Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
CHAPTER 8 CHEMICAL EQUATIONS SOLUTIONS TO REVIEW QUESTIONS 1. The purpose of balancing chemical equations is to conform to the Law of Conservation of Mass. Ratios of reactants and products can then be easily determined. 2. The coefficients in a balanced chemical equation represent the number of moles (or molecules or formula units) of each of the chemical species in the reaction. 3. (a) (b) (c) Yes. It is necessary to conserve atoms to follow the Law of Conservation of Mass. No. Molecules can be taken apart and rearranged to form different molecules in reactions. Moles of molecules are not conserved (b). Moles of atoms are conserved (a). 4. A chemical change that absorbs heat energy is said to be an endothermic reaction. The products are at a higher energy level than the reactants. A chemical change that liberates heat energy is said to be an exothermic reaction. The products are at a lower energy level than the reactants. 5. The charts are one way of keeping track of the number of atoms of each element on the reactant side of a chemical equation and on the product side of an equation. The top row in a chart gives the number and types of atoms on the reactant side and the bottom row gives the number and types of atoms on the product side of a chemical equation. Using a chart may make it easier to see where coefficients are needed in a reaction and what number that coefficient should be. 6. The symbols indicate whether a substance is a solid, a liquid, a gas or is in an aqueous solution. A solid is indicated by (s), a liquid by (l ), a gas by (g) and an aqueous solution by (aq). 7. The activity series given in Table 8.2 shows the relative activity of certain metals and halogens. As you move up the table starting with gold (Au) and ending with potassium (K) the activity increases. The same is true as you move up from iodine (I2) to fluorine (F2). The table is useful for predicting the products of some reactions because an element in the series will replace any element given below it. For example, hydrogen can replace copper, silver, mercury or gold in a chemical reaction. 