Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
245 practice for 1.1- 2.2 Disclaimer: The actual exam need not mirror this practice set. This is an aid to help you study.__ MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Solve the equation. x-5 x+3 1) = 7 2 A) - 26 5 1) B) - 11 5 C) - 2) -2x + 4 + 5(x + 1) = -(4x - 4) 5 13 A) B) 2 2 31 5 D) 31 9 2) 13 C) 7 5 D) 7 Decide whether the equation is an identity, a conditional equation, or a contradiction. Give the solution set. 3) 40x + 15 = 5(5x - 18) 3) A) Conditional; {-7} B) Conditional; {5} C) Contradiction; ∅ D) Identity; {all real numbers} 4) 4x - 28 = 2(2x - 16) A) Contradiction; ∅ C) Identity; {all real numbers} B) Conditional; {2} D) Conditional; {-2} 4) 5) 12(x - 3) = 2(6x - 2) - 32 A) Identity; {all real numbers} C) Contradiction; ∅ B) Conditional; {-36} D) Conditional; {0} 5) Solve the formula for the indicated variable. 6) I = Prt, for r I P-1 A) r = B) r = Pt It 7) F = 6) C) r = P - It D) r = P-I 1+t 9 C + 32, for C 5 A) C = F - 32 9 7) B) C = 5 (F - 32) 9 C) C = 9 (F - 32) 5 D) C = 5 F - 32 Solve for y. 8) 10x - 9y = 5 A) y = 10x + 14 9) 4x + 9 = 7y - 10 4x - 19 A) y = 7 8) B) y = 10x - 14 10x - 5 C) y = 9 B) y = 4x + 19 4x + 19 C) y = 7 10x + 5 D) y = 9 9) 1 D) y = 4x - 19 Solve the problem. 10) A rectangular Persian carpet has a perimeter of 240 inches. The length of the carpet is 24 in. more than the width. What are the dimensions of the carpet? A) Width: 108 in.; length: 132 in. B) Width: 72 in.; length: 96 in. C) Width: 48 in.; length: 72 in. D) Width: 96 in.; length: 120 in. 10) 11) In triangle ABC, angle A is three times as large as angle C. The measure of angle B is 30° less than that of angle C. Find the measure of the angles. A) 126° , 12° and 84° B) 84° , 12° and 84° C) 126° , 12° and 42° D) 84° , 12° and 42° 11) 12) In the morning, May drove to an appointment at 50 mph. Her average speed on the return trip in 1 the afternoon was 40 mph. The return trip took hour longer. How far did she travel to the 5 12) appointment? A) 0.8 mi B) 12 mi C) 40 mi D) 32 mi 13) How many liters of a 10% alcohol solution must be mixed with 80 liters of a 80% solution to get a 50% solution? A) 140 L B) 60 L C) 14 L D) 6 L 13) 14) Mardi received an inheritance of $70,000. She invested part at 7% and deposited the remainder in tax-free bonds at 8%. Her total annual income from the investments was $5300. Find the amount invested at 7%. A) $29,000 B) $15,000 C) $30,000 D) $64,700 14) Write the number as the product of a real number and i. 15) - -16 A) 4 B) i 16 15) C) 4i D) -4i Multiply or divide, as indicated. Simplify the answer. -10 16) -160 A) 1 4i B) - 16) 1 4 C) 1 4 D) - 1 i 4 Write the number in standard form a + bi. 6 - -108 17) 2 A) 3 - 3i 6 17) B) 3 + 6i 3 C) 3 + 6i 6 Find the sum or difference. Write the answer in standard form. 18) 6i + (-3 - i) A) -3 + 5i B) 3 - 7i C) 3 - 5i 19) (4 + 