Download Review for Exam 3

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Math 2412 Review Items for Exam 3
Name___________________________________
Prove the identity.
Use the given information to find the exact value of the
expression.
4
13) Find cos (α + β).
sin α = , α lies in
5
1
1) sec x = sin x tan x
sec x
2) sin2 x + sin2 x cot2 x = 1
quadrant I, and cos β =
Show that the equation is not an identity by finding a
value of x for which both sides are defined but not equal.
3) sin (x - π) = sin x
14) Find sin (α + β).
12
, β lies in quadrant I.
13
tan α =
quadrant III, and cos β = Identify α and β in the following expression which is the
right side of the formula for cos (α - β).
4) cos (170°) cos (50°) + sin (170°) sin (50°)
15
, α lies in
8
7
, β lies in
25
quadrant II.
Find the exact value by using a difference identity.
15) tan 105°
Write the expression as the cosine of an angle, knowing
that the expression is the right side of the formula for cos (
α - β) with particular values for α and β.
5) cos (155°) cos (35°) + sin (155°) sin (35°)
Use trigonometric identities to find the exact value.
tan 175° - tan 55°
16)
1 + tan 175° tan 55°
Find the exact value of the expression.
6) cos (245° - 5°)
Complete the identity.
17) tan (π - θ) = ?
Complete the identity.
11π
7) cos (x )=?
6
Find the exact value under the given conditions.
24
3π
20 π
18) tan α =
, π<α<
; cos β = ,
<β
7
2
29 2
< π Find tan (α + β).
Find the exact value by using a sum or difference identity.
8) sin (185° - 65°)
Use the figure to find the exact value of the trigonometric
function.
19)
9) sin 165°
Find the exact value of the expression.
10) sin 255° cos 15° - cos 255° sin 15°
13
5
11) cos 15° cos 45° - sin 15° sin 45°
12
Find cos 2θ.
Prove the identity.
sin (α + β)
12)
= tan α + tan β
cos α cos β
20)
25
7
24
Find cos 2θ.
1
Use the given information to find the exact value of the
expression.
20
21) Find sin 2θ. cos θ =
, θ lies in quadrant IV.
29
22) Find sin 2θ. cos θ =
33) cos 2x cos 4x
Solve the problem.
34) sin 8x - sin 2x
7
, θ lies in quadrant IV.
25
35) cos
Write the expression as the sine, cosine, or tangent of a
double angle. Then find the exact value of the expression.
23) cos2 105° - sin2 105°
5x
3x
+ cos
2
2
Complete the identity.
sin 3x + sin 5x
36)
=?
cos 2x + cos 4x
24) cos2 120° - sin2 120°
Find all solutions of the equation.
37) 2 cos x + 2 = 0
Complete the identity.
25) sin 2x - cot x = ?
Solve the equation on the interval [0, 2π).
3
38) cos 2x =
2
Rewrite the expression as an equivalent expression that
does not contain powers of trigonometric functions greater
than 1.
26) sin3 x
39) 2 sin 2 x = sin x
40) tan x + sec x = 1
27) 8 sin2 x cos2 x
41) sin2 x - cos2 x = 0
Use a half-angle formula to find the exact value of the
expression.
28) cos 112.5°
Solve the equation on the interval [0, 2π).
42) sin x - 2 sin x cos x = 0
Use a half-angle formula to find the exact value of the
expression.
3π
29) cos
8
Solve the equation on the interval [0, 2π).
43) tan 2x - tan x = 0
44) sin2 2x = 1
Use the given information given to find the exact value of
the trigonometric function.
30) sec θ = 4,
θ lies in quadrant I
Find cos
θ
.
2
Use a calculator to solve the equation on the interval [0, 2
π). Round the answer to two decimal places.
45) cos x = 0.60
Use a calculator to solve the equation on the interval [0, 2
π). Round to the nearest hundredth.
46) cos 2x - cos x = 0
Complete the identity.
θ
31) sin2 = ?
2
Express the product as a sum or difference.
32) sin 5x cos 2x
2
Answer Key
Testname: 2412REVIEW3SP2011
1) sin x tan x
2) 1
π
3)
2
29)
4) α = 170°, β = 50°
5) cos (120°)
1
6) 2
7)
30)
1
( 3 cos x - sin x)
2
3
2
8)
2( 3 - 1)
4
9)
10) -
1
2
22-
2
2
10
4
31)
csc θ - cot θ
2 csc θ
32)
1
(sin 7x + sin 3x)
2
33)
1
(cos 2x + cos 6x)
2
34) 2 sin 3x cos 5x
x
35) 2 cos 2x cos
2
3
2
36)
1
11)
2
sin 4x
cos 3x
37) x =
12) tan α + tan β
16
13)
65
14) -
1
2
28) -
38)
87
425
3π
5π
+ 2nπ or x =
+ 2nπ
4
4
π 11π 13π 23π
,
,
,
12 12 12 12
39) 0, π,
π 5π
,
6 6
15) -2 - 3
16) - 3
17) -tan θ
333
18)
644
40) 0
π 3π 5π 7π
41) ,
,
,
4 4
4 4
19)
119
169
20)
527
625
43) 0, π
π 3π 5π 7π
44) ,
,
,
4 4
4 4
42) 0,
45) 0.93, 5.36
46) 0, 2.09, 4.19
840
21) 841
22) -
336
625
23) -
3
2
24) -
π
5π
, π,
3
3
1
2
25) -cot x cos 2x
3
1
26) sin x - sin 3x
4
4
27) 2 sin 2x
3