Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Updating Montessori Fractions to a Linear Model Joan A. Cotter, Ph.D. [email protected]" AMS Annual Conference! Philadelphia, Pennsylvania! Saturday, March 14, 2015 (Happy Pi Day)! 8:00 a.m.– 9:30 a.m.! © Joan A. Cotter, Ph.D.. 2015 Fractions in the Comics © Joan A. Cotter, Ph.D.. 2015 Fractions in the Comics © Joan A. Cotter, Ph.D.. 2015 Meanings of a Fraction • One or more equal parts of a whole. • One or more equal parts of a collection. • Division of two whole numbers. • Location on a number line. • Ratio of two numbers. © Joan A. Cotter, Ph.D.. 2015 Meanings of a Fraction Which meaning is used in everyday life? • One or more equal parts of a whole. • One or more equal parts of a collection. • Division of two whole numbers. • Location on a number line. • Ratio of two numbers. © Joan A. Cotter, Ph.D.. 2015 Meanings of a Fraction Which meaning is mathematical? • One or more equal parts of a whole. • One or more equal parts of a collection. • Division of two whole numbers. • Location on a number line. • Ratio of two numbers. © Joan A. Cotter, Ph.D.. 2015 Meanings of a Fraction Which meaning is found in elementary textbooks? • One or more equal parts of a whole. • One or more equal parts of a collection. • Division of two whole numbers. • Location on a number line. • Ratio of two numbers. © Joan A. Cotter, Ph.D.. 2015 Definition of a Fraction An expression that indicates the quotient of two quantities. American Heritage Dictionary A number in the form a b where b ≠ 0. Arizona Standards © Joan A. Cotter, Ph.D.. 2015 Montessori and Fractions • Developed from geometry, not arithmetic. • A fraction is always less than one. Psychogeometry p. 165 • A fraction contains two numbers with “a symbol between them indicating division.” p. 165 • We no longer “reduce” fractions; we simplify them. • Montessori shows centesimal frame with zero at the 3 o’clock position and increases counterclockwise. (This is mathematically correct.) © Joan A. Cotter, Ph.D.. 2015 Problems Teaching Fractions • Common meaning is “small amount.” • Introduced as part of a whole (not whole story). • Fraction names use ordinal words. • Are “improper” fractions somehow undesirable? • Mixed numbers different in arithmetic, algebra. • Our culture implies fractions are difficult. • Many adults have only a partial understanding. © Joan A. Cotter, Ph.D.. 2015 How have fractions been taught? © Joan A. Cotter, Ph.D.. 2015 Fraction Model: “Fish Tank” What fraction of the fish are blue? © Joan A. Cotter, Ph.D.. 2015 count the blue fish 2 count all the fish 5 Fraction Model: “Words” This is fourths. © Joan A. Cotter, Ph.D.. 2015 This is thirds. Fraction Models: Circles Are we comparing angles, arcs, or area? © Joan A. Cotter, Ph.D.. 2015 Fraction Models: Circles Experts in visual literacy say that comparing quantities in pie charts is difficult because most people think linearly. It is easier to compare along a straight line than compare pie slices. askoxford.com Specialists also suggest refraining from using more than one pie chart for comparison. www.statcan.ca © Joan A. Cotter, Ph.D.. 2015 How can we model fractions mathematically? © Joan A. Cotter, Ph.D.. 2015 Fraction Model: Linear Chart 1 4 1 2 1 3 1 5 1 6 1 7 1 8 1 9 1 10 © Joan A. Cotter, Ph.D.. 2015 1 7 1 8 1 9 1 10 1 1 6 1 5 1 9 1 10 1 8 1 3 1 4 1 6 1 7 1 10 1 9 1 8 1 10 1 5 1 7 1 9 1 2 1 4 1 3 1 4 1 1 5 5 1 1 