8. A combustion reaction is an exothermic process (usually burning) done in the presence of oxygen. - 76 - - Chapter 8 - SOLUTIONS TO EXERCISES 1. (a) exothermic (b) endothermic (c) exothermic (d) (e) exothermic endothermic 2. (a) endothermic (b) exothermic (c) endothermic (d) (e) exothermic exothermic 2 H2 þ O2 ! 2 H2 O combination (b) 3 C þ Fe2 O3 ! 2 Fe þ 3 CO single displacement (c) H2 SO4 þ 2 NaOH ! 2 H2 O þ Na2 SO4 double displacement 3. (a) D (d) Al2 ðCO3 Þ3 ! Al2 O3 þ 3 CO2 decomposition (e) 2 NH4 I þ Cl2 ! 2 NH4 Cl þ I2 single displacement H2 þ Br2 ! 2 HBr combination 4. (a) (b) D 4 Al þ 3 C ! Al4 C3 combination D (c) BaðClO3 Þ2 ! BaCl2 þ 3 O2 decomposition (d) CrCl3 þ 3 AgNO3 ! CrðNO3Þ 3 þ 3 AgCl double displacement (e) 2 H2 O2 ! 2 H2 O þ O2 decomposition 5. There are many ways to form oxides. For example: (1) some metals plus oxygen, (2) some nonmetals plus oxygen, (3) some metals plus water (steam), (4) combustion of hydrocarbons 6. A metal and a nonmetal can react to form a salt; also an acid plus a base. 7. (a) 2 MnO2 þ CO ! Mn2 O3 þ CO2 (b) Mg3 N2 þ 6 H2 O ! 3 MgðOHÞ2 þ 2 NH3 (c) 4 C3 H5 ðNO3 Þ3 ! 12 CO2 þ 10 H2 O þ 6 N2 þ O2 (d) 4 FeS þ 7 O2 ! 2 Fe2 O3 þ 4 SO2 (e) 2 CuðNO3 Þ2 ! 2 CuO þ 4 NO2 þ O2 (f) 3 NO2 þ H2 O ! 2 HNO3 þ NO (g) 2 Al þ 3 H2 SO4 ! Al2 ðSO4 Þ3 þ 3 H2 (h) 4 HCN þ 5 O2 ! 2 N2 þ 4 CO2 þ 2 H2 O (i) 2 B5 H9 þ 12 O2 ! 5 B2 O3 þ 9 H2 O - 77 - - Chapter 8 8. (a) 2 SO2 þ O2 ! 2 SO3 D (b) 4 Al þ 3 MnO2 ! 3 Mn þ 2 Al2 O3 (c) 2 Na þ 2 H2 O ! 2 NaOH þ H2 (d) 2 AgNO3 þ Ni ! NiðNO3 Þ2 þ 2 Ag (e) Bi2 S3 þ 6 HC1 ! 2 BiCl3 þ 3 H2 S (f) 2 PbO2 ! 2 PbO þ O2 (g) 2 LiAlH4 ! 2 LiH þ 2 Al þ 3 H2 (h) 2 KI þ Br2 ! 2 KBr þ I2 (i) 2 K3 PO4 þ 3 BaCl2 ! 6 KCl þ Ba3 ðPO4 Þ2 9. (a) D D MgðsÞ þ 2 HBrðaqÞ ! H2 ðgÞ þ MgBr2 ðaqÞ D (b) CaðClO3 Þ2 ðsÞ ! CaCl2 ðsÞ þ 3 O2 ðgÞ (c) 4 LiðsÞ þ O2 ðgÞ ! 2 Li2 OðsÞ (d) 3 BaðBrO3 Þ2 ðaqÞ þ 2 Na3 PO4 ðaqÞ ! Ba3 ðPO4 Þ2 ðsÞ þ 6 NaBrO3 ðaqÞ (e) 2 HC2 H3 O2 ðaqÞ þ Na2 CO3 ðaqÞ ! 2 NaC2 H3 O2 ðaqÞ þ CO2 ðgÞ þ H2 Oðl Þ (f) 3 AgNO3 ðaqÞ þ AlI3 ðaqÞ ! 3 AgIðsÞ þ AlðNO3 Þ3 ðaqÞ 10. (a) D MgCO3 ðsÞ ! MgOðsÞ þ CO2 ðgÞ (b) CaðOHÞ2 ðsÞ þ 2 HClO3 ðaqÞ ! CaðClO3 Þ2 ðaqÞ þ 2 H2 Oðl Þ (c) Fe2 ðSO4 Þ3 ðaqÞ þ 6 NaOHðaqÞ ! 2 FeðOHÞ3 ðsÞ þ 3 Na2 SO4 ðaqÞ (d) ZnðsÞ þ 2 HC2 H3 O2 ðaqÞ ! H2 ðgÞ þ ZnðC2 H3 O2 Þ2 ðaqÞ (e) SO3 ðgÞ þ H2 Oðl Þ ! H2 SO4 ðaqÞ (f) Na2 CO3 ðaqÞ þ CoCl2 ðaqÞ ! CoCO3 ðsÞ þ 2 NaClðaqÞ 11. (a) H2 SO4 ðaqÞ þ 2 NaOHðaqÞ ! 