Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
C H A P T E R 6 Additional Topics in Trigonometry Section 6.1 Law of Sines . . . . . . . . . . . . . . . . . . . . . . . . 532 Section 6.2 Law of Cosines . . . . . . . . . . . . . . . . . . . . . . . 539 Section 6.3 Vectors in the Plane Section 6.4 Vectors and Dot Products Section 6.5 Trigonometric Form of a Complex Number . . . . . . . . 571 . . . . . . . . . . . . . . . . . . . . 549 . . . . . . . . . . . . . . . . . 562 Review Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 592 Problem Solving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 606 Practice Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 609 C H A P T E R 6 Additional Topics in Trigonometry Section 6.1 ■ Law of Sines If ABC is any oblique triangle with sides a, b, and c, then a b c . sin A sin B sin C ■ You should be able to use the Law of Sines to solve an oblique triangle for the remaining three parts, given: (a) Two angles and any side (AAS or ASA) (b) Two sides and an angle opposite one of them (SSA) 1. If A is acute and h b sin A: (a) a < h, no triangle is possible. (b) a h or a > b, one triangle is possible. (c) h < a < b, two triangles are possible. 2. If A is obtuse and h b sin A: (a) a ≤ b, no triangle is possible. (b) a > b, one triangle is possible. ■ The area of any triangle equals one-half the product of the lengths of two sides and the sine of their included angle. 1 1 1 A 2ab sin C 2ac sin B 2bc sin A Vocabulary Check 1. oblique 2. 1. b sin B C b 2. C 180 A B 105 a 20 sin 45 b 202 28.28 sin B sin A sin 30 532 105° a 20 sin 105 38.64 sin C sin A sin 30 a 40° B Given: A 30, B 45, a 20 c b 45° c 1 ac sin B 2 C a = 20 30° A 3. A c = 20 B Given: B 40, C 105, c 20 A 180 B C 35 a c 20 sin 35 sin A 11.88 sin C sin 105 b c 20 sin 40 sin B 13.31 sin C sin 105 Section 6.1 3. 4. C 25° A C b a = 3.5 b a 135° 10° 35° c Law of Sines B A c = 45 Given: A 25, B 35, a 3.5 Given: B 10, C 135, c 45 C 180 A B 120 A 180 B C 35 b a 3.5 sin B sin 35 4.75 sin A sin 25 a c 45 sin 35 sin A 36.50 sin C sin 135 c 3.5 a sin C sin 120 7.17 sin A sin 25 b 45 sin 10 c sin B 11.05 sin C sin 135 5. Given: A 36, a 8, b 5 sin B b sin A 5 sin 36 0.36737 ⇒ B 21.55 a 8 C 180 A B 180 36 21.55 122.45 c a 8 sin C sin 122.45 11.49 sin A sin 36 6. Given: A 60, a 9, c 10 sin C c sin A 10 sin 60 0.9623 ⇒ C 74.21 or C 105.79 a 9 Case 1 Case 2 C 74.21 C 105.79 B 180 A C 45.79 B 180 A C 14.21 b a 9 sin 45.79 sin B 7.45 sin A sin 60 7. Given: A 102.4, C 16.7, a 21.6 B 180 A C 60.9 b a 9 sin 14.21 sin B 2.55 sin A sin 60 8. Given: A 24.3, C 54.6, c 2.68 B 180 A C 101.1 b a 21.6 sin B sin 60.9 19.32 sin A sin 102.4 a c 2.68 sin 24.3 sin A 1.35 sin C sin 54.6 c a 21.6 sin C sin 16.7 6.36 sin A sin 102.4 b c 2.68 sin 101.1 sin B 3.23 sin C sin 54.6 9. Given: A 83 20, C 54.6, c 18.1 B 180 A C 180 83 20 54 36 42 4 10. Given: A 5 40, B 8 15, b 4.8 C 180 A B 166 5 a c 18.1 sin A sin 83 20 22.05 sin C sin 54.6 a b 4.8 sin 5 40 sin A 3.30 sin B sin 8 15 b c 18.1 sin B sin 42 4 14.88 sin C sin 54.6 c b 4.8 sin 166 5 sin C 8.05 sin B sin 8 15 B 533 534 Chapter 6 Additional Topics in Trigonometry 11. Given: B 15 30 , a 4.5, b 6.8 sin A a sin B 4.5 sin 15 30 0.17685 ⇒ A 10 11 b 6.8 C 180 A B 180 10 11 15 30 154 19 c 6.8 b sin C sin 154 19 11.03 sin B sin 15 30 12. Given: B 2 45, b 6.2, c 5.8 sin C c sin B 5.8 sin 2 45 0.04488 ⇒ C 2.57 or 2 34 b 6.2 A 180 B C 174.68, or 174 41 b 6.2 sin 174.68 sin A 11.99 sin B sin 2 45 a 13. Given: C 145, b 4, c 14 14. Given: A 100, a 125, c 10 sin C b sin C 4 sin 145 0.16388 ⇒ B 9.43 sin B c 14 B 180 A C 75.48 A 180 B C 180 9.43 145 25.57 a c