1 6 6 6 1 1 1 7 7 7 1 1 1 1 8 8 8 8 1 1 1 1 9 9 9 9 1 1 1 1 1 10 10 10 10 10 Fraction Model: Distracting Color 1 1 2 1 2 1 3 1 3 1 4 1 4 1 5 1 6 1 7 1 8 1 9 1 10 © Joan A. Cotter, Ph.D.. 2015 1 4 1 5 1 5 1 6 1 6 1 7 1 7 1 8 1 9 1 10 1 7 1 8 1 8 1 9 1 10 1 9 1 10 1 3 1 9 1 10 1 4 1 5 1 5 1 1 1 6 6 6 1 1 1 7 7 7 1 1 1 1 8 8 8 8 1 1 1 1 9 9 9 9 1 1 1 1 1 10 10 10 10 10 Fraction Model: “Missing Parts” 1 4 1 3 1 1 2 1 4 1 3 1 4 1 1 1 1 1 5 5 5 5 5 1 1 1 1 1 1 6 6 6 6 6 6 1 1 1 1 1 1 1 1 8 8 8 8 8 8 8 8 1 1 1 1 1 1 1 1 1 1 10 10 10 10 10 10 10 10 10 10 1 1 1 1 1 1 1 1 1 1 1 1 12 12 12 12 12 12 12 12 12 12 12 12 © Joan A. Cotter, Ph.D.. 2015 1 4 1 3 1 2 Fraction Chart 1 4 1 2 1 3 1 5 1 6 1 7 1 8 1 9 1 10 1 7 1 8 1 9 1 10 1 1 6 1 5 1 9 1 10 1 8 1 3 1 4 1 6 1 7 1 10 1 9 1 8 1 10 1 5 1 7 1 9 1 2 1 4 1 3 1 4 1 1 5 5 1 1 1 6 6 6 1 1 1 7 7 7 1 1 1 1 8 8 8 8 1 1 1 1 9 9 9 9 1 1 1 1 1 10 10 10 10 10 Ask the children to put it together like a puzzle. © Joan A. Cotter, Ph.D.. 2015 Fraction Stairs 1 10 1 9 1 8 1 7 1 6 1 5 1 4 1 3 1 2 1 A hyperbola. © Joan A. Cotter, Ph.D.. 2015 Fraction Stairs 1 10 1 9 1 8 1 7 1 6 1 5 1 4 1 3 1 2 1 Two hyperbolas. © Joan A. Cotter, Ph.D.. 2015 Fraction Stairs: “Missing Parts” 1 12 1 10 1 8 1 6 1 5 1 4 1 3 1 2 1 No pattern. © Joan A. Cotter, Ph.D.. 2015 How do we name fractions? © Joan A. Cotter, Ph.D.. 2015 Fraction Naming • In English, except for “half,” we use ordinal numbers to name fractions. • Sometimes we use “quarter” for a fourth. • A quarter of a hour (15 minutes) • A quarter of a dollar (25¢) • A quarter of a gallon (quart) • A Quarter Pounder (¼ of a pound, or 4 oz) © Joan A. Cotter, Ph.D.. 2015 Fraction Naming 1 © Joan A. Cotter, Ph.D.. 2015 one Fraction Naming 1 © Joan A. Cotter, Ph.D.. 2015 one divided by Fraction Naming 1 3 © Joan A. Cotter, Ph.D.. 2015 one divided by three Fraction Naming 1 1 3 © Joan A. Cotter, Ph.D.. 2015 1 3 1 3 1 3 one divided by three How can we practice basic fraction concepts? © Joan A. Cotter, Ph.D.. 2015 Games Games Math = Books Reading Games provide interesting repetition within a social setting. © Joan A. Cotter, Ph.D.. 2015 Unit Fraction War Aim: To help the children realize a unit fraction decreases as the denominator increases. Object of the game: To collect all, or most, of the cards with the greater unit fraction. © Joan A. Cotter, Ph.D.. 2015 Unit Fraction War 1 4 © Joan A. Cotter, Ph.D.. 2015 1 5 Unit Fraction War 1 8 © Joan A. Cotter, Ph.D.. 2015 1 2 Unit Fraction War 1 6 1 3 © Joan A. Cotter, Ph.D.. 2015 1 6 1 4 More Fraction Naming 1 1 3 1 3 1 3 Two one-thirds. 1 2 Two s is 3 3 Read as “two-thirds.” © Joan A. Cotter, Ph.D.. 2015 More Fraction Naming 1 1 Two divided into 3 equal parts. 2 3 © Joan A. Cotter, Ph.D.. 2015 two divided by three More Fraction Naming 1 1 3 1 3 1 1 3 1 3 1 3 Two divided into 3 equal parts. 2 3 © Joan A. Cotter, Ph.D.. 2015 two divided by three 1 s = two 3 1 3 Fraction Chart 1 4 1 2 1 3 1 5 1 6 1 7 1 8 1 9 1 10 1 7 1 8 1 9 1 10 1 1 6 1 5 1 9 1 10 1 8 1 3 1 4 1 6 1 7 1 10 1 9 1 8 1 10 1 5 1 7 1 9 1 2 1 4 1 1 5 5 1 1 1 6 6 6 1 1 1 7 7 7 1 1 1 1 8 8 8 8 1 1 1 1 9 9 9 9 1 1 1 1 1 10 10 10 10 10 How many fourths in a whole? © Joan A. Cotter, Ph.D.. 2015 1 4 1 3 Fraction Chart 1 4 1 2 1 3 1 5 1 6 1 7 1 8 1 9 1 10 1 7 1 8 1 9 1 10 1 1 6 1 5 1 9 1 10 1 8 1 3 1 4 1 6 1 7 1 10 1 9 1 8 1 10 1 5 1 7 1 9 1 2 1 4 1 3 1 4 1 1 5 5 1 1 1 6 6 6 1 1 1 7 7 7 1 1 1 1 8 8 8 8 1 1 1 1 9 9 9 9 1 1 1 1 1 