Download Notes Exam 3 to Exam 4

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
M130 Course Notes Exam 3 to Exam 4
4.1 Exponentials
1. The exponential function with base a is f (x) = ax for a > 0, a 6= 1.
2. Graphs of exponential when 0 < a < 1 and a > 1.
(a) Domain
(b) Range
(c) Passes through (0, 1)
(d) Always increasing/decreasing
(e) Horizontal asymptote
(f) Transformations
3. Base e
4.2 Logarithms
1. Note f (x) = ax is injective. Hence f −1 exists.
2. Defn: Let a 6= 1 be a positive number. The logarithmic function with base a is denoted
by loga and is defined by
loga x = y ⇐⇒ ay = x
3. Evaluating logs
(a) log1 = 0
(b) loga a = 1
(c) loga ax = x
(d) aloga x = x
4. Graphing (mono-inc.), passes through (1, 0)
5. Natural log
E.g.,
1. Simplify log4 (1/2)
2. Solve for x: log4 (x) = 2
3. Convert to log form 811/2 = 9
4. Convert to exp form log3 81 = 4
4.3 Logarithm Laws
1. log xy = log x + log y
2. log(x/y) = log x − log y
3. log xy = y log x
4. logb x =
logB x
logB b
5. Expand/Contract
4.4 Exponential and Logarithmic Equations
E.g.,
1. 2x = 8
2. 23x = 34
3. x2 2x − x2x = 2 · 2x
4. e2x − ex − 6 = 0
5. ln(2 + x) = 1
6. log2 (x2 − x − 2) = 2
7. ln(x − 1) + ln(x + 2) = 1
5.1 Unit Circle
1. x2 + y 2 = 1
2. is P on S 1 ?
3. Locating a point on S 1 given x/y value and Quadrant ...
4. Defn: The terminal point P (x, y) is the value obtained by moving t units from (1, 0) on
S 1 counterclockwise if t > 0 and clockwise for t < 0.
(a) t = π
(b) t = 0
(c) t = π/2
5. Defn: The reference number t corresponding to the terminal point for t is the shortest
distance on S 1 between T P (t) and the x-axis
5.2 Trigonometric Functions
1. On S 1 , sin θ = y, csc θ = 1/y, etc.
2. Consider rt. 4
3. Evaluating trig. function
4. Where each is positive/negative
5. Domain
(a) sin, cos: R
(b) tan, sec: R\ {π/2 + nπ}n∈Z
(c) cot, csc: R\ {nπ}n∈Z
6. csc θ = 1/ sin θ, etc.
7. Even/Odd
8. Pythagorean Identities
(a) sin2 θ + cos2 θ = 1
(b) tan2 θ + 1 = sec2 θ
(c) 1 + cot2 θ = csc2 θ
E.g.,
1. sin, cos, tan, cot, tan, sec, csc @0, π, π/
2. (−3/5, 4/5) is terminal point evaluate trig functions.
3. Sign of tan t sec t in Q IV
4. Write first in terms of second when in Q III tan t, cos t
5. Write first in terms of second when in Q IV sin t, sec t
5.3 Trigonometric Graphs
1. Periodicity Identities:
(a) sin(t + 2πn) = sin t for n ∈ Z
(b) cos(t + 2πn) = cos t for n ∈ Z
2. Graphs of Sine, Cosine
3. Ψ(x) = A sin k(x − γ) and χ(x) = A cos k(x − γ) for positive k have:
(a) Amplitude |A|
(b) Period 2π/k
(c) Phase Shift γ
(d) One period appears in the interval [γ, γ + 2π/k]
E.g.,
1. Find the amplitude, period, phase shift, and graph one period.
(a) y = 2 sin(x − π/3)
(b) y = cos[1/2(x + π/4)]
(c) y = 2 sin(2/3x − π/6)
2. The graph of one period is given. Determine the period, phase shift, and amplitude; and
give an equation.
5.4 More Trigonometric Graphs
1. Periodicity Identities:
(a) tan(t + π) = tan t
(b) cot(t + π) = cot t
(c) csc(t + 2π) = csc t
(d) sec(t + 2π) = sec t
2. Graphs of sec x, csc x, tan x, cot x
(a) On (−π/2, π/2), y = tan t is %.
(b) On (0, π), y = cot t is &.
(c) y = csc t:
(0, π) ∼ ∪
(π, 2π) ∼ ∩.
(d) y = sec t:
(0, π/2) ∼ RHS(∪)
(π, 3π/2) ∼ ∩
(3π/2, 2π) ∼ LHS(∪).