sin A 10 sin 100 0.07878 ⇒ C 4.52 a 125 b c 14 sin A sin 25.57 10.53 sin C sin 145 a 125 sin 75.48 sin B 122.87 sin A sin 100 15. Given: A 110 15 , a 48, b 16 sin B b sin A 16 sin 110 15 0.31273 ⇒ B 18 13 a 48 C 180 A B 180 110 15 18 13 51 32 c a 48 sin C sin 51 32 40.06 sin A sin 110 15 16. Given: C 85 20, a 35, c 50 sin A a sin C 35 sin 85 20 0.6977 ⇒ A 44.24, or 44 14 c 50 B 180 A C 50.43, or 50 26 b C sin B 50 sin 50.43 38.67 sin C sin 85 20 17. Given: A 55, B 42, c 3 4 C 180 A B 83 18. Given: B 28, C 104, a 3 A 180 B C 48 a c 0.75 sin A sin 55 0.62 sin C sin 83 b 5 a sin B 38 sin 28 2.29 sin A sin 48 b 0.75 c sin B sin 42 0.51 sin C sin 83 c 5 a sin C 38 sin 104 4.73 sin A sin 48 5 8 Section 6.1 19. Given: A 110, a 125, b 100 Law of Sines 535 20. Given: a 125, b 200, A 110 b sin A 100 sin 110 0.75175 ⇒ B 48.74 sin B a 125 No triangle is formed because A is obtuse and a < b. C 180 A B 21.26 c a sin C 125 sin 21.26 48.23 sin A sin 110 22. Given: A 76, a 34, b 21 21. Given: a 18, b 20, A 76 h 20 sin 76 19.41 sin B Since a < h, no triangle is formed. b sin A 21 sin 76 0.5993 ⇒ B 36.82 a 34 C 180 A B 67.18 c a sin C 34 sin 67.18 32.30 sin A sin 76 23. Given: A 58, a 11.4, c 12.8 sin B b sin A 12.8 sin 58 0.9522 ⇒ B 72.21 or B 107.79 a 11.4 Case 1 Case 2 B 72.21 B 107.79 C 180 A B 49.79 C 180 A B 14.21 c a 11.4 sin 49.79 sin C 10.27 sin A sin 58 24. Given: a 4.5, b 12.8, A 58 c a 11.4 sin 14.21 sin C 3.30 sin A sin 58 25. Given: A 36, a 5 h 12.8 sin 58 10.86 (a) One solution if b ≤ 5 or b Since a < h, no triangle is formed. (b) Two solutions if 5 < b < (c) No solution if b > (a) One solution if b ≤ 10 or b (c) No solutions if b > 10 . sin 60 10 . sin 60 10 . sin 60 (b) Two solutions if 315.6 < b < (b) Two solutions if 10.8 < b < 10.8 sin 10 10.8 sin 10 10.8 sin 10 1 1 29. Area ab sin C 46 sin 120 10.4 2 2 (a) One solution if b ≤ 315.6 or b 315.6 sin 88 5 sin 36 (a) One solution if b ≤ 10.8 or b (c) No solution if b > 28. Given: A 88, a 315.6 (c) No solutions if b > 5 sin 36 27. Given: A 10, a 10.8 26. Given: A 60, a 10 (b) Two solutions if 10 < b < 5 sin 36 315.6 sin 88 315.6 sin 88 536 Chapter 6 Additional Topics in Trigonometry 30. Area 12ac sin B 126220 sin 130 474.9 31. Area 12bc sin A 125785 sin 43 45 1675.2 32. A 5 15, b 4.5, c 22 33. Area 2ac sin B 210564sin7230 3204.5 1 1 Area 12bc sin A 24.522 sin 5.25 4.5 1 34. C 84 30, a 16, b 20 35. C 180 23 94 63 1 Area ab sin C 2 h 21620 sin 84.5 159.3 1 36. (a) 37. 20° h 32° 16 38. 16 sin 32 9.0 meters sin 70 39. Given: c 100 N W A 74 28 46, E S B 180 41 74 65, Elgin C a = 720 km b = 500 km 44° 46° A Naples B Canton Given: A 46, a 720, b 500 sin B b sin A 500 sin 46 0.50 ⇒ B 30 a 720 The bearing from C to B is 240. 40. 3000 ft r 40° s r (b) r 42 25.9 16.1 h 16 sin 32 sin 70 (c) h sin42 sin 48 10 17 sin42 0.43714 70° 12° (b) 35 sin 23 15.3 meters sin 63 3000 sin12180 40 4385.71 feet sin 40 (c) s 40 1804385.71 3061.80 feet C 180 46 65 69 A 100 46° 65° 69° C 100 c sin A sin 46 77 meters a sin C sin 69 B Section 6.1 41. (a) 18.8° C 180 A B 30 z From Pine Knob: y 9000 ft Not drawn to scale b x 9000 sin 17.5 sin 1.3 (b) 537 42. Given: A 15, B 135, c 30 17.5° x Law of Sines c sin B 30 sin 135 42.4 kilometers sin C sin 30 From Colt Station: x 119,289.1261 feet 22.6 miles a c sin A 30 sin 15 15.5 kilometers sin C sin 30 y x sin 71.2 sin 90 (c) B y x sin 71.2 119,289.1261 sin 71.2 a 30 80° 112,924.963 feet 21.4 miles 65° (d) z x sin 18.8 119,289.1261 sin 18.8 70° c = 65° 15° b C A 38,443 feet 7.3 miles 43. In 15 minutes the boat has traveled 10 mi 4 70° 63° 20° 10 mph14 hr 104 miles. 