4i) + (-5 + 7i) - 8i A) -1 - 3i D) 3 - 3i 3 18) D) -3 + 7i 19) B) 9 + 11i C) -1 + 3i 2 D) -9 + 3i Find the product. Write the answer in standard form. 20) (9 - 4i)(2 + 9i) A) -18 - 89i B) -36i2 + 73i - 18 20) C) 54 - 73i D) 54 + 73i 21) (9 + 9i)(9 - 9i) A) 81 + 81i2 B) 81 - 81i2 C) 0 D) 162 21) 22) ( 6 - 5i)( 6 + 5i) A) 31 B) 11 C) 6 + 25i D) 6 - 25i B) -i C) -1 D) 1 22) Simplify the power of i. 23) i45 A) i 24) 23) 1 i-13 24) A) -1 B) -i C) 1 D) i Find the quotient. Write the answer in standard form. 4 + 3i 25) 5 + 3i A) 26) 11 27 i 34 34 B) 25) 29 3 i 16 16 C) 29 3 i + 34 34 D) 11 3 i 16 16 8 + 2i 4 - 8i A) - 1 + 26) 3 i 16 B) 24 28 i + 5 5 C) 1 9 i + 5 10 D) - 1 3 i + 24 16 Solve the equation by the zero-factor property. 27) x2 + 14x + 40 = 0 A) {2 10, -2 10} 27) B) {-10, -4} C) {-20, -8} D) {4, 10} B) {±13} C) {±13i} D) {84.5} 3 B) 5 3 C) - , 0 5 3 9 D) , 5 5 C) {-2 ± 2 5} D) {2, -6} Solve the equation by the square root property. 28) x2 = -169 A) {13} 29) (5x + 6)2 = 9 3 9 A) - , 5 5 28) 29) Solve the equation by completing the square. 30) x2 + 4x + 20 = 0 A) {-2 ± 4i} 30) B) {2 ± 4i} 3 31) x2 + 11x = -28 A) {4, 7} 31) B) {4, -7} C) {-4, -7} D) {-4, 7} Solve the equation using the quadratic formula. 32) 3x2 + 12x + 2 = 0 A) 33) 2 = A) -12 ± 30 3 B) 32) -6 ± 30 6 C) -6 ± 42 3 D) -6 ± 30 3 10 5 x x2 -10 ± 15 2 33) B) -5 ± 15 4 C) -5 ± 15 2 D) -5 ± 35 2 Solve the cubic equation. 34) x3 - 1 = 0 A) {1, 1 ± i 3} 35) x3 - 64 = 0 A) {4, -2 ± 2i 3} 34) 1 3 B) 1, ± i 2 2 C) {1, -1 ± i 3} D) {1, ± i} 35) B) {4, -2 ± 2i} C) {4, 2 ± 2i 6} D) {4, 2 ± 2 5} Solve the problem. 36) Find two consecutive odd integers whose product is 675. A) -25, -27 B) 25, 27 C) 25, -27 D) 25, 27 or -25, -27 36) 37) The sum of the squares of two consecutive even integers is 1252. Find the integers. A) 24, 26 B) 24, 26 or -24, -26 C) -24, -26 D) 25, -27 37) 38) The length of a rectangle is 10 inches more than its width. If 5 inches are taken from the length and added to the width, the figure becomes a square with an area of 196 square inches. What are the dimensions of the original figure? A) 14 in. by 14 in. B) 9 in. by 19 in. C) 9 in. by 14 in. D) 4 in. by 14 in. 38) 39) The area of a square is numerically 21 more than the perimeter. Find the length of the side. A) 25 units B) 98 units C) 7 units D) 28 units 39) 40) A ladder is resting against a wall. The top of the ladder touches the wall at a height of 9 ft. Find the length of the ladder if the length is 3 ft more than its distance from the wall. A) 12 ft B) 18 ft C) 15 ft D) 9 ft 40) Solve the equation. 2 3 41) +6= 17x 23x A) 5 2346 41) B) 1 2 C) 4 5 6 D) ∅ 42) 1 - 5 - x 36 =0 x2 42) A) {9, 4} 43) C) {9, -4} D) {-9, 4} 24 24 + =5 x-2 x+2 A) 44) B) {-9, -4} 2 , -10 5 43) B) {2, 10} C) - 5 , -10 2 D) - 2 , 10 5 -5x2 - 6 -15x = +6 x-4 x-4 A) - 6 ,3 5 44) B) {3} C) -5 ± 105 3 D) 6 , -3 5 Solve the problem. 