3. The functions y = a tan(kx) and y = a cot(kx) have period π/k.
4. Then functions y = a csc(kx) and y = a sec(kx) have period 2π/k.
E.g.,
1. Find the period and graph the function.
(a) y = tan(x/2)
(b) y = tan(x − π/4)
(c) y = 2 csc(x − π/3)
(d) y = sec[2(x + π/2)]
(e) y = cot(x − π/2)
(f) y = 1/2 sec(2πx − π)
6.1 Angle Measure
1. Convert between radians/degrees.
2. Defn: An angle is in standard position if one side of the angle is the x-axis.
3. Defn: Two angles in standard position are coterminal if their (non x-axis) sides coincide
4. How to reduce angles. (Review)
5. Arc length s = rθ
6. Area of a sector A = 21 r2 θ
E.g.,
1. (Length of arc/area of sector) that subtends central angle of 45◦ in a circle of radius 10.
2. A sector of a circle of radius 24 has an area of 288. Find the central angle.
6.2 Right Triangle Trigonometry
1. Trig. functions in reference to a triangle.
2. Special triangles
E.g.,
1. From the top of a 200ft building you check out hot c/hicks. If you spy a hottie and the
angle of depression to the hottie is 23◦ . How far are you from the hottie? How far is the
hottie from the building?
6.3 Trigonometric Functions of Angles
1. Trig. functions in reference to an imbedded triangle in a circle of radius r.
E.g.,
1. Find the values of the trig functions of θ if cos θ = −7/12 with θ ∈ QIII.
2. Find the values of the trig functions of θ if cot θ = 1/4 with sin θ < 0.
7.1 Trigonometric Identities
Pythagorean
1. sin2 θ + cos2 θ = 1
2. tan2 θ + 1 = sec2 θ
3. cot2 θ + 1 = csc2 θ
Reciprocal
1. tan θ =
sin θ
cos θ
2. cot θ =
cos θ
sin θ
3. sec θ =
1
cos θ
4. csc θ =
1
sin θ
=
1
tan θ
Cofunction
1. sin( π2 − θ) = cos θ
2. cos( π2 − θ) = sin θ
3. tan( π2 − θ) = cot θ
4. sec( π2 − θ) = csc θ
5. csc( π2 − θ) = sec θ
6. cot( π2 − θ) = tan θ
Even/Odd
1. sin(−θ) = − sin θ
2. cos(−θ) = cos θ
3. tan(−θ) = − tan θ
E.g.,
1. Simplify cos t csc t
2. Simplify cos3 t + sin2 t cos t
3. Simplify
1+cot A
csc A
4. Verify cos x/ sec x + sin x/ csc x = 1
5. Verify
1 − sin x
= (sec x − tan x)2
1 + sin x
6. Verify sec t csc t(tan t + cot t) = sec2 t + csc2 t
7. Verify
tan x + tan y
= tan x tan y
cot x + cot y
7.2 Addition and Subtraction Formulae
1. sin(α ± β) = sin α cos β ± cos α sin β
2. cos(α ± β) = cos α cos β ∓ sin α sin β
3. tan(α ± β) =
tan α ± tan β
1 ∓ tan α tan β
E.g.,
1. Determine sin 15◦
2. Determine cos 17π/12
3. Verify cot(π/2 − u) = tan u
4. Verify cos(x − π) = − cos x
5. Verify 1 − tan x tan y =
cos(x + y)
cos x cos y
6. Verify cos(x + y) cos(x − y) = cos2 x − sin2 y
7. Verify cos(x + y) + cos(x − y) = 2 cos x cos y
7.3 Double-Angle and Half-Angle Formulae
Double-Angle
1. sin 2x = 2 sin x cos x
2. cos 2x = cos2 x − sin2 x = 1 − 2 sin2 x = 2 cos2 x − 1
3. tan 2x =
2 tan x
1 − tan2 x
Half-Angle
r
1 − cos x
2
r
1 + cos x
2. cos(x/2) = ±
2
1. sin(x/2) = ±
3. tan(x/2) =
1 − cos x
sin x
=
sin x
1 + cos x
E.g.,
1. Find sin 2x if x is in QII and tan x = −4/3
2. Determine tan 15◦
3. Determine cos 3π/8
4. Verify sin 8x = 2 sin 4x cos 4x
5. Verify tan2 (x/2 + π/4) =
1 + sin x
1 − sin x
7.4 Inverse Trigonometric Functions
1. a
7.5 Trigonometric Equations
1. a
Related documents