10 10 10 10 10 How many sixths in a whole? How many eighths? © Joan A. Cotter, Ph.D.. 2015 Concentrating on One Game Aim: To help the children realize that 5 fifths, 8 eighths, and so forth, make a whole. Object of the game: To find the pairs that make a whole. © Joan A. Cotter, Ph.D.. 2015 Concentrating on One 3 5 2 5 © Joan A. Cotter, Ph.D.. 2015 Concentrating on One 3 8 © Joan A. Cotter, Ph.D.. 2015 Fraction Chart 1 4 1 2 1 3 1 5 1 6 1 7 1 8 1 9 1 10 1 7 1 8 1 9 1 10 1 1 6 1 5 1 9 1 10 1 8 1 3 1 4 1 6 1 7 1 10 1 9 1 8 1 10 1 5 1 7 1 9 Which is more, 4/5 or 5/6? © Joan A. Cotter, Ph.D.. 2015 1 2 1 4 1 3 1 4 1 1 5 5 1 1 1 6 6 6 1 1 1 7 7 7 1 1 1 1 8 8 8 8 1 1 1 1 9 9 9 9 1 1 1 1 1 10 10 10 10 10 Fraction Circles 1 2 1 2 1 3 1 3 1 3 1 4 1 4 1 5 1 4 1 4 1 5 1 6 1 5 1 5 1 5 1 6 1 6 1 6 1 6 1 6 Which is more, 4/5 or 5/6? Which model is easier? © Joan A. Cotter, Ph.D.. 2015 Fraction Chart 1 4 1 2 1 3 1 5 1 6 1 7 1 8 1 9 1 10 1 7 1 8 1 9 1 10 1 1 6 1 5 1 9 1 10 1 8 1 3 1 4 1 6 1 7 1 10 1 9 1 8 1 10 1 5 1 7 1 9 Which is more, 7/8 or 8/9? © Joan A. Cotter, Ph.D.. 2015 1 2 1 4 1 3 1 4 1 1 5 5 1 1 1 6 6 6 1 1 1 7 7 7 1 1 1 1 8 8 8 8 1 1 1 1 9 9 9 9 1 1 1 1 1 10 10 10 10 10 Fraction Chart 1 4 1 2 1 3 1 5 1 6 1 7 1 8 1 9 1 10 1 7 1 8 1 9 1 10 1 1 6 1 5 1 9 1 10 1 8 1 3 1 4 1 6 1 7 1 10 1 9 1 8 1 10 An interesting pattern. © Joan A. Cotter, Ph.D.. 2015 1 5 1 7 1 9 1 2 1 4 1 3 1 4 1 1 5 5 1 1 1 6 6 6 1 1 1 7 7 7 1 1 1 1 8 8 8 8 1 1 1 1 9 9 9 9 1 1 1 1 1 10 10 10 10 10 Fraction Chart 1 4 1 2 1 3 1 5 1 6 1 7 1 8 1 9 1 10 1 7 1 8 1 9 1 10 1 1 6 1 5 1 9 1 10 1 8 1 3 1 4 1 6 1 7 1 10 1 9 1 8 1 10 1 5 1 7 1 9 1 2 1 4 1 1 5 5 1 1 1 6 6 6 1 1 1 7 7 7 1 1 1 1 8 8 8 8 1 1 1 1 9 9 9 9 1 1 1 1 1 10 10 10 10 10 How many fourths equal a half? © Joan A. Cotter, Ph.D.. 2015 1 4 1 3 Fraction Chart 1 4 1 2 1 3 1 5 1 6 1 7 1 8 1 9 1 10 1 7 1 8 1 9 1 10 1 1 6 1 5 1 9 1 10 1 8 1 3 1 4 1 6 1 7 1 10 1 9 1 8 1 10 1 5 1 7 1 9 1 2 1 4 1 4 1 1 5 5 1 1 1 6 6 6 1 1 1 7 7 7 1 1 1 1 8 8 8 8 1 1 1 1 9 9 9 9 1 1 1 1 1 10 10 10 10 10 How many fourths equal a half? Eighths? © Joan A. Cotter, Ph.D.. 2015 1 3 Fraction Chart 1 4 1 2 1 3 1 5 1 6 1 7 1 8 1 9 1 10 1 7 1 8 1 9 1 10 1 1 6 1 5 1 9 1 10 1 8 1 3 1 4 1 6 1 7 1 10 1 9 1 8 1 10 1 5 1 7 1 9 1 2 1 4 1 3 1 4 1 1 5 5 1 1 1 6 6 6 1 1 1 7 7 7 1 1 1 1 8 8 8 8 1 1 1 1 9 9 9 9 1 1 1 1 1 10 10 10 10 10 How many fourths equal a half? Eighths? Sevenths? © Joan A. Cotter, Ph.D.. 2015 Fraction Model: Distracting Color 1 1 2 1 2 1 3 1 3 1 4 1 4 1 5 1 6 1 7 1 8 1 9 1 10 © Joan A. Cotter, Ph.D.. 2015 1 4 1 5 1 5 1 6 1 6 1 7 1 7 1 8 1 9 1 10 1 7 1 8 1 8 1 9 1 10 1 9 1 10 1 3 1 9 1 10 1 4 1 5 1 5 1 1 1 6 6 6 1 1 1 7 7 7 1 1 1 1 8 8 8 8 1 1 1 1 9 9 9 9 1 1 1 1 1 10 10 10 10 10 Fraction Chart 1 4 1 2 1 3 1 5 1 6 1 7 1 8 1 9 1 10 1 7 1 8 1 9 1 10 1 1 6 1 5 1 9 1 10 1 8 1 4 1 6 1 7 1 10 1 9 What is 1/4 plus 1/8? © Joan A. Cotter, Ph.D.. 2015 1 3 1 8 1 10 1 5 1 7 1 9 1 2 1 4 1 3 1 4 1 1 5 5 1 1 1 6 6 6 1 1 1 7 7 7 1 1 1 1 8 8 8 8 1 1 1 1 9 9 9 9 1 1 1 1 1 10 10 10 10 10 Fraction Chart 1 4 1 2 1 3 1 5 1 6 1 7 1 8 1 9 1 10 1 7 1 8 1 9 1 10 1 1 6 1 5 1 9 1 10 1 8 1 4 1 6 1 7 1 10 1 9 What is 1/4 plus 1/8? © Joan A. Cotter, Ph.D.. 2015 1 3 1 8 1 10 1 5 1 7 1 9 1 2 1 4 1 3 1 4 1 1 5 5 1 1 1 6 6 6 1 1 1 7 7 7 1 1 1 1 8 8 8 8 1 1 1 1 9 9 9 9 1 1 1 1 1 10 10 10 10 10 Fraction Chart 1 4 1 2 1 3 1 5 1 6 1 7 1 8 1 9 1 10 1 7 1 8 1 9 1 10 1 1 6 1 5 1 9 1 10 1 8 1 3 1 4 1 6 1 7 1 10 1 9 1 8 1 10 1 5 1 7 