45) Martha can rake the leaves in her yard in 7 hours. Her brother can do the job in 4 hours. How long will it take them to do the job working together? 28 28 1 1 A) hr B) hr C) hr D) hr 3 11 11 28 Solve the equation. 46) x = 4x + 12 A) {6, -2} 47) 49) 46) x+7+5=x A) {9, 18} 48) 3x + 1 = 3 + A) {5, 8} 5 45) B) {4} C) {6} D) ∅ B) {9} C) {2, 9} D) {2} 47) x-4 x2 - 14 = 1 A) {- 14, 14} 50) (x2 + 2)1/2 - (2x + 5)1/2 = 0 A) {3} 48) B) {-1} C) {-5, -8} D) ∅ 49) B) {- 15, 15} C) { 14} D) { 15} C) {-3, 1} D) ∅ 50) B) {3, -1} 51) x1/2 = 3x1/4 A) {0, 9} B) {0, 81} C) {0, 3} D) ∅ 52) 25x4 - 61x2 + 36 = 0 6 A) 1, 5 6 6 B) - , -1, 1, 5 5 5 C) -1, 6 5 5 D) -1, - , , 1 6 6 51) 52) 5 53) 3x-2 - 9x-1 + 6 = 0 53) 1 B) 1, 2 A) - 1, -2 1 C) - 1, 2 D) 1, 2 Solve and graph the inequality. Give answer in interval notation. 54) -4x + 3 ≤ -5x + 11 A) (-∞, -4) -9 -8 B) [8, ∞) -7 -6 -5 -4 -3 -2 -1 0 1 3 C) (-4, ∞) -9 -8 54) 4 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13 D) (-∞, 8] -7 -6 -5 -4 -3 -2 -1 0 1 3 4 55) -6(3x + 8) < -24x - 42 55) A) (-∞, -24) B) (-24, ∞) -29 -28 -27 -26 -25 -24 -23 -22 -21 -20 -19 -29 -28 -27 -26 -25 -24 -23 -22 -21 -20 -19 C) (1, ∞) -4 -3 D) (-∞, 1) -2 -1 0 1 2 3 4 5 6 -4 -3 -2 -1 0 1 2 3 4 5 6 56) -12 < -3x ≤ 0 56) A) [-4, 0) B) [0, 4] -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 C) [0, 4) D) (-4, 0] -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 57) 15 < 4x + 3 ≤ 31 57) A) [3, 7] B) [3, 7) -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 C) (3, 7] D) (3, 7) -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 Solve the quadratic inequality. Write the solution set in interval notation. 58) x2 + 7x ≤ -12 A) [-4, -3] B) (3, 4) C) (-∞, 3] ∪ [4, ∞) 6 58) D) [3, 4] 59) x2 - 4x - 21 ≤ 0 A) (-∞, -3] ∪ [7, ∞) B) [-3, 7] 60) (5 - 2x)2 ≤ -16 9 1 A) -∞, ∪ ,∞ 2 2 9 1 B) , 2 2 59) C) [7, ∞) D) (-∞, -3] 60) C) (-∞, ∞) Solve the inequality. Write the solution set in interval notation. 61) (x + 6)(x - 2)(x - 9) < 0 A) (-∞, -6) ∪ (2, 9) B) (9, ∞) C) (-6, 2) ∪ (9, ∞) 62) (x - 5)(x - 10)(x + 1) < 0 A) (-∞, -5) ∪ (1, 10) C) (-∞, -1) ∪ (5, 10) D) ∅ 61) D) (-∞, 2) 62) B) (-5, -1) ∪ (10, ∞) D) (-10, -5) ∪ (1, ∞) Solve the rational inequality. Write the solution set in interval notation. 1 63) >0 x + 10 A) (-10, ∞) 64) B) (10, -∞) C) [10, ∞] 63) D) (-∞, 10) 5x ≥ 15 -3x + 14 A) 21 14 , 5 3 C) -∞, 0 ∪ 65) 4 ≥ 64) B) 0, 14 ,∞ 3 14 3 D) -∞, 21 21 ,∞ ∪ 5 5 1 x 65) A) -∞, 0 ∪ 4,∞ B) -∞, 0 ∪ 1 ,∞ 4 C) 0, 1 4 D) 0, 4 Solve the problem. 66) The profit made when t units are sold, t > 0, is given by P = t2 - 30t + 200. Determine the number of units to be sold in order for P = 0 (the break- even point). A) t = 30 B) t = 20 or t = 10 C) t = -20 or t = -10 D) t > 20 Solve the equation. 67) |2x - 8| = 5 3 13 A) ,2 2 68) 67) 3 13 B) - , 2 2 13 C) 2 13 3 D) , 2 2 8 =5 x+5 A) 17 33 , 5 5 66) 68) B) {-5} C) - 7 17 33 ,5 5 D) 33 17 , 5 5 69) |9x - 2| = |8x - 5| 69) 3 B) ,7 17 A) - 7, 1 7 D) - 3, 17 C) 7, 1 Solve the inequality. Write the solution set in interval notation. 