π + kπ} ∪ { 12 π + kπ } 11. { 61 π + 2kπ} ∪ { 56 π + 2kπ} 12. { 76 π + 2kπ} ∪ { 11 kπ + 2kπ} 6 12. { 41 π + kπ } ∪ { 12 π + kπ} 13. {kπ } 13. { 41 π + kπ } ∪ { 12 π + kπ} 14. { 14 π + 12 kπ} 14. { 32 kπ } ∪ {kπ } 15. { 12 π + kπ} ∪ { 14 π + 12 kπ } 15. { 34 π + kπ } Series C 74 Series D 1. ( 13 π + 4kπ, 53 π + 4kπ ) 1. (0 + kπ, π + kπ ) 2. [ 12 π + 2kπ, π + 2kπ ) 2. ( 41 π + 12 kπ, 21 π + 12 kπ] 3. [− 14 π + kπ, 14 π + kπ] 3. [0 + kπ, 21 π + kπ ) 10.10 Equations Involving Square Roots Series A Series B 1. x = 6 1. x = 12 2. x = 13 2. x = 7 3. x = 3 or x = 11 3. x = 10 or x = 2 4. x = 4. x = 9 31 4 5. x = 12 or x = 0 5. x = 4 6. x = −3 or x = 1 or x = −1 √ √ 7. x = 2 3 or x = −2 3 6. x = 0 or x = 6 √ √ 7. x = 3 or x = − 3 8. x = 1 8. x = 4 √ 3 9. p = 4 − 2 2 10. p = −1 9. x = 7 10. p = 2 10.11 Inequalities Involving Square Roots Series A Series B 1. [9, ∞) 1. [3, 4) ∪ (4, ∞) 2. [−6, 30) 2. [3, 7) 3. (−5, 0) 3. (2, 4] 4. [− 12 , 4] 4. [4, 8] , ∞) 5. (−∞, 83 ) ∪ ( 10 3 5. (−∞, 2) ∪ (4, ∞) 6. [2, 5) 6. (1, 3) 7. [4, ∞) 7. (3, ∞) 8. [−2, −1] ∪ [2, ∞) 8. [ 72 , 64] √ √ 9. (− 5, −1) ∪ (1, 5) 9. (0, 1) ∪ (4, ∞) 10. [−1, 3) ∪ (8, ∞) 10. [3, 4) ∪ ( 21 , ∞) 4 75 15. Answers to the Exercises 11 Rationalizing Denominators (extra) Series A 1. 2. 3. 4. 5. 6. Series B √ 1. − 14 5 − 45 √ √ 2. 12 2 − 21 6 √ 1 3. 10 5 √ √ 4. 3 + 2 √ 5. 73 − 23 10 √ √ 4 2 3 + 17 5 6. 17 √ √ 5−2 2−2 √ √ 1 3 − 13 6 3 √ 5 3 6 √ 2 3+1 3 √ 2 6+5 √ √ 1 2 + 13 3 2 1 5 7. 7. 1 1 2 √ 2 + 11 49 √ 9. 12 3 + 21 √ √ 10. 23 3 − 43 5 − √ 8. 3 − 2 2 √ 9. 2 + 1 √ 10. 2 3 − 3 8. 6 49 3 4 12 Partial Fraction Decomposition A (extra) Series B Series A 1. (x − 3)−1 − 2(2x − 1)−1 2. 1 (x 2 − 1)−1 − 12 (x + 1)−1 3. 3(x − 3)−1 − (x − 1)−1 4. 1 (x 3 + 1)−1 + 23 (x − 2)−1 2. 1 (2x 6 − 3)−1 − 61 (2x + 3)−1 3. (x + 1)−1 + 3(x − 3)−1 4. 6 (x 5 + 2)−1 + 59 (x − 3)−1 5. 2(x − 2)−1 5. 3(3 − x)−1 6. 2(x − 2)−1 + 4(x − 2)−2 6. 6(x − 3)−1 + 18(x − 3)−2 7. 1 (3x 3 − 1)−1 + 13 (3x 3 − 1)−2 7. 1 (2x 2 − 1)−1 + 29 (2x − 1)−2 8. 2(x − 1)−1 + 1 8. 4(x − 2)−1 + 1 9. 2(x − 1)−1 + 2(x − 1)−2 9. 6(x − 3)−1 + 18(x − 3)−2 10. 1 − 3(x 2 + 1)−2 − 2(x 2 + 1)−1 76 1. 2(2x + 1)−1 − (x + 3)−1 10. 1 − 6(x 2 + 3)−1 13 Partial Fraction Decomposition B (extra) Series B Series A 1. 6x − 5 2. 1 x 2 + 17 4 1. 4x + 5 + 17 (2x 4 − 1)−1 −1 1 (x 2 2. 2x + 9 + 9(2x − 1)−1 3. x − 1 4. x + 1 (x 2 − 1) + −1 + 1) 5. x + x 2 + x 3 + 1 3. x + 7 4. x 2 − 1 + (x 2 + 1)−1 5. x 3 − 2x 2 + 4x − 8 6. −x − 3 6. x − 1 7. 2x − 2 + 3(x − 1)−1 8. x − 2x + 1 = (x − 1) 2 2 9. x − 2 + (7x − 10)/(x − 4) = x + (x − 2)−1 + 6(x + 2)−1 − 2 2 10. x 2 − 2x + (x 2 + 1)−1 7. 2x + 5(x − 2)−1 8. x 2 − 4x − 3 9. 2x − 2 + (5x − 3)/(x 2 − 1) 10. x 2 + 2x + (1 − 4x)/(x 2 + 1) 14 Inverse Trigonometric Functions (extra) 1. The graph of y = sin x can be reflected in the line y = x, where the resulting image is a graph of a function if we take [− 21 π, 12 π ] as domain for x. For this domain we have a graph which is increasing everywhere. It should be no problem to see that this also holds for a graph which is decreasing everywhere. So, for the domain [ 21 π, 32 π ] the resulting image should also be the graph of a function. This can be checked using a graphing calculator, by entering on the TI-83: y1=sin(x) and then using DrawInv y1 on the Draw-menu to inspect the reflected graph. You can now check the same for y = cos x on [0, π]. 2. As above. 77 15. Answers to the Exercises 14 Inverse Trigonometric Functions (extra) Series A 1. 1 π 6 1. 2. 3 π 4 2. − 14 π 3. 1 π 3 3. − 13 π 4. 1 π 6 4. 5. 1 π 4 5. 0 6. − 12 π 1 π 3 1 π 3 6. − 14 π 7. 1 π 4 7. 1 π 4 8. 1 π 6 8. 1 π 6 9. 0 10. π 78 Series B 9. 0 10. − 12 π