1 9 What is 1/4 plus 1/8? [3/8] © Joan A. Cotter, Ph.D.. 2015 1 2 1 4 1 3 1 4 1 1 5 5 1 1 1 6 6 6 1 1 1 7 7 7 1 1 1 1 8 8 8 8 1 1 1 1 9 9 9 9 1 1 1 1 1 10 10 10 10 10 Partial Chart 1 8 © Joan A. Cotter, Ph.D.. 2015 1 4 1 1 2 1 8 1 8 1 4 1 8 1 8 1 4 1 2 1 8 1 8 1 4 1 8 Partial Chart 1 8 © Joan A. Cotter, Ph.D.. 2015 1 4 1 1 2 1 8 1 8 1 4 1 8 1 8 1 4 1 2 1 8 1 8 1 4 1 8 Partial Chart © Joan A. Cotter, Ph.D.. 2015 Partial Chart 1 © Joan A. Cotter, Ph.D.. 2015 2 3 4 5 6 Fraction War Aim: To practice comparing ones, halves, fourths, and eighths in preparation for reading a ruler with inches. Object of the game: To capture all the cards. © Joan A. Cotter, Ph.D.. 2015 Fraction War 1 1 2 1 2 1 4 1 8 1 8 © Joan A. Cotter, Ph.D.. 2015 1 4 1 8 1 8 1 4 1 8 1 8 1 4 1 8 1 8 1 4 1 8 Fraction War 1 1 2 1 2 1 4 1 8 5 8 © Joan A. Cotter, Ph.D.. 2015 1 4 1 8 1 8 1 4 1 8 1 8 1 4 1 8 1 8 3 4 1 8 Advanced Fraction War © Joan A. Cotter, Ph.D.. 2015 Fractions > 1 1 4 1 2 1 3 1 5 1 6 1 7 1 8 1 9 1 10 © Joan A. Cotter, Ph.D.. 2015 1 7 1 8 1 9 1 10 1 1 6 1 5 1 9 1 10 1 8 1 3 1 4 1 6 1 7 1 10 1 9 1 8 1 10 1 5 1 7 1 9 1 2 1 4 1 3 1 4 1 1 5 5 1 1 1 6 6 6 1 1 1 7 7 7 1 1 1 1 8 8 8 8 1 1 1 1 9 9 9 9 1 1 1 1 1 10 10 10 10 10 1 8 Mixed to Improper Fractions Each row of connected rectangles represents 1. © Joan A. Cotter, Ph.D.. 2015 Mixed to Improper Fractions Each row of connected rectangles represents 1. Write each quantity as a mixed number and as an improper fraction. © Joan A. Cotter, Ph.D.. 2015 Mixed to Improper Fractions Each row of connected rectangles represents 1. Write each quantity as a mixed number and as an improper fraction. 3 11 24 = 4 two 4s + 3 = 11 © Joan A. Cotter, Ph.D.. 2015 Mixed to Improper Fractions Each row of connected rectangles represents 1. Write each quantity as a mixed number and as an improper fraction. 3 11 24 = 4 two 4s + 3 = 11 1 13 43 = 3 four 3s + 1 = 13 © Joan A. Cotter, Ph.D.. 2015 Mixed to Improper Fractions Each row of connected rectangles represents 1. Write each quantity as a mixed number and as an improper fraction. 3 24 = 3 35 11 4 two 4s + 3 = 11 1 13 43 = 3 four 3s + 1 = 13 © Joan A. Cotter, Ph.D.. 2015 = 18 5 three 5s + 3 = 18 Improper to Mixed Fractions Write each quantity as an improper fraction, then circle the wholes and write again as a mixed number. 1 5 1 3 © Joan A. Cotter, Ph.D.. 2015 1 5 1 5 1 3 1 5 1 5 1 3 1 5 1 3 1 5 1 5 1 3 1 5 1 5 1 5 Improper to Mixed Fractions Write each quantity as an improper fraction, then circle the wholes and write again as a mixed number. 1 5 1 3 © Joan A. Cotter, Ph.D.. 2015 1 5 1 5 1 3 1 5 1 5 1 3 1 5 1 3 1 5 1 5 1 3 1 5 1 5 1 5 11 = 5 2 15 Improper to Mixed Fractions Write each quantity as an improper fraction, then circle the wholes and write again as a mixed number. 1 5 1 3 © Joan A. Cotter, Ph.D.. 2015 1 5 1 5 1 3 1 5 1 5 1 3 1 5 1 3 1 5 1 5 1 3 1 5 1 5 1 5 5 3 11 = 5 = 1 23 2 15 Fraction of Geometric Figures 1 Shade 2 © Joan A. Cotter, Ph.D.. 2015 Fraction of Geometric Figures 1 Shade 2 © Joan A. Cotter, Ph.D.. 2015 2 Shade 3 Fraction of Geometric Figures 1 Shade 2 © Joan A. Cotter, Ph.D.. 2015 2 Shade 3 1 Shade 4 Fraction of Geometric Figures 1 Shade 2 © Joan A. Cotter, Ph.D.. 2015 2 Shade 3 1 Shade 4 Making the Whole Draw the whole. 1 3 © Joan A. Cotter, Ph.D.. 2015 Making the Whole Draw the whole. 1 3 © Joan A. Cotter, Ph.D.. 2015 1 3 1 3 1 3 Making the Whole Draw the whole. 