70) |5 - 4x| > 8 13 3 3 13 A) ,B) -∞, ,∞ ∪ 4 4 4 4 C) 71) 3 13 ,4 4 D) -∞, 70) 1 15 ,∞ ∪ 4 4 5 1 2 - x > 2 3 5 A) 71) 63 87 , 10 10 C) -∞, B) -∞, - 63 87 ,∞ ∪ 10 10 D) (-∞, ∞) 72) 2 - 3x ≤ 11 13 A) -3, 3 C) (-∞, 3] ∪ 72) 13 B) ,3 3 13 ,∞ 3 Solve the equation or inequality. 73) 5x + 3 + 6 = 10 1 7 A) - , 5 5 D) (-∞, -3] ∪ B) 1 7 ,3 3 C) Solve the equation. 76) 3x3 - 4x2 - 7x = 0 3 A) ,0 7 1 7 ,5 5 D) ∅ 74) 5 B) -∞, 8 5 1 ∪ - ,∞ 8 8 75) |8x - 8| - 8 ≥ -1 15 A) ,∞ 8 13 ,∞ 3 73) 74) |8x + 3| + 6 < 8 5 1 A) - , 8 8 C) -∞, - 87 63 ,∞ ∪ 10 10 D) ∅ 75) 1 15 B) ∞, ,∞ ∪ 8 8 1 15 C) , 8 8 D) ∅ 3 B) , 1, 0 7 7 C) , -1, 0 3 3 D) , -1 7 76) For the points P and Q, find the distance d(P, Q). 77) P(4, -1), Q(6, -7) A) 2 10 B) 32 77) C) 8 8 D) 32 2 For the points P and Q, find the coordinates of the midpoint of the segment PQ. 78) P(-3, -2), Q(4, -9) 7 7 A) (1, -11) B) (-7, 7) C) - , 2 2 78) 1 11 D) , 2 2 Graph the equation by determining the missing values needed to plot the ordered pairs. 79) y + x = 4; (1, ), (4, ), (3, ) 79) y 10 5 -10 -5 5 10 x -5 -10 A) B) y -10 y 10 10 5 5 -5 5 10 x -10 -5 -5 -5 -10 -10 C) 5 10 x 5 10 x D) y -10 y 10 10 5 5 -5 5 10 x -10 -5 -5 -5 -10 -10 Graph the equation by plotting points. 9 80) y = x+3 80) y 10 5 -10 -5 5 10 x -5 -10 A) B) y -10 y 10 10 5 5 -5 5 10 x -10 -5 -5 -5 -10 -10 C) 5 10 x 5 10 x D) y -10 y 10 10 5 5 -5 5 10 x -10 -5 -5 -5 -10 -10 10 81) y = 8 - x 81) y 10 5 -10 -5 5 10 x -5 -10 A) B) y -10 y 10 10 5 5 -5 5 10 x -10 -5 -5 -5 -10 -10 C) 5 10 x 5 10 x D) y -10 y 10 10 5 5 -5 5 10 x -10 -5 -5 -5 -10 -10 Find the center-radius form of the equation of the circle. 82) center (4, 0), radius 7 A) (x - 4)2 + y2 = 49 82) B) x2 + (y + 4)2 = 7 C) x2 + (y - 4)2 = 7 D) (x + 4)2 + y2 = 49 83) center (-8, -6), radius 17 A) (x + 6)2 + (y + 8)2 = 289 83) B) (x - 8)2 + (y - 6)2 = 17 D) (x + 8)2 + (y + 6)2 = 17 C) (x - 6)2 + (y - 8)2 = 289 11 Find the center and radius of the circle. 84) x2 + y2 + 8x - 10y - 8 = 0 84) A) center: (-5, 4); radius: 49 C) center: (-4, 5); radius: 7 B) center: (5, -4); radius: 7 D) center: (4, -5); radius: 49 85) 5x2 + 5y2 - 20x - 30y + 60 = 0 A) center: (3, 2), radius: 1 C) center: (2, 3), radius: 1 85) B) center: (-2, -3), radius: 1 D) center: (-3, -2), radius: 1 12 Answer Key Testname: 245EXAM1P 1) C 2) D 3) A 4) A 5) A 6) A 7) B 8) C 9) C 10) C 11) C 12) C 13) B 14) C 15) D 16) C 17) D 18) A 19) C 20) D 21) D 22) A 23) A 24) D 25) C 26) C 27) B 28) C 29) A 30) A 31) C 32) D 33) C 34) B 35) A 36) D 37) B 38) B 39) C 40) C 41) A 42) C 43) D 44) A 45) B 46) C 47) B 48) A 49) B 50) B 13 Answer Key Testname: 245EXAM1P 51) B 52) B 53) B 54) D 55) D 56) C 57) C 58) A 59) B 60) D 61) A 62) C 63) A 64) A 65) B 66) B 67) D 68) C 69) D 70) B 71) C 72) A 73) C 74) A 75) B 76) C 77) A 78) D 79) C 80) D 81) B 82) A 83) D 84) C 85) C 14