2 H2 Oðl Þ þ Na2 SO4 ðaqÞ þ heat (b) PbðNO3 Þ2 ðaqÞ þ 2 KBrðaqÞ ! PbBr2 ðsÞ þ 2 KNO3 ðaqÞ (c) NH4 ClðaqÞ þ AgNO3 ðaqÞ ! AgClðsÞ þ NH4 NO3 ðaqÞ (d) CaCO3 ðsÞ þ 2 HC2 H3 O2 ðaqÞ ! CaðC2 H3 O2 Þ2 ðaqÞ þ H2 Oðl Þ þ CO2 ðgÞ 12. (a) (b) (c) (d) CuSO4 ðaqÞ þ 2 KOHðaqÞ ! CuðOHÞ2 ðsÞ þ K2 SO4 ðaqÞ H3 PO4 ðaqÞ þ 3 NaOHðaqÞ ! Na3 PO4 ðaqÞ þ 3 H2 Oðl Þ þ heat 3 NaHCO3 ðsÞ þ H3 PO4 ðaqÞ ! Na3 PO4 ðaqÞ þ 3 H2 Oðl Þ þ 3 CO2 ðgÞ 2 AlCl3 ðaqÞ þ 3 PbðNO3 Þ2 ! 3 PbCl2 ðsÞ þ 2 AlðNO3 Þ3 ðaqÞ - 78 - - Chapter 8 13. (a) (b) (c) (d) 2 LiðsÞ þ 2 H2 OðlÞ ! H2 ðgÞ þ 2 LiOHðaqÞ Br2 ðl Þ þ 2 KIðaqÞ ! I2 ðsÞ þ 2 KBrðaqÞ CuðsÞ þ HClðaqÞ ! no reaction 2 AlðsÞ þ 3 H2 SO4 ðaqÞ ! 3 H2 ðgÞ þ Al2 ðSO4 Þ3 ðaqÞ 14. (a) (b) (c) (d) 3 ZnðsÞ þ 2 FeCl3 ðaqÞ ! 2 FeðsÞ þ 3 ZnCl2 ðaqÞ 2 RbðsÞ þ 2 H2 Oðl Þ ! H2 ðgÞ þ 2 RbOHðaqÞ I2 ðsÞ þ CaCl2 ðaqÞ ! no reaction 3 MgðsÞ þ 2 AlðNO3 Þ3 ðaqÞ ! 2 AlðsÞ þ 3 MgðNO3 Þ2 ðaqÞ 15. (a) (b) (c) (d) SrðsÞ þ 2 H2 Oðl Þ ! H2 ðgÞ þ SrðOHÞ2 ðsÞ BaCl2 ðaqÞ þ 2 AgNO3 ðaqÞ ! BaðNO3 Þ2 ðaqÞ þ 2 AgClðsÞ MgðsÞ þ ZnBr2 ðaqÞ ! ZnðsÞ þ MgBr2 ðaqÞ 2 KðsÞ þ Cl2 ðgÞ ! 2 KClðsÞ 16. (a) (b) (c) (d) Li2 OðsÞ þ H2 O ! 2 LiOHðaqÞ Na2 SO4 ðaqÞ þ PbðNO3 Þ2 ðaqÞ ! 2 NaNO3 ðaqÞ þ PbSO4 ðaqÞ ZnðsÞ þ CuSO4 ðaqÞ ! CuðsÞ þ ZnSO4 ðaqÞ 4 AlðsÞ þ 3 O2 ðgÞ ! 2 Al2 O3 ðsÞ 17. (a) 2 Ba þ O2 ! 2 BaO (b) (c) (d) (e) 18. (a) D 2 NaHCO3 ! Na2 CO3 þ H2 O þ CO2 Ni þ CuSO4 ! NiSO4 þ Cu MgO þ 2 HCl ! MgCl2 þ H2 O H3 PO4 þ 3 KOH ! K3 PO4 þ 3 H2 O C þ O2 ! CO2 D (b) (c) (d) 2 AlðClO3 Þ3 ! 9 O2 þ 2 A1Cl3 CuBr2 þ Cl2 ! CuCl2 þ Br2 2 SbCl3 þ 3ðNH4 Þ2 S ! Sb2 S3 þ 6 NH4 Cl (e) 2 NaNO3 ! 2 NaNO2 þ O2 19. (a) (b) (c) D One mole of MgBr2 reacts with two moles of AgNO3 to yield one mole of Mg(NO3)2 and two moles of AgBr. One mole of N2 reacts with three moles of H2 to produce two moles of NH3. Two moles of C3H7OH react with nine moles of O2 to form six moles of CO2 and eight moles of H2O. - 79 - - Chapter 8 20. (a) (b) Two moles of Na react with one mole of Cl2 to produce two moles of NaCl and release 822 kJ of energy. The reaction is exothermic. One mole of PCI5 absorbs 92.9 kJ of energy to produce one mole of PC13 and one mole of Cl2. The reaction is endothermic. 21. (a) (b) 2 HgOðsÞ þ 182 kJ ! 2 HgðlÞ þ O2 ðgÞ 2 H2 ðgÞ þ O2 ðgÞ ! 