Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Math 2412 Review Items for Exam 3 Name___________________________________ Prove the identity. Use the given information to find the exact value of the expression. 4 13) Find cos (α + β). sin α = , α lies in 5 1 1) sec x = sin x tan x sec x 2) sin2 x + sin2 x cot2 x = 1 quadrant I, and cos β = Show that the equation is not an identity by finding a value of x for which both sides are defined but not equal. 3) sin (x - π) = sin x 14) Find sin (α + β). 12 , β lies in quadrant I. 13 tan α = quadrant III, and cos β = Identify α and β in the following expression which is the right side of the formula for cos (α - β). 4) cos (170°) cos (50°) + sin (170°) sin (50°) 15 , α lies in 8 7 , β lies in 25 quadrant II. Find the exact value by using a difference identity. 15) tan 105° Write the expression as the cosine of an angle, knowing that the expression is the right side of the formula for cos ( α - β) with particular values for α and β. 5) cos (155°) cos (35°) + sin (155°) sin (35°) Use trigonometric identities to find the exact value. tan 175° - tan 55° 16) 1 + tan 175° tan 55° Find the exact value of the expression. 6) cos (245° - 5°) Complete the identity. 17) tan (π - θ) = ? Complete the identity. 11π 7) cos (x )=? 6 Find the exact value under the given conditions. 24 3π 20 π 18) tan α = , π<α< ; cos β = , <β 7 2 29 2 < π Find tan (α + β). Find the exact value by using a sum or difference identity. 8) sin (185° - 65°) Use the figure to find the exact value of the trigonometric function. 19) 9) sin 165° Find the exact value of the expression. 10) sin 255° cos 15° - cos 255° sin 15° 13 5 11) cos 15° cos 45° - sin 15° sin 45° 12 Find cos 2θ. Prove the identity. sin (α + β) 12) = tan α + tan β cos α cos β 20) 25 7 24 Find cos 2θ. 1 Use the given information to find the exact value of the expression. 20 21) Find sin 2θ. cos θ = , θ lies in quadrant IV. 29 22) Find sin 2θ. cos θ = 33) cos 2x cos 4x Solve the problem. 34) sin 8x - sin 2x 7 , θ lies in quadrant IV. 25 35) cos Write the expression as the sine, cosine, or tangent of a double angle. Then find the exact value of the expression. 23) cos2 105° - sin2 105° 5x 3x + cos 2 2 Complete the identity. sin 3x + sin 5x 36) =? cos 2x + cos 4x 24) cos2 120° - sin2 120° Find all solutions of the equation. 37) 2 cos x + 2 = 0 Complete the identity. 25) sin 2x - cot x = ? Solve the equation on the interval [0, 2π). 3 38) cos 2x = 2 Rewrite the expression as an equivalent expression that does not contain powers of trigonometric functions greater than 1. 26) sin3 x 39) 2 sin 2 x = sin x 40) tan x + sec x = 1 27) 8 sin2 x cos2 x 41) sin2 x - cos2 x = 0 Use a half-angle formula to find the exact value of the expression. 28) cos 112.5° Solve the equation on the interval [0, 2π). 42) sin x - 2 sin x cos x = 0 Use a half-angle formula to find the exact value of the expression. 3π 29) cos 8 Solve the equation on the interval [0, 2π). 43) tan 2x - tan x = 0 44) sin2 2x = 1 Use the given information given to find the exact value of the trigonometric function. 30) sec θ = 4, θ lies in quadrant I Find cos θ . 2 Use a calculator to solve the equation on the interval [0, 2 π). Round the answer to two decimal places. 45) cos x = 0.60 Use a calculator to solve the equation on the interval [0, 2 π). Round to the nearest hundredth. 46) cos 2x - cos x = 0 Complete the identity. θ 31) sin2 = ? 2 Express the product as a sum or difference. 32) sin 5x cos 2x 2 Answer Key Testname: 2412REVIEW3SP2011 1) sin x tan x 2) 1 π 3) 2 29) 4) α = 170°, β = 50° 5) cos (120°) 1 6) 2 7) 30) 1 ( 3 cos x - sin x) 2 3 2 8) 2( 3 - 1) 4 9) 10) - 1 2 22- 2 2 10 4 31) csc θ - cot θ 2 csc θ 32) 1 (sin 7x + sin 3x) 2 33) 1 (cos 2x + cos 6x) 2 34) 2 sin 3x cos 5x x 35) 2 cos 2x cos 2 3 2 36) 1 11) 2 sin 4x cos 3x 37) x = 12) tan α + tan β 16 13) 65 14) - 1 2 28) - 38) 87 425 3π 5π + 2nπ or x = + 2nπ 4 4 π 11π 13π 23π , , , 12 12 12 12 39) 0, π, π 5π , 6 6 15) -2 - 3 16) - 3 17) -tan θ 333 18) 644 40) 0 π 3π 5π 7π 41) , , , 4 4 4 4 19) 119 169 20) 527 625 43) 0, π π 3π 5π 7π 44) , , , 4 4 4 4 42) 0, 45) 0.93, 5.36 46) 0, 2.09, 4.19 840 21) 841 22) - 336 625 23) - 3 2 24) - π 5π , π, 3 3 1 2 25) -cot x cos 2x 3 1 26) sin x - sin 3x 4 4 27) 2 sin 2x 3