1 3 1 3 2 3 2 3 1 3 © Joan A. Cotter, Ph.D.. 2015 1 3 1 3 Now let’s simplify fractions Multiples makes it simpler. © Joan A. Cotter, Ph.D.. 2015 Multiples Patterns • Patterns are integral to mathematics. • Patterns make learning easier. • Knowing the multiples is essential for simplifying fractions and algebra. • The multiples should NOT be used to count up for multiplication facts. © Joan A. Cotter, Ph.D.. 2015 Multiples Patterns Twos 2 4 6 8 10 12 14 16 18 20 The ones repeat in the second row. © Joan A. Cotter, Ph.D.. 2015 Multiples Patterns Fours 4 8 12 16 20 24 28 32 36 40 The ones repeat in the second row. © Joan A. Cotter, Ph.D.. 2015 Multiples Patterns Sixes and Eights © Joan A. Cotter, Ph.D.. 2015 6 12 18 24 30 36 42 48 54 60 8 16 24 32 40 48 56 64 72 80 Multiples Patterns Sixes and Eights 6 12 18 24 30 36 42 48 54 60 8 16 24 32 40 48 56 64 72 80 The ones in the 8s show the multiples of 2. © Joan A. Cotter, Ph.D.. 2015 Multiples Patterns Sixes and Eights 6 12 18 24 30 36 42 48 54 60 8 16 24 32 40 48 56 64 72 80 6 × 4 is the fourth number (multiple). © Joan A. Cotter, Ph.D.. 2015 6×4 Multiples Patterns Sixes and Eights 6 12 18 24 30 36 42 48 54 60 8 16 24 32 40 48 56 64 72 80 8 × 7 is the seventh number (multiple). © Joan A. Cotter, Ph.D.. 2015 8×7 Multiples Patterns Nines 9 18 27 36 45 90 81 72 63 54 The second row is written in reverse order. Also the digits in each number add to 9. © Joan A. Cotter, Ph.D.. 2015 Multiples Patterns Threes 3 6 9 12 15 18 21 24 27 30 The 3s have several patterns: Observe the ones. © Joan A. Cotter, Ph.D.. 2015 Multiples Patterns Threes 3 6 9 12 15 18 21 24 27 30 The 3s have several patterns: The tens are the same in each row. © Joan A. Cotter, Ph.D.. 2015 Multiples Patterns Threes 3 6 9 12 15 18 21 24 27 30 The 3s have several patterns: Add the digits in the columns. © Joan A. Cotter, Ph.D.. 2015 Multiples Patterns Threes 3 6 9 12 15 18 21 24 27 30 The 3s have several patterns: Add the digits in the columns. © Joan A. Cotter, Ph.D.. 2015 Multiples Patterns Threes 3 6 9 12 15 18 21 24 27 30 The 3s have several patterns: Add the digits in the columns. © Joan A. Cotter, Ph.D.. 2015 Multiples Patterns Threes 3 6 9 12 15 18 21 24 27 30 The 3s have several patterns: Add the “opposites.” © Joan A. Cotter, Ph.D.. 2015 Multiples Patterns Threes 3 6 9 12 15 18 21 24 27 30 The 3s have several patterns: Add the “opposites.” © Joan A. Cotter, Ph.D.. 2015 Multiples Patterns Sevens 7 14 21 28 35 42 49 56 63 70 The 7s have the 1, 2, 3… pattern. © Joan A. Cotter, Ph.D.. 2015 Multiples Patterns Sevens 7 14 21 28 35 42 49 56 63 70 Look at the tens. © Joan A. Cotter, Ph.D.. 2015 Multiples Patterns Sevens 7 14 21 28 35 42 49 56 63 70 Look at the tens. © Joan A. Cotter, Ph.D.. 2015 Multiples Patterns Sevens 7 14 21 28 35 42 49 56 63 70 Look at the tens. © Joan A. Cotter, Ph.D.. 2015 Simplifying Fractions 1 2 © Joan A. Cotter, Ph.D.. 2015 Simplifying Fractions 3=1 6 2 © Joan A. Cotter, Ph.D.. 2015 Simplifying Fractions 4=1 8 2 © Joan A. Cotter, Ph.D.. 2015 Simplifying Fractions 9 12 © Joan A. Cotter, Ph.D.. 2015 Simplifying Fractions 9 3 = 12 3 4 © Joan A. Cotter, Ph.D.. 2015 Simplifying Fractions 1 2 3 4 5 6 7 8 9 10 © Joan A. Cotter, Ph.D.. 2015 2 4 6 8 10 12 14 16 18 20 3 6 9 12 15 18 21 24 27 30 4 8 12 16 20 24 28 32 36 40 5 10 15 20 25 30 35 40 45 50 6 12 18 24 30 36 42 48 54 60 7 14 21 28 35 42 49 56 63 70 8 16 24 32 40 48 56 64 72 80 9 10 18 20 27 30 36 40 45 50 54 60 63 70 72 80 81 