2 H2 OðlÞ þ 571:6 kJ 22. (a) (b) CaðsÞ þ 2 H2 Oðl Þ ! CaðOHÞ2 ðaqÞ þ H2 ðgÞ þ 635:1 kJ 2 BrF3 þ 601:6 kJ ! Br2 þ 3 F2 23. (a) (b) (c) (d) decomposition reaction, 2 AgClO3 ðsÞ ! 2 AgClðsÞ þ 3 O2 ðgÞ single-displacement, FeðsÞ þ H2 SO4 ðaqÞ ! H2 ðgÞ þ FeSO4 ðaqÞ combination reaction, ZnðsÞ þ Cl2 ðgÞ ! ZnCl2 ðsÞ double-displacement, HBrðaqÞ þ KOHðaqÞ ! KBrðaqÞ þ H2 Oðl Þ 24. (a) (b) (c) (d) single-displacement, NiðsÞ þ PbðNO3 Þ2 ðaqÞ ! PbðsÞ þ NiðNO3 Þ2 ðaqÞ combination, MgOðsÞ þ H2 Oðl Þ ! MgðOHÞ2 ðsÞ decomposition, 2 HgOðsÞ ! 2 Hgðl Þ þ O2 ðgÞ double-displacement, PbCl2 ðaqÞ þ ðNH4 Þ2 CO3 ðaqÞ ! PbCO3 ðsÞ þ 2 NH4 ClðaqÞ 25. Combinations that form a precipitate: CaðNO3 Þ2 ðaqÞ þ ðNH4 Þ2 SO4 ðaqÞ ! CaSO4 ðsÞ þ 2 NH4 NO3 ðaqÞ CaðNO3 Þ2 ðaqÞ þ ðNH4 Þ2 CO3 ðaqÞ ! CaCO3 ðsÞ þ 2 NH4 NO3 ðaqÞ AgNO3 ðaqÞ þ NH4 ClðaqÞ ! AgClðsÞ þ NH4 NO3 ðaqÞ 2 AgNO3 ðaqÞ þ ðNH4 Þ2 SO4 ðaqÞ ! Ag2 SO4 ðsÞ þ 2 NH4 NO3 ðaqÞ 2 AgNO3 ðaqÞ þ ðNH4 Þ2 CO3 ðaqÞ ! Ag2 CO3 ðsÞ þ 2 NH4 NO3 ðaqÞ 26. P4 O10 þ 12 HC1O4 ! 6 Cl2 O7 þ 4 H3 PO4 10 O þ 12ð4 OÞ 6ð7 OÞ þ 4ð4 OÞ 10 O þ 48 O 42 O þ 16 O 58 O 58 O 27. In 7 Al2(SO4)3 there are: (a) 14 atoms of Al (b) 21 atoms of S (c) (d) 84 atoms of O 119 total atoms 28. CaCO3 ðsÞ þ 2 HC2 H3 O2 ðaqÞ ! CaðC2 H3 O2 Þ2 ðaqÞ þ CO2 ðgÞ þ H2 Oðl Þ - 80 - - Chapter 8 29. $ + + CH4 + 2 O2 $ CO2 + 2 H2O + + C O H 30. The metals that should be chosen are (b) zinc, (c) aluminum, and (e) calcium. These metals are more active than nickel, therefore will react in a solution of nickel(II) chloride; (a) copper and (d) lead are less active and will not react with nickel(II) chloride solution, (see Table 8.2) Equations: Zn þ NiCl2 ! Ni þ ZnCl2 2 Al þ 3 NiCl2 ! 3 Ni þ 2 AlCl3 Ca þ NiCl2 ! Ni þ CaCl2 31. Ti þ NiðNO3 Þ2 ! Reaction occurs ! Reaction occurs Ti þ PbðNO3 Þ2 Ti þ MgðNO3 Þ2 ! no reaction Ti is above Ni and Pb in the activity series since both react. Ti is below Mg in the series since it will not replace Mg. From the printed activity series in the chapter Ni lies above Pb so the order is: Mg Ti Ni Pb 32. (a) (b) (c) (d) 4 Cs þ O2 ! 2 Cs2 O 2 Al þ 3 S ! Al2 S3 SO3 þ H2 O ! H2 SO4 Na2 O þ H2 O ! 2 NaOH 33. (a) 2 ZnO ! 2 Zn þ O2 D D (b) SnO2 ! Sn þ O2 (c) Na2 CO3 ! Na2 O þ CO2 (d) MgðClO3 Þ2 ! MgCl2 þ 3 O2 34. (a) D D MgðsÞ þ 2 HClðaqÞ ! H2 ðgÞ þ MgCl2 ðaqÞ - 81 - - Chapter 8 (b) (c) (d) 2 NaBrðaqÞ þ Cl2 ðgÞ ! 