27° y d θ 180 20 90 63 7 104 y sin 7 sin 20 y 7.0161 sin 27 d 7.0161 d 3.2 miles 44. (a) sin (c) 5.45 0.0934 ⇒ 5.36 58.36 (b) d 58.36 or sin84.64 sin d sin sin d 58.36 sin 58.36 sin84.64 sin sin1 (d) 45. True. If one angle of a triangle is obtuse, then there is less than 90 left for the other two angles, so it cannot contain a right angle. It must be oblique. d sin 58.36 sin d58.36 10 20 30 40 50 60 d 324.1 154.2 95.19 63.80 43.30 28.10 46. False. Two sides and one opposite angle do not necessarily determine a unique triangle. 538 Chapter 6 47. (a) Additional Topics in Trigonometry sin sin 9 18 sin 0.5 sin arcsin0.5 sin (b) Domain: 0 < < 1 Range: 0 < ≤ 6 0 0 arcsin0.5 sin (c) c 18 sin sin c (d) 18 sin 18 sin arcsin0.5 sin sin sin 27 Domain: 0 < < Range: 9 < c < 27 0 0 (e) 0.4 0.8 1.2 1.6 2.0 2.4 2.8 As → 0, c → 27 0.1960 0.3669 0.4848 0.5234 0.4720 0.3445 0.1683 As → , c → 9 c 25.95 23.07 19.19 15.33 12.29 10.31 9.27 48. (a) A 1 1 1 3020 sin 820 sin 830 sin 2 2 2 2 2 3 80 sin 120 sin 2 2 (a) 300 sin (a) 3 20 15 sin 4 sin 6 sin 2 2 (b) 20 cm θ 2 8 cm θ 30 cm (c) Domain: 0 ≤ ≤ 1.6690 170 The domain would increase in length and the area would have a greater maximum value if the 8-centimeter line segment were decreased. 0 1.7 0 49. sin x cot x sin x 51. 1 sin2 cos x cos x sin x 2 x 1 cos 2 x sin2 x 53. 6 sin 8 cos 3 612 sin8 3 sin8 3 3sin 11 sin 5 50. tan x cos x sec x tan x cos x 52. 1 cot2 2 x 1 tan 2 1 tan x cos x x sec2 x 54. 2 cos 5 sin 2 2 12sin5 2 sin5 2 sin 7 sin 3 Section 6.2 Section 6.2 ■ ■ Law of Cosines If ABC is any oblique triangle with sides a, b, and c, the following equations are valid. (a) a2 b2 c2 2bc cos A or cos A b2 c2 a2 2bc (b) b2 a2 c2 2ac cos B or cos B a2 c2 b2 2ac (c) c2 a2 b2 2ab cos C cos C a2 b2 c2 2ab or You should be able to use the Law of Cosines to solve an oblique triangle for the remaining three parts, given: (a) Three sides (SSS) (b) Two sides and their included angle (SAS) ■ Law of Cosines Given any triangle with sides of length a, b, and c, the area of the triangle is Area ss as bs c, where s abc . 2 (Heron’s Formula) Vocabulary Check 1. Cosines 2. b2 a2 c2 2ac cos B 3. Heron’s Area 1. Given: a 7, b 10, c 15 cos C a2 b2 c2 49 100 225 0.5429 ⇒ C 122.88 2ab 2710 sin B b sin C 10 sin 122.88 0.5599 ⇒ B 34.05 c 15 A 180 34.05 122.88 23.07 2. Given: a 8, b 3, c 9 cos C a2 b2 c2 82 32 92 0.16667 ⇒ C 99.59 2ab 283 sin A a sin C 8 sin 99.59 0.8765 ⇒ A 61.22 c 9 B 180 61.22 99.59 19.19 3. Given: A 30, b 15, c 30 a2 b2 c2 2bc cos A 225 900 21530 cos 30 345.5771 a 18.59 cos C a2 b2 c2 18.592 152 302 0.5907 ⇒ C 126.21 2ab 218.5915 B 180 30 126.21 13.79 539 540 Chapter 6 Additional Topics in Trigonometry 4. Given: C 105, a 10, b 4.5 c2 a2 b2 2ab cos C 102 4.52 2104.5 cos 105 143.5437 ⇒ c 11.98 a2 c2 b2 102 12.02 4.52 0.93187 ⇒ B 21.27 2ac 21012.0 cos B A 180 105 21.27 53.73 5. a 11, b 14, c 20 cos C a2 b2 c2 121 196 400 0.2695 ⇒ C 105.63 2ab 21114 sin B b sin C 14 sin 105.63 0.6741 ⇒ B 42.38 c 20 A 180 42.38 105.63 31.99 6. Given: a 55, b 25, c 72 cos C a2 b2 c2 552 252 722 0.5578 ⇒ C 123.91 2ab 25525 cos A b2 c2 a2 252 722 552 0.7733 ⇒ A 39.35 2bc 22572 B 180 123.91 39.35 16.74 7. Given: a 75.4, b 52, c 52 cos A b2 c2 a2 522 522 75.42 0.05125 ⇒ A 92.94 2bc 25252 sin B b sin A 520.9987 0.68876 ⇒ B 43.53 a 75.4 C B 43.53 8. Given: a 1.42, b 0.75, c 1.25 cos A b2 c a2 0.752 1.252 1.422 0.05792 ⇒ A 86.68 2bc 20.751.25 cos B a2 c2 b2 1.422 1.252 0.752 0.84969 ⇒ B 31.82 2ac 21.421.25 2 C 180 86.68 31.82 61.50 9. Given: A 135, b 4, c 9 a2 b2 c2 2bc cos A 16 81 249cos 135 147.9117 ⇒ a 12.16 sin B b sin A 4 sin 135 0.2326 ⇒ B 13.45 a 12.16 C 180 135 13.45 31.55 10. Given: A 55, b 3, c 10 