90 90 100 Simplifying Fractions 1 2 3 4 5 6 7 8 9 10 © Joan A. Cotter, Ph.D.. 2015 2 4 6 8 10 12 14 16 18 20 3 6 9 12 15 18 21 24 27 30 4 8 12 16 20 24 28 32 36 40 5 10 15 20 25 30 35 40 45 50 6 12 18 24 30 36 42 48 54 60 7 14 21 28 35 42 49 56 63 70 8 16 24 32 40 48 56 64 72 80 9 10 18 20 27 30 36 40 45 50 54 60 63 70 72 80 81 90 90 100 21 28 Simplifying Fractions 1 2 3 4 5 6 7 8 9 10 © Joan A. Cotter, Ph.D.. 2015 2 4 6 8 10 12 14 16 18 20 3 6 9 12 15 18 21 24 27 30 4 8 12 16 20 24 28 32 36 40 5 10 15 20 25 30 35 40 45 50 6 12 18 24 30 36 42 48 54 60 7 14 21 28 35 42 49 56 63 70 8 16 24 32 40 48 56 64 72 80 9 10 18 20 27 30 36 40 45 50 54 60 63 70 72 80 81 90 90 100 45 72 Simplifying Fractions 1 2 3 4 5 6 7 8 9 10 © Joan A. Cotter, Ph.D.. 2015 2 4 6 8 10 12 14 16 18 20 3 6 9 12 15 18 21 24 27 30 4 8 12 16 20 24 28 32 36 40 5 10 15 20 25 30 35 40 45 50 6 12 18 24 30 36 42 48 54 60 7 14 21 28 35 42 49 56 63 70 8 16 24 32 40 48 56 64 72 80 9 10 18 20 27 30 36 40 45 50 54 60 63 70 72 80 81 90 90 100 12 16 Simplifying Fractions 1 2 3 4 5 6 7 8 9 10 © Joan A. Cotter, Ph.D.. 2015 2 4 6 8 10 12 14 16 18 20 3 6 9 12 15 18 21 24 27 30 4 8 12 16 20 24 28 32 36 40 5 10 15 20 25 30 35 40 45 50 6 12 18 24 30 36 42 48 54 60 7 14 21 28 35 42 49 56 63 70 8 16 24 32 40 48 56 64 72 80 9 10 18 20 27 30 36 40 45 50 54 60 63 70 72 80 81 90 90 100 12 16 Simplifying Fractions 1 2 3 4 5 6 7 8 9 10 © Joan A. Cotter, Ph.D.. 2015 2 4 6 8 10 12 14 16 18 20 3 6 9 12 15 18 21 24 27 30 4 8 12 16 20 24 28 32 36 40 5 10 15 20 25 30 35 40 45 50 6 12 18 24 30 36 42 48 54 60 7 14 21 28 35 42 49 56 63 70 8 16 24 32 40 48 56 64 72 80 9 10 18 20 27 30 36 40 45 50 54 60 63 70 72 80 81 90 90 100 12 16 Subtracting Fractions Preliminary understanding 4684 –2372 2000 300 10 2 2312 © Joan A. Cotter, Ph.D.. 2015 Subtracting Fractions Preliminary understanding 4684 –2372 2000 300 10 2 2312 © Joan A. Cotter, Ph.D.. 2015 4684 –2879 2000 –200 10 –5 1805 Subtracting Fractions 4 3 –5 2 35 © Joan A. Cotter, Ph.D.. 2015 Subtracting Fractions 4 3 –5 2 35 © Joan A. Cotter, Ph.D.. 2015 – – 1 57 5 27 3 4 7 3 27 So how does multiplying fractions work? © Joan A. Cotter, Ph.D.. 2015 Fraction Chart 1 4 1 2 1 3 1 5 1 6 1 7 1 8 1 9 1 10 1 7 1 8 1 9 1 10 1 1 6 1 9 1 10 1 4 1 5 1 8 1 6 1 7 1 10 What is 1/2 of 1/2? © Joan A. Cotter, Ph.D.. 2015 1 3 1 9 1 8 1 10 1 5 1 7 1 9 1 2 1 4 1 3 1 4 1 1 5 5 1 1 1 6 6 6 1 1 1 7 7 7 1 1 1 1 8 8 8 8 1 1 1 1 9 9 9 9 1 1 1 1 1 10 10 10 10 10 Fraction Chart 1 4 1 2 1 3 1 5 1 6 1 7 1 8 1 9 1 10 1 7 1 8 1 9 1 10 1 1 6 1 5 1 9 1 10 1 8 1 3 1 4 1 6 1 7 1 10 1 9 1 8 1 10 1 5 1 7 1 9 1 2 1 4 1 3 1 4 1 1 5 5 1 1 1 6 6 6 1 1 1 7 7 7 1 1 1 1 8 8 8 8 1 1 1 1 9 9 9 9 1 1 1 1 1 10 10 10 10 10 What is 1/3 of 1/2? That’s multiplying fractions! © Joan A. Cotter, Ph.D.. 2015 Multiplying Fractions Multiplying is not exclusively repeated addition. 4×4=4+4+4+4 1 ×1 = 1 +? 2 2 2 © Joan A. Cotter, Ph.D.. 2015 Multiplying Fractions Multiplying is not exclusively repeated addition. Area is a better model. 