Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Exam 1 Solutions Math 231 February 22, 2007 1. (a) Write the general formula for integration by parts. (3 pts) Z Z SOLUTION: udv = uv − vdu Z (b) Compute sin(2x)e2x dx. (8 pts) SOLUTION: Use integration by parts twice. u = sin 2x, dv = e2x dx so du = 2 cos 2x and v = 12 e2x . This gives Z Z 1 2x 2x sin(2x)e dx = sin(2x)e − cos(2x)e2x dx. 2 We now do integration by parts again with u = cos 2x, dv = e2x dx so du = −2 sin 2x. This gives Z Z 1 1 2x 2x 2x 2x sin(2x)e dx = sin(2x)e − cos(2x)e − − sin(2x)e dx . 2 2 Solving for the integral in question we get Z 1 1 1 2x 2x 2x sin(2x)e dx = sin(2x)e − cos(2x)e + C. 2 2 2 2. (a) Draw the reference triangle for the substitution 4x = 5 sin θ. (3 pts) √ SOLUTION:This is a right triangle with sides 4x, 5, and hypotenuse 16x2 + 25. Z 1 p (b) Evaluate dx. (8 pts) x (ln x)2 − 9 1 SOLUTION: We use the trigonometric solution ln x = 3 sec θ, dx = 3 sec θ tan θ dθ. This x makes the new integral Z Z Z Z 1 3 sec θ tan θ 3 sec θ tan θ 3 sec θ tan θ p √ √ dθ = dx = dθ = dθ. 2 2 3 tan θ 9 sec θ − 9 9 tan θ − 9 x (ln x)2 − 9 Using the fact on the first page we complete the integral: Z sec θ dθ = ln | sec θ + tan θ| + C 1 Using the reference triangle we finish the problem: Z ln x p(ln x)2 − 9 1 p dx = ln + + C. 2 3 3 x (ln x) − 9 Z 3. (a) Evaluate sin4 (x) dx. (8 pts) SOLUTION: We use the half angle formula sin2 x = 21 (1 − cos 2x). Z Z 4 sin (x) dx = 2 Z 1 1 1 1 2 (1 − cos 2x) dx = − cos 2x + cos 2x dx 2 4 2 4 Now use the half angle formula cos2 2x = 21 (1 + cos 4x) to get Z Z (b) Evaluate 1 1 1 sin (x) dx = − cos 2x + (1 + cos 4x) dx 4 2 8 x sin 2x x sin 4x = − + + +C 4 4 8 32 4 Z tan3 x sec x dx. (8 pts) SOLUTION: We use the Pythagorean identity tan2 x + 1 = sec2 x. Z Z 3 tan x sec x dx = Z = Z = tan2 x tan x sec x dx (sec2 x − 1) sec x tan x dx (sec3 x − sec x) sec x tan x dx We use the u substitution u = sec x, du = sec x tan x dx and the integral becomes: Z 4. 1 1 (u3 − u) du = u4 − u2 + C = sec4 x − sec2 x + C. 2 2 (a) Find the general form of the partial fraction decomposition of find the actual values of A, B, etc.). (3pts) SOLUTION: A B Cx + D + + 2 2 x + 2 (x + 2) x +1 2 x2 − 2 (do not (x2 + 4x + 4)(x2 + 1) 4x2 + 3x + 2 . (6 pts) x3 + 2x2 + x SOLUTION: The partial fraction decomposition has the form (b) Find the partial fraction decomposition of B C A + + . x x + 1 (x + 1)2 This leads to the system of equations A+B =4 2A + B + C = 3 A=2 which yields the solution A = 2, B = 2, C = −3, so the partial fraction decomposition is 2 2 3 . + − x x + 1 (x + 1)2 4x2 + 3x + 2 dx. (4 pts) x3 + 2x2 + x SOLUTION: Z (c) Evaluate Z Z 5. Evaluate √ 4x2 + 3x + 2 dx = x3 + 2x2 + x Z 2 3 2 + − dx x x + 1 (x + 1)2 3 +C = 2 ln |x| + 2 ln |x + 1| + x+1 1 dx. Please work out any trigonometric substitutions that may be neces−x2 − 6x − 5 sary. (10 pts) SOLUTION: First we complete the square to get −x2 − 6x − 5 = 4 − (x + 3)2 Now use the trig substitution x + 3 = 2 sin θ dx = 2 cos θ dθ. Z Z Z 1 2 cos θ √ p dx = dθ = 1 dθ = θ + C −x2 − 6x − 5 4 − 4 sin2 θ We then use the reference triangle to finish the integral. Z 1 x+3 √ dx = arcsin + C. 2 −x2 − 6x − 5 Z 8 6. Determine if x−2/3 dx converges or diverges and evaluate the integral if it converges. (10 pts) −8 SOLUTION: This problem has an infinite integrand at x = 0, so we must separate the integral: Z 8 Z 0 Z 8 −2/3 −2/3 x dx = x dx + x−2/3 dx −8 −8 3 0 We then must use directional limits and we get Z 8 x −2/3 Z 0 8 Z −2/3 dx + x−2/3 dx −8 0 8 a 1/3 1/3 = lim− 3x + lim+ 3x dx = −8 x a→0 −8 1/3 = lim− 3a b→0 b 1/3 − 3(−8) + lim+ 3(8)1/3 − 3(b)1/3 b→0 a→0 1/3 = −3(−8) 1/3 + 3(8) = −3(−2) + 3(2) = 12. Thus the integral converges. Z 7. Determine the convergence of ∞ x−2 ln x dx and evaluate the integral if it converges. (9 pts) 1 SOLUTION: This improper integral requires integration by parts as the first step. We select u = ln x, dv = x−2 dx, and we get du = x−1 dx, v = −x−1 . We now have Z ∞ Z ∞ ln x ∞ −2 x ln x dx = − −x−2 dx 1 x 1 1 ln x a 1 a = lim − 1 a→∞ x 1 x 1 1 ln a ln 1 − − − = lim a→∞ a 1 a 1 =1 Thus the integral converges. The limit used the fact that was given on the front of the page that ln x lim = 0. x→∞ x 4