a2 b2 c2 2bc cos A 32 102 2310 cos 55 74.585 ⇒ a 8.64 sin B b sin A 3 sin 55 0.2846 ⇒ A 16.53 a 8.636 C 180 16.53 55 108.47 Section 6.2 11. Given: B 10 35, a 40, c 30 b2 a2 c2 2ac cos B 1600 900 24030cos 10 35 140.8268 ⇒ b 11.87 sin C c sin B 30 sin 10 35 0.4642 ⇒ C 27.66 27 40 b 11.87 A 180 10 35 27 40 141 45 12. Given: B 75 20, a 6.2, c 9.5 b2 a2 c2 2ac cos B 6.22 9.52 26.29.5 cos 75 20 98.8636 ⇒ b 9.94 sin A a sin B 6.2 sin 75 20 0.6034 ⇒ A 37.1, or 37 6 b 9.94 C 180 75 20 37 6 67 34 13. Given: B 125 40 , a 32, c 32 b2 a2 c2 2ac cos B 322 322 23232 cos 125 40 3242.1888 ⇒ b 56.94 A C ⇒ 2A 180 125 40 54 20 ⇒ A C 27 10 14. Given: C 15 15, a 6.25, b 2.15 c2 a2 b2 2ab cos C 6.252 2.152 26.252.15 cos 15 15 17.7563 ⇒ c 4.21 cos A b2 c2 a2 2.152 4.21382 6.252 0.9208 ⇒ A 157.04 or 157 2 2bc 22.154.2138 B 180 15 15 157.04 7.7 or 7 43 4 7 15. C 43, a , b 9 9 c2 a2 b2 2ab cos C sin A 49 79 2 2 2 4979cos 43 0.2968 ⇒ c 0.54 a sin C 49 sin 43 0.5564 ⇒ A 33.80 c 0.5448 B 180 43 33.8 103.20 3 3 16. Given: C 103, a , b 8 4 c2 a2 b2 2ab cos C 3 4 b2 c2 a2 cos A 2bc 38 34 2 2 2 2 0.912 2 340.91 3834 cos 103 0.8297 ⇒ c 0.91 38 2 0.9160 ⇒ A 23.65 B 180 23.65 103 53.35 17. d2 52 82 258cos 45 32.4315 ⇒ d 5.69 2 360 245 270 ⇒ 135 c2 52 82 258cos 135 145.5685 ⇒ c 12.07 8 φ 5 c 5 d 45° 8 Law of Cosines 541 542 Chapter 6 18. Additional Topics in Trigonometry 19. 35 120° 14 c φ 25 25 d θ 20 10 10 d θ 14 35 c2 252 352 22535 cos 120 cos 2725 ⇒ c 52.20 102 142 202 21014 111.8º 1 360 2120 60 2 2 360 2111.8 68.2 d2 252 352 22535 cos 60 d 2 102 142 21014 cos 68.2 975 ⇒ d 31.22 d 13.86 402 602 802 1 ⇒ 104.5 24060 4 1 360 2104.5 75.5 2 20. cos 60 c φ 40 40 80 c2 402 602 24060 cos 75.5 3998 θ c 63.23 21. cos 12.52 152 102 0.75 ⇒ 41.41 212.515 102 152 12.52 0.5625 ⇒ 55.77 21015 α cos 12.52 102 θ α .5 12 15 u 180 z 97.18 b2 φ β 15 z .5 u 12 10 z 180 82.82 b 10 cos 60 δ β x b 212.510cos 97.18 287.4967 ⇒ b 16.96 12.52 16.962 102 0.8111 ⇒ 35.80 212.516.96 41.41 35.80 77.2 2 360 2 ⇒ 22. cos 360 277.21 102.8 2 252 17.52 252 22517.5 ω 69.512 17.5 25 180 110.488 a a2 17.52 252 217.525 cos 110.488 a 35.18 z 180 2 40.975 cos 252 35.182 17.52 22535.18 27.775 z 68.7 180 41.738 111.3 25 α β α α a 25 17.5 µ z α 25 Section 6.2 23. a 5, b 7, c 10 ⇒ s abc 11 2 24. a 12, b 15, c 9 ⇒ s Area ss as bs c 11641 16.25 25. a 2.5, b 10.2, c 9 ⇒ s Area 18639 54 abc 10.85 2 Area ss as bs c 10.858.350.651.85 10.4 26. Given: a 75.4, b 52, c 52 s 75.4 52 52 89.7 2 Area ss as bs c 89.714.337.737.7 1350.2 27. a 12.32, b 8.46, c 15.05 ⇒ s abc 17.915 2 Area ss as bs c 17.9155.5959.4552.865 52.11 28. Given: a 3.05, b 0.75, c 2.45 s 3.05 0.75 2.45 3.125 2 Area ss as bs c 3.1250.0752.3750.675 0.61 29. cos 17002 37002 30002 ⇒ 52.9 217003700 N W Bearing: 90 52.9 N 37.1 E N 75 E cos 00 0m A 3700 m N W E Rosemount S 1357.8 miles Bearing from Franklin to Rosemount: 300 B 30. Distance from Franklin to Rosemount: d 8102 6482 2810648 cos137 S m 17002 30002 37002 ⇒ C 100.2 217003000 Bearing: 90 26.9 S 63.1 E E C 17 cos C Law of Cosines 32° 648 miles 75° Centerville 810 miles Franklin 1357.82 8102 6482 21357.8810 0.9456 19.0 Bearing from Franklin to Rosemont: N 56.0 E 31. b2 2202 2502 2220250cos 105 ⇒ b 373.3 meters 220 m C B 75° 105° b 250 m A 543 12 15 9 18 2 544 Chapter 6 32. Additional Topics in Trigonometry 33. B C 92 76 575 650 A C 115 B cos A 1152 762 922 0.6028 ⇒ A 52.9 211576 cos C 1152 922 762 0.75203 ⇒ c 41.2 211592 34. cos A 725 The largest angle is across from the largest side. 6502 5752 7252 2650575 cos C cos C 72.3 22 32 4.52 0.60417 223 127.2 35. C 180 53 67 60 c2 a2 b2 2ab cos C 36 mi 362 482 236480.5 g12 752 1002 275100 cos 96 