4×4= © Joan A. Cotter, Ph.D.. 2015 Multiplying Fractions 1 ×1 = 2 2 One half of one half © Joan A. Cotter, Ph.D.. 2015 Multiplying Fractions 1 ×1 = 2 2 One half of one half © Joan A. Cotter, Ph.D.. 2015 Multiplying Fractions 1 ×1 =1 2 2 4 One half of one half © Joan A. Cotter, Ph.D.. 2015 Multiplying Fractions 1 ×1 =1 2 2 4 One half of one half © Joan A. Cotter, Ph.D.. 2015 Multiplying Fractions 2 ×3 = 3 4 Three fourths of two thirds © Joan A. Cotter, Ph.D.. 2015 Multiplying Fractions 2 ×3 = 3 4 Three fourths of two thirds © Joan A. Cotter, Ph.D.. 2015 Multiplying Fractions 2 ×3 = 6 3 4 12 Three fourths of two thirds © Joan A. Cotter, Ph.D.. 2015 Multiplying Fractions 2 ×3 = 6 = 1 3 4 12 2 Three fourths of two thirds © Joan A. Cotter, Ph.D.. 2015 Multiplying Fractions 2 ×3 = 6 3 4 12 The total number of rectangles is © Joan A. Cotter, Ph.D.. 2015 Multiplying Fractions 2 ×3 = 6 3 4 12 The total number of rectangles is 3 × 4. © Joan A. Cotter, Ph.D.. 2015 Multiplying Fractions 2 ×3 = 6 3 4 12 The total number of rectangles is 3 × 4. The number of colored crosshatched rectangles is © Joan A. Cotter, Ph.D.. 2015 Multiplying Fractions 2 ×3 = 6 3 4 12 The total number of rectangles is 3 × 4. The number of colored crosshatched rectangles is 2 × 3. © Joan A. Cotter, Ph.D.. 2015 Multiplying Fractions 2 ×3 = 6 3 4 12 The total number of rectangles is 3 × 4. The number of colored crosshatched rectangles is 2 × 3. © Joan A. Cotter, Ph.D.. 2015 What about dividing fractions? © Joan A. Cotter, Ph.D.. 2015 What is Division? Process of separating into equal groups • either number of groups, or • size of the groups © Joan A. Cotter, Ph.D.. 2015 What is Division? 6 ÷ 2 = __ How many 2s in 6? Number of groups of 2s © Joan A. Cotter, Ph.D.. 2015 What is Division? 6 ÷ 2 = __ How many 2s in 6? Number of groups of 2s; 3 groups © Joan A. Cotter, Ph.D.. 2015 Dividing Fractions 1 1÷ 2 = How many 1/2s in 1? 1 1 2 1 2 1 3 1 4 © Joan A. Cotter, Ph.D.. 2015 1 3 1 4 1 3 1 4 1 4 Dividing Fractions 1 1÷ 2 = 2 1 1 2 1 2 1 3 1 4 © Joan A. Cotter, Ph.D.. 2015 1 3 1 4 1 3 1 4 1 4 Dividing Fractions 1 1÷ 2 = 2 1 1÷ 3 = How many 1/3s in 1? 1 1 2 1 2 1 3 1 4 © Joan A. Cotter, Ph.D.. 2015 1 3 1 4 1 3 1 4 1 4 Dividing Fractions 1 1÷ 2 = 2 1 1÷ 3 = 3 1 1 2 1 2 1 3 1 4 © Joan A. Cotter, Ph.D.. 2015 1 3 1 4 1 3 1 4 1 4 Dividing Fractions 1 1÷ 2 = 2 1 1÷ 3 = 3 1 ÷ 14 = 4 1 1 2 1 2 1 3 1 4 © Joan A. Cotter, Ph.D.. 2015 1 3 1 4 1 3 1 4 1 4 Dividing Fractions 1 1÷ 2 = 2 1 1÷ 3 = 3 1 ÷ 14 = 4 1 1÷ 5 = 5 1 1÷ 6 = 6 © Joan A. Cotter, Ph.D.. 2015 Dividing Fractions 1 1÷ 2 = 2 1 1÷ 3 = 3 1 ÷ 14 = 4 1 1÷ 5 = 5 1 1÷ 6 = 6 © Joan A. Cotter, Ph.D.. 2015 1 ÷ 23 = How many 2/3s in 1? Dividing Fractions 1 1÷ 2 = 2 1 1÷ 3 = 3 1 ÷ 14 = 4 1 1÷ 5 = 5 1 1÷ 6 = 6 © Joan A. Cotter, Ph.D.. 2015 1 3 2 1 ÷ 3 = 12 = 2 How many 2/3s in 1? Dividing Fractions 1 1÷ 2 = 2 1 1÷ 3 = 3 1 ÷ 14 = 4 1 1÷ 5 = 5 1 1÷ 6 = 6 © Joan A. Cotter, Ph.D.. 2015 1 ÷ 23 = 32 Dividing Fractions 1 1÷ 2 = 2 1 ÷ 23 = 32 1 1÷ 3 = 3 1 ÷ 14 = 4 1 ÷ 34 = 1 1÷ 5 = 5 1 1÷ 6 = 6 © Joan A. Cotter, Ph.D.. 2015 How many 3/4s in 1? Dividing Fractions 1 1÷ 2 = 2 1 ÷ 23 = 32 1 1÷ 3 = 3 1 ÷ 14 = 4 1 ÷ 34 = 113 = 43 1 1÷ 5 = 5 1 1÷ 6 = 6 © Joan A. Cotter, Ph.D.. 2015 How many 3/4s in 1? Dividing Fractions 1 1÷ 2 = 2 1 ÷ 23 = 32 1 1÷ 3 = 3 1 ÷ 14 = 4 1 ÷ 34 = 43 1 1÷ 5 = 5 1 1÷ 6 = 6 © Joan A. Cotter, Ph.D.. 2015 Dividing Fractions © Joan A. Cotter, Ph.D.. 2015 1 1÷ 2 = 2 1 ÷ 23 = 32 1 1÷ 3 = 3 1 ÷ 14 = 4 1 ÷ 34 = 43 1 1÷ 5 = 5 1 1÷ 6 = 6 5 8 1÷ 8= 5 4 7 1÷ 7= 4 1 ÷ 25 = 52 Dividing Fractions 1 1÷ 2 = 2 1 ÷ 23 = 32 1 1÷ 3 = 3 1 ÷ 14 = 4 1 ÷ 34 = 43 1 1÷ 5 = 5 1 1÷ 6 = 6 5 8 1÷ 8= 5 4 7 1÷ 7= 4 1 ÷ 25 = 52 Guide the child to making the discovery that the answers are the inverted form of the divisor, the number by which another number is to be divided. © Joan A. Cotter, Ph.D.. 2015 Fraction Division War Aim: To