2 NaClðaqÞ þ Br2 ðl Þ 3 ZnðsÞ þ 2 FeðNO3 Þ3 ðaqÞ ! 2 FeðsÞ þ 3 ZnðNO3 Þ2 ðaqÞ 2 AlðsÞ þ 3 CuðNO3 Þ2 ðaqÞ ! 3 CuðsÞ þ 2 AlðNO3 Þ3 ðaqÞ 35. (a) 2 ðNH4 Þ3 PO4 ðaqÞ þ 3 BaðNO3 Þ2 ðaqÞ ! Ba3 ðPO4 Þ2 ðsÞ þ 6 NH4 NO3 ðaqÞ (b) Na2 SðaqÞ þ PbðC2 H3 O2 Þ2 ðaqÞ ! PbSðsÞ þ 2 NaC2 H3 O2 ðaqÞ (c) CuSO4 ðaqÞ þ CaðClO3 Þ2 ðaqÞ ! CaSO4 ðsÞ þ CuðClO3 Þ2 ðaqÞ (d) 2 NaOHðaqÞ þ H2 C2 O4 ðaqÞ ! Na2 C2 O4 ðaqÞ þ 2 H2 Oðl Þ (e) H3 PO4 ðaqÞ þ 3 KOHðaqÞ ! K3 PO4 ðaqÞ þ 3 H2 Oðl Þ (f) H2 SO4 ðaqÞ þ Na2 CO3 ðaqÞ ! Na2 SO4 ðaqÞ þ H2 Oðl Þ þ CO2 ðgÞ 36. (a) K2 SO4 ðaqÞ þ BaðC2 H3 OÞ2 ðaqÞ ! 2 KC2 H3 O2 ðaqÞ þ BaSO4 ðsÞ (b) H2 SO4 ðaqÞ þ 2 LiOHðaqÞ ! Li 2 SO4 ðaqÞ þ 2 H2 Oðl Þ (c) ðNH4 Þ3 PO4 ðaqÞ þ NaBrðaqÞ ! no reaction (d) CaI2 ðaqÞ þ 2 AgNO3 ðaqÞ ! CaðNO3 Þ2 ðaqÞ þ 2 AgIðsÞ (e) 2 HNO3 ðaqÞ þ SrðOHÞ2 ðaqÞ ! SrðNO3 Þ2 ðaqÞ þ 2 H2 Oðl Þ (f) CsNO3 ðaqÞ þ CaðOHÞ2 ðaqÞ ! No reaction 37. (a) (b) CH4 þ 2 O2 ! CO2 þ 2 H2 O 2 H2 þ O2 ! 2 H2 O 38. (a) (b) (c) CH4 þ 2 O2 ! CO2 þ 2 H2 O 2 C3 H6 þ 9 O2 ! 6 CO2 þ 6 H2 O C6 H5 CH3 þ 9 O2 ! 7 CO2 þ 4 H2 O 39. 1. combustion of fossil fuels 2. destruction of the rain forests by burning 3. increased population 40. Carbon dioxide, methane, and water are all considered to be greenhouse gases. They each act to trap the heat near the surface of the earth in the same manner in which a greenhouse is warmed. 41. The effects of global warming can be reduced by: 1. developing new energy sources (not dependant on fossil fuels) 2. conservation of energy resources 3. recycling 4. decreased destruction of the rain forests and other forests - 82 - - Chapter 8 42. About half the carbon dioxide released into the atmosphere remains in the air. The rest is absorbed by plants and used in photosynthesis or is dissolved in the oceans. 43. In the Northern Hemisphere, the concentration of CO2 peaks once in May, dropping as plants use the CO2 to produce growth, until October when the second peak occurs as a result of the fallen leaves decaying. 44. Over the last 100 years, global temperatures have risen 0.74 C. 45. Ag+, Co2+, Ba2+, Zn2+, Sn2+, +Cl– AgCl(s) Co2+, Ba2+, Zn2+, Sn2+, – +SO24 BaSO4(s) Co2+, Zn2+, Sn2+, +F – ZnF2(s) Co2+, Sn2+, +I– SnI2(s) Co2+ - 83 -