53° c W 1872 36. The angles at the base of the tower are 96 and 84. The longer guy wire g1 is given by: N 60° 17,192.9 ⇒ g1 131.1 feet E 67° c 43.3 mi The shorter guy wire g2 is given by: 48 mi g22 752 1002 275100 cos 84 S 37. (a) cos 2732 1782 2352 2273178 14,057.1 ⇒ g2 118.6 feet 38. N W 58.4 S 216 miles Bearing: N 58.4 W (b) cos 1782 E φ Denver 178 θ Orlando S 368 miles 13.1° cos B N 273 59.7° a 165, b 216, c 368 Bearing: S 81.5 W 235 2732 A Niagara Falls C 165 miles 17.2° B 72.8° 2235178 2352 81.5 W E 1652 3682 2162 0.9551 2165368 B 17.2 cos A 2162 3682 1652 0.9741 2216368 A 13.1 (a) Bearing of Minneapolis (C) from Phoenix (A) N 90 17.2 13.1 E N 59.7 E (b) Bearing of Albany (B) from Phoenix (A) N 90 17.2 E N 72.8 E Section 6.2 Law of Cosines 545 39. d 2 60.52 902 260.590 cos 45 4059.8572 ⇒ d 63.7 ft S d T 90 F P 60.5 45° H 41. a2 352 202 23520cos 42 ⇒ a 24.2 miles 40. d 3302 4202 2330420 cos 8 103.9 feet 43. RS 82 102 164 241 12.8 ft 42. a 202 202 22020 cos 11 PQ 12162 102 12356 89 9.4 ft 3.8 miles tan P 72 1.52 x2 21.5 x cos 44. (a) (c) 10 QS QS ⇒ QS 5 16 PS 8 10 49 2.25 x2 3x cos x2 3x cos 46.75 0 (b) x x 3 cos ± 3 cos 2 4146.75 21 2 0 0 (d) Maximum: 8.5 inches 1 3 cos 9 cos2 187 2 45. d 2 102 72 2107 cos arccos s 102 72 d 2 2107 360 360 2r 360 45 d (inches) 9 10 12 13 14 15 16 (degrees) 60.9 69.5 88.0 98.2 109.6 122.9 139.8 s (inches) 20.88 20.28 18.99 18.28 17.48 16.55 15.37 46. 40° 120° 10 20° x x 10 sin 20 sin 120 x 10 sin 20 3.95 feet sin 120 47. a 200 b 500 c 600 ⇒ s 200 500 600 650 2 Area 65045015050 46,837.5 square feet 546 Chapter 6 Additional Topics in Trigonometry 2 70100 sin 70 48. area 2 1 49. s 510 840 1120 1235 2 Area 12351235 5101235 8401235 1120 6577.8 square meters 201,674 square yards (The area of the parallelogram is the sum of the areas of two triangles.) Cost 50. area ss as bs c s 2000 $83,336.36 201,674 4840 51. False. The average of the three sides of a triangle is a b c 2490 1860 1350 2850 2 2 abc abc , not s. 3 2 area 28503609901500 1234346.0 ft2 1234346.0 ft2 28.33669 acre 43560 ft2acre 28.33669 acre$2200acre $62,340.71 52. False. To solve an SSA triangle, the Law of Sines is needed. 53. False. If a 10, b 16, and c 5, then by the Law of Cosines, we would have: cos A 162 5 2 10 2 1.13125 > 1 2165 This is not possible. In general, if the sum of any two sides is less than the third side, then they cannot form a triangle. Here 10 5 is less than 16. 54. (a) Working with ODC, we have cos This implies that 2R a2 . R a . cos Since we know that a b c , sin A sin B sin C we can complete the proof by showing that cos sin A. The solution of the system A B C 180 (b) By Heron’s Formula, the area of the triangle is Area ss as bs c. We can also find the area by dividing the area into six triangles and using the fact that the area is 12 the base times the height. Using the figure as given, we have 1 1 1 1 1 1 Area xr xr yr yr zr zr 2 2 2 2 2 2 rx y z rs. rs ss as bs c ⇒ Therefore: CA B r is 90 A. Therefore: 2R A a a a . cos cos90 A sin A z B β α A y x D α O α−C z r β R s as s bs c. R y x C C B Section 6.2 Law of Cosines 547 55. a 25, b 55, c 72 1 (a) Area of triangle: s 25 55 72 76 2 (b) Area of circumscribed circle: Area 7651214 570.60 cos C (c) Area of inscribed circle: 51214 7.51 76 r R s as bs c s 252 552 722 0.5578 ⇒ C 123.9 22555 1 c 43.37 (see #54) 2 sin C Area R2 5909.2 (see #54 Area r 2 177.09 56. Given: a 200 ft, b 250 ft, c 325 ft s 200 250 325 387.5 2 Radius of the inscribed circle: r 137.562.5 64.5 ft (see #54) s as s bs c 187.5387.5 Circumference of an inscribed circle: C 2r 264.5 405.2 ft 57. 