help the child realize that the quotient resulting from dividing 1 by a fraction is the inverted form of the divisor. Object of the game: To collect the most cards with the greater quotient. © Joan A. Cotter, Ph.D.. 2015 Fraction Division War © Joan A. Cotter, Ph.D.. 2015 1 1 2 1 1 4 Fraction Division War © Joan A. Cotter, Ph.D.. 2015 1 1 2 =2 1 1 4 =4 Fraction Division War 1 1 © Joan A. Cotter, Ph.D.. 2015 Fraction Division War © Joan A. Cotter, Ph.D.. 2015 1 3 8 1 2 3 Fraction Division War © Joan A. Cotter, Ph.D.. 2015 1 3 8 8 =3 1 2 3 3 2 = More Dividing Fractions 1 1÷4=4 © Joan A. Cotter, Ph.D.. 2015 More Dividing Fractions 1 1÷4=4 1 2÷4=8 © Joan A. Cotter, Ph.D.. 2015 More Dividing Fractions 1 1÷4=4 1 1 2 ÷ 4 = 2 × (1 ÷ 4 ) © Joan A. Cotter, Ph.D.. 2015 More Dividing Fractions 1 1÷4=4 1 1 2 ÷ 4 = 2 × (1 ÷ 4 ) =2× © Joan A. Cotter, Ph.D.. 2015 4 =8 More Dividing Fractions 1 1÷4=4 1 1 2 ÷ 4 = 2 × (1 ÷ 4 ) = 2 × 4 = 8 © Joan A. Cotter, Ph.D.. 2015 More Dividing Fractions 1 1÷4=4 1 1 2 ÷ 4 = 2 × (1 ÷ 4 ) = 2 × 4 = 8 3 ÷ 14 = 12 © Joan A. Cotter, Ph.D.. 2015 More Dividing Fractions 1 1÷4=4 1 1 2 ÷ 4 = 2 × (1 ÷ 4 ) = 2 × 4 = 8 3 ÷ 14 = 3 × (1 ÷ 14 ) =3× © Joan A. Cotter, Ph.D.. 2015 4 = 12 More Dividing Fractions 1 1÷4=4 1 1 2 ÷ 4 = 2 × (1 ÷ 4 ) = 2 × 4 = 8 3 ÷ 14 = 3 × (1 ÷ 14 ) = 3 × 4 = 12 © Joan A. Cotter, Ph.D.. 2015 More Dividing Fractions 1 1÷4=4 1 1 2 ÷ 4 = 2 × (1 ÷ 4 ) = 2 × 4 = 8 3 ÷ 14 = 3 × (1 ÷ 14 ) = 3 × 4 = 12 1 1 2÷4 =2 © Joan A. Cotter, Ph.D.. 2015 More Dividing Fractions 1 1÷4=4 1 1 2 ÷ 4 = 2 × (1 ÷ 4 ) = 2 × 4 = 8 3 ÷ 14 = 3 × (1 ÷ 14 ) = 3 × 4 = 12 1 1 1 1 ÷ = × (1 ÷ 2 4 2 4) = 12 × © Joan A. Cotter, Ph.D.. 2015 4 =2 More Dividing Fractions 1 1÷4=4 1 1 2 ÷ 4 = 2 × (1 ÷ 4 ) = 2 × 4 = 8 3 ÷ 14 = 3 × (1 ÷ 14 ) = 3 × 4 = 12 1 1 1 1 1 ÷ = × (1 ÷ ) = 2 4 2 4 2×4=2 © Joan A. Cotter, Ph.D.. 2015 More Dividing Fractions 1 1÷4=4 1 1 2 ÷ 4 = 2 × (1 ÷ 4 ) = 2 × 4 = 8 3 ÷ 14 = 3 × (1 ÷ 14 ) = 3 × 4 = 12 1 1 1 1 1 ÷ = × (1 ÷ ) = 2 4 2 4 2×4=2 1 1 1 1 1 4 ÷ = × (1 ÷ ) = × 4 = 3 4 3 4 3 3 © Joan A. Cotter, Ph.D.. 2015 More Dividing Fractions 1 1÷4=4 1 1 2 ÷ 4 = 2 × (1 ÷ 4 ) = 2 × 4 = 8 3 ÷ 14 = 3 × (1 ÷ 14 ) = 3 × 4 = 12 1 1 1 1 1 ÷ = × (1 ÷ ) = 2 4 2 4 2×4=2 1 1 1 1 1 4 ÷ = × (1 ÷ ) = × 4 = 3 4 3 4 3 3 3 1 3 1 3 12 4 ÷ 4 = 4 × (1 ÷ 4 ) = 4 × 4 = 4 = 3 © Joan A. Cotter, Ph.D.. 2015 Harder Fraction Division War © Joan A. Cotter, Ph.D.. 2015 1 6 1 2 2 3 1 4 Summary Ways to look at fractions: • One or more equal parts of a whole. • One or more equal parts of a collection. • Division of two whole numbers. • Location on a number line. • Ratio of two numbers. © Joan A. Cotter, Ph.D.. 2015 Summary: Fraction Chart 1 4 1 2 1 3 1 5 1 6 1 7 1 8 1 9 1 10 © Joan A. Cotter, Ph.D.. 2015 1 7 1 8 1 9 1 10 1 1 6 1 5 1 9 1 10 1 8 1 3 1 4 1 6 1 7 1 10 1 9 1 8 1 10 1 5 1 7 1 9 1 2 1 4 1 3 1 4 1 1 5 5 1 1 1 6 6 6 1 1 1 7 7 7 1 1 1 1 8 8 8 8 1 1 1 1 9 9 9 9 1 1 1 1 1 10 10 10 10 10 Summary Fraction chart: • Allows fractions to be greater than 1. • Gives the big picture of fractions. • Provides practice in organizing fractions. • Shows the inverse relationship pattern. • Makes comparing fractions visible. • Makes fractions visualizable. © Joan A. Cotter, Ph.D.. 2015 Updating Montessori Fractions to a Linear Model Joan A. Cotter, Ph.D. [email protected]" AMS Annual Conference! Philadelphia, Pennsylvania! Saturday, March 14, 2015 (Happy Pi Day)! 8:00 a.m.– 9:30 a.m.! © Joan A. Cotter, Ph.D.. 2015