1 b2 c2 a2 1 bc1 cos A bc 1 2 2 2bc 1 2bc b2 c2 a2 bc 2 2bc 58. a2 b2 2bc c2 4 1 b c a b c a 4 a2 b c2 4 a b c 2 bca 2 bca 2 abc 2 a b c 2 abc 2 2 60. arccos 0 63. arcsin 3 . 3 2 abc 2 61. arctan3 3 a b c 2 64. arccos 3 3 2 arccos 3 2 5 6 6 66. Let u arccos 3x 2x and 1 1 2 65. Let arcsin 2x, then 1 4x2 2bc a2 b2 c2 1 bc 2 2bc 62. arctan 3 arctan 3 sec 1 b c2 a2 4 59. arcsin1 sin 2x 1 1 a2 b2 c2 bc1 cos A bc 1 2 2 2bc 1 2x cos u 3x 3x . 1 1 u θ 3x 1 − 4x 2 tanarccos 3x tan u 1 9x2 3x 1 − 9x 2 548 Chapter 6 Additional Topics in Trigonometry 67. Let arctanx 2, then tan x 2 cot 68. Let u arcsin x2 and 1 1 . x2 x−2 sin u θ 1 x1 2 x1 . 2 cos arcsin 2 70. x 2 cos , 5 25 5 sin 2 5 251 sin2 2 4 4 cos2 2 41 cos2 1 1 cos 2 4 sin2 2 2 sin csc is undefined. 71. 3 x2 9, x 3 sec 2 2 sin ⇒ cos 3 9 sec2 2 2 sec 1 1 2 cos 22 csc 1 1 2 sin 22 72. x 6 tan , 3 3 sec 2 9 < < 2 2 12 36 x2 1 12 36 6 tan 2 3 3 tan 12 36 36 tan2 3 12 361 tan2 3 sec 1 tan 2 cot < < 2 2 2 4 2 cos 2 cos 1 tan 2 2 4 x2 5 5 cos sec 4 − (x − 1) 2 4 x 12 69. 5 25 x2, x 5 sin u x1 cos u 2 1 3 3 2 12 36 sec2 23 3 12 6 sec 2 sec 1 3 tan cos csc 1 cot2 1 3 2 2 sin2 12 2 1 2 1 sin2 1 sin ± csc 1 3 4 4 34 ± 23 1 1 2 23 ± ± sin ± 32 3 3 x−1 Section 6.3 5 73. cos cos 2 sin 6 3 5 5 6 3 6 3 sin 2 2 sin x 2 cos 74. sin x 2 2 2 cos x x 2 2 2 7 sin 12 4 2 sin Vectors in the Plane x sin x 2 2 2 2x2 sin2 2 2 cos x sin Section 6.3 Vectors in the Plane \ ■ A vector v is the collection of all directed line segments that are equivalent to a given directed line segment PQ . ■ You should be able to geometrically perform the operations of vector addition and scalar multiplication. ■ The component form of the vector with initial point P p1, p2 and terminal point Q q1, q2 is \ PQ q1 p1, q2 p2 v1, v2 v. ■ The magnitude of v v1, v2 is given by v v12 v22. ■ If v 1, v is a unit vector. ■ You should be able to perform the operations of scalar multiplication and vector addition in component form. (a) u v u1 v1, u2 v2 ■ (b) ku ku1, ku2 You should know the following properties of vector addition and scalar multiplication. (a) u v v u (b) u v w u v w (c) u 0 u (d) u u 0 (e) cdu cdu (f) c du cu du (g) cu v cu cv (h) 1u u, 0u 0 (i) cv c v v . v ■ A unit vector in the direction of v is u ■ The standard unit vectors are i 1, 0 and j 0, 1. v v1, v2 can be written as v v1i v2 j. ■ A vector v with magnitude v and direction can be written as v ai bj vcos i vsin j, where tan b a. Vocabulary Check 1. directed line segment 2. initial; terminal 3. magnitude 4. vector 5. standard position 6. unit vector 7. multiplication; addition 8. resultant 9. linear combination; horizontal; vertical 549 550 Chapter 6 Additional Topics in Trigonometry 1. v 4 0, 1 0 4, 1 2. u 3 0, 4 4 3, 8 uv v 0 3, 5 3 3, 8 uv 3. Initial point: 0, 0 4. Initial point: 0, 0 Terminal point: 3, 2 Terminal point: 4, 2 v 3 0, 2 0 3, 2 v 4 0, 2 0 4, 2 v 32 22 13 v 42 22 20 25 5. Initial point: 2, 2 6. Initial point: 1, 1 Terminal point: 1, 4 Terminal point: 3, 5 v 1 2, 4 2 3, 2 v 3 1, 5 1 4, 6 v 32 22 13 v 42 62 52 213 7. Initial point: 3, 2 8. Initial point: 4, 1 Terminal point: 3, 3 Terminal point: 3, 1 v 3 3, 3 2 0, 5 v 3 4, 1 1 7, 0 v v 72 02 7 02 52 25 5 9. Initial point: 1, 5 10. Initial point: 1, 11 Terminal point: 15, 12 Terminal point: 9, 3 v 15 1, 12 5 16, 7 v 9 1, 3 11 8, 8 v 162 72 305 v 82 82 82 11. Initial point: 3, 5 12. Initial point: 3, 11 Terminal point: 5, 1 Terminal point: 9, 40 v 5 3, 1 5 8, 6 v 82 62 v 9 3, 40 11 12, 29 100 10 v 122 292 985 13. Initial point: 1, 3 14. Initial point: 2, 7 Terminal point: 8, 9 Terminal point: 5, 17 v 8 1, 9 3 9, 12 v 5 2, 17 7 7, 24 v 9 12 225 15 2 15. v 72 242 25 2 y 17. 16. 5v y y u+v 5v v v x −v u x v x Section 6.3 18. u v Vectors in the Plane 551 1 20. v 2 u 19. u 2v y y y u v u + 2v x v − 12 u 2v u−v x −v − 12 u u x 21. u 2, 1, v 1, 3 (a) u v 3, 4 (c) 2u 3v 4, 2 3, 9 1, 7 (b) u v 1, 2 y y y 5 4 u+v x 2 v 3 −6 u 1 2 −4 −2 2 4 6 x −3 1 −1 2u 2 3 −2 −1 1 2 3 −6 u x 1 2 3 4 5 −v −1 2u − 3v −3v u−v − 10 22. u 2, 3, v 4, 0 (b) u v 2, 3 (a) u v 6, 3 y (c) 2u 3v 4, 6 12, 0 8, 6 y 6 8 y 5 6 10 4 8 2u − 3v u−v u 4 u+v 2 2 x 4 6 2 −3v −v v 2u 4 2 u x −5 −4 −3 −2 −1 1 2 − 10 − 8 − 6 − 4 − 2 x 2 4 6 −4 8 −6 −8 23. u 5, 3, v 0, 0 (a) u v 5, 3 u u=u+v y y 7 7 12 6 6 10 5 5 4 4 u=u−v 3 2 1 1 −7 −6 −5 −4 −3 −2 −1 8 6 4 v x 1 2u = 2u − 3v 3 2 v −7 −6 −5 −4 −3 −2 −1 (c) 2u 3v 2u 10, 6 (b) u v 5, 3 u y x 1 2 −3v − 12 − 10 − 8 − 6 − 4 − 2 −2 2 x 552 Chapter 6 Additional Topics in Trigonometry 24. u 0, 0, v 2, 1 (c) 2u 3v 0, 0 6, 3 (b) u v 2, 1 (a) u v 2, 1 6, 3 y y y 1 3 u 2 −3 v=u+v 1 −2 1 2 x 1 −1 −3 − 3v = 2u − 3v 3 −4 −3 −1 2u −2 −2 x −1 −7 −6 −5 −4 −3 −2 −1 −v = u − v u 1 x 1 −5 −6 −7 25. u i j, v 2i 3j 3 5 2 u−v 4 10 −v x −1 y 2u − 3v 12 u 1 −2 4i 11j y y −3 (c) 2u 3v 2i 2j 6i 9j (b) u v i 4j (a) u v 3i 2j u u+v −2 −3 v −3 8 −3v 3 −1 −2 x −1 1 2 3 −1 2u x −8 −6 −4 −2 −2 2 4 6 26. u 2i j, v i 2j (b) u v i j (a) u v 3i 3j 2u 3v 4i 2j 3i 6j i 4j y y 4 u+v (c) y 2 3 u 1 3 2 1 2u 2 v −2 u −4 −3 −2 1 − 6 − 5 −4 − 3 2 x −1 1 2 3 4 −1 u−v x −1 x −1 −v 1 −2 −1 2u − 3v − 3v −5 −6 −7 27. u 2i, v j (c) 2u 3v 4i 3j (b) u v 2i j (a) u v 2i j y y y 1 3 1 2u u 2 1 −1 u+v v −1 u −1 1 −1 x 2 x 3 −2 3 −3 −v u−v −1 1 2 3 −1 −2 −3 −4 −3v 2u − 2v x Section 6.3 Vectors in the Plane 553 28. u 3j, v 2i y 6i 6j y u−v u+v 3 (c) 2u 3v 6j 6i (b) u v 2i 3j (a) u v 2i 3j y u u 2 8 2 2u − 3v 1 1 v −1 1 2 2u 4 −v x −3 3 −2 −1 x −1 1 2 −3v −1 −8 −6 −4 x −2 2 −2 29. v 1 1 1 u 3, 0 3, 0 1, 0 u 3 32 02 30. u 0, 2 v 1 1 0, 2 u u 02 22 1 0, 2 0, 1 2 31. u 1 1 1 v 2, 2 2, 2 v 22 22 22 1 1 , 2 2 2 2 33. u 35. u 2 , 2 32. v 5, 12 u 1 1 v 5, 12 52 122 v 1 5, 12 13 135 , 1312 1 1 1 6i 2j v 6i 2j 40 v 62 22 34. v i j 1 1 3 6i 2j j i 10 10 210 u 10 310 i j 10 10 1 1 w 4j j w 4 1 v v 1 12 12 i j 1 2 i j 2 2 i 36. w 6i v 1 1 w 6i w 62 02 1 6i i 6 37. u 1 1 1 i 2j w i 2j w 12 22 5 25 5 2 1 j i i j 5 5 5 5 38. w 7j 3i v 1 1 3i 7j w w 32 72 3 58 i 7 58 j 358 758 i j 58 58 2 2 j 554 Chapter 6 39. 5 u1 u 53 1 3 3, 3 35 2 3, 3 2 41. 9 Additional Topics in Trigonometry 40. v 6 2 52, 52 52 2, 52 2 6 u1 u 92 1 5 2, 5 929 2, 5 2 u1 u 631 2 1829, 4529 182929, 452929 10 43. u 4 3, 5 1 uu 100 1 2 u 3i 8j 46. u 0 6, 1 4 45. u 2 1, 3 5 3, 8 u 6, 3 3i 8j u 6i 3j 48. v 34 w 34 i 2j 47. v 32u j 3i 3, 32 3 4i 3 2j 49. v u 2w 2i j 2i 2j 3 3 4, 2 4i 3j 4, 3 y y w 2 y 2w 4 1 1 3 w 4 −1 3 2 x −1 u + 2w 3 x 1 1 2 2 1 u −1 x 3u 2 −2 3 −1 51. v 123u w 50. v u w 2i j i 2j i 3j 1, 3 1 2j 7 2, 12 2i j 2i 2j 5j 0, 5 y −2 2 1 −2 u −2 4 1 (3u + w) 2 −1 −1 1 −2 2 1 w 2 x x x −1 w −u 5 u y 3 2 7 2i 4 52. v u 2w 126i 3j i 2j y −u + w 44. u 3 0, 6 2 7i 4j 3 2j 1 10, 0 102 1 u 3, 8 1010, 0 10, 0 7, 4 3 2 2i 3, 3 31 2 3, 3 62, 62 32, 32 42. v 10 2 32 3u 2 −3 −2w −4 u − 2w 3 Section 6.3 53. v 3cos 60i sin 60ºj 54. v 8cos 135 i sin 135 j 555 55. v 6i 6j v 8, 135 v 3, 60 Vectors in the Plane v 62 62 72 62 tan 6 1 6 Since v lies in Quadrant IV, 315. v 5i 4j 56. 57. v 3 cos 0, 3 sin 0 v 5 4 41 2 tan 58. v cos 45, sin 45 3, 0 2 4 5 y 22, 22 y 2 Since v lies in Quadrant II, 141.3. 1 1 x 1 2 3 45° −1 x 1 59. v 72 cos 150, 27 sin 150 73 7 , 4 4 60. v y 52 cos 45, 25 sin 45 52 52 , 4 4 61. v 32 cos 150, 32 sin 150 36 32 , 2 2 y y 5 4 3 4 3 3 2 2 2 150° −4 −3 −2 1 1 x −1 45° 1 1 62. v 43 cos 90, 43 sin 90 0, 43 −5 x −1 63. v 2 y 2 1 12 32 2 10 6 10 5 4 i 3j 64. v 3 −6 −4 −2 3 10 310 310 j , 5 5 5 1 3i 4j 42 2 y 3 3 x 4 1 9 12 9 12 i j , 5 5 5 5 90° 2 x −1 3 3i 4j 5 y 2 −2 3 i 3j i −3 −1 10 8 −4 150° 6 2 −2 2 1 1 x −1 −1 x 1 2 1 −1 2 3 556 Chapter 6 Additional Topics in Trigonometry 65. u 5 cos 0, 5 sin 0 5, 0 u 4 cos 60, 4 sin 60 2, 23 66. v 4 cos 90, 4 sin 90 0, 4 v 5 cos 90, 5 sin 90 0, 5 u v 2, 4 23 u v 5, 5 67. u 20 cos 45, 20 sin 45 102, 102 u 50 cos 30, 50 sin 30 253, 25 68. 43.301, 25 v 50 cos 180, 50 sin 180 50, 0 u v 102 50, 102 v 30 cos 110, 30 sin 110 10.261, 28.191 u v 33.04, 53.19 69. v i j y w 2i 2j 1 v u v w i 3j x −1 w 22 1 −1 v w 10 cos u α v 2 v2 2 w −2 w2 v 2v w w2 2 8 10 0 22 22 90 70. v i 2j y w 2i j 2 u v w i 3j cos v2 w2 v 2v w 1 w2 5 5 10 0 255 90 Force Two: v 60 cos i 60 sin j Resultant Force: u v 45 60 cos i 60 sin j u v 45 60 cos 2 60 sin 2 90 2025 5400 cos 3600 8100 5400 cos 2475 cos 2475 0.4583 5400 62.7 u θ −2 −1 −1 −2 71. Force One: u 45i v x w 2 Section 6.3 72. Force One: u 3000i Force Two: v 1000 cos i 1000 sin j Resultant Force: u v 3000 1000 cos i 1000 sin j u v 3000 1000 cos 2 1000 sin 2 3750 9,000,000 6,000,000 cos 1,000,000 14,062, 500 6,000,000 cos 4,062, 500 cos 4,062,500 0.6771 6,000,000 47.4 73. u 300i v 125 cos 45i 125 sin 45j R u v 300 R 2 74. 125 125 i j 2 2 300 1252 1252 125 2 tan 125 300 2 125 125 i j 2 2 2 398.32 newtons ⇒ 12.8 u 2000 cos 30 i 2000 sin 30j y 1732.05i 1000j v 900 cos45i 900 sin45j 2000 636.4i 636.4j u v 2368.4 i 363.6j u v 2368.42 363.62 2396.19 tan 363.6 0.1535 ⇒ 8.7 2368.4 75. u 75 cos 30i 75 sin 30ºj 64.95i 37.5j v 100 cos 45i 100 sin 45j 70.71i 70.71j w 125 cos 120i 125 sin 120j 62.5i 108.3j u v w 73.16i 216.5j u v w 228.5 pounds tan 216.5 2.9593 73.16 71.3º u+v x 900 Vectors in the Plane 557 558 Chapter 6 Additional Topics in Trigonometry u 70 cos 30 i 70 sin 30j 60.62i 35j 76. v 40 cos 45i 40 sin 45j 28.28i 28.28j w 60 cos 135i 60 sin 135j 42.43i 42.43j u v w 46.48i 35.71j u v w 58.61 pounds tan 35.71 0.7683 46.47 37.5 77. Horizontal component of velocity: 70 cos 35 57.34 feet per second Vertical component of velocity: 70 sin 35 40.15 feet per second 78. Horizontal component of velocity: 1200 cos 6 1193.4 ftsec Vertical component of velocity: 1200 sin 6 125.4 ftsec \ 79. Cable AC : u ucos 50i sin 50j \ Cable BC : v vcos 30i sin 30j Resultant: u v 2000j u cos 50 v cos 30 0 u sin 50 vsin 30 2000 Solving this system of equations yields: TAC u 1758.8 pounds TBC v 1305.4 pounds \ 80. Rope AC : u 10i 24j The vector lies in Quadrant IV and its reference angle is arctan 5 . 12 u u cosarctan 12 5 i sinarctan j 12 5 \ Rope BC : v 20i 24j The vector lies in Quadrant III and its reference angle is arctan5 . 6 v v cosarctan 65 i sinarctan 65 j Resultant: u v 5000j 6 u cosarctan 12 5 v cosarctan 5 0 6 u sinarctan 12 5 v sinarctan 5 5000 Solving this system of equations yields: TAC u 3611.1 pounds TBC v 2169.5 pounds 81. Towline 1: u ucos 18i sin 18j Towline 2: v ucos 18i sin 18j Resultant: u v 6000i u cos 18 u cos 18 6000 u 3154.4 Therefore, the tension on each towline is u 3154.4 pounds. Section 6.3 82. Rope 1: u u cos 70i sin 70j 70° Rope 2: v u cos 70i sin 70j Vectors in the Plane 70° 20° 20° Resultant: u v 100j u sin 70 u sin 70 100 u 53.2 100 lb Therefore, the tension of each rope is u 53.2 pounds. y 83. Airspeed: u 875 cos 58i 875 sin 58j N 140° W Groundspeed: v 800 cos 50i 800 sin 50j 148° Wind: w v u 800 cos 50 875 cos 58i 800 sin 50 875 sin 58j 2 138.7 kilometers per hour Wind speed: Wind direction: tan Wind direction: 129.2065 50.5507 68.6; 90 21.4 Bearing: N 21.4 E y 84. (a) N W E S 28° 580 mph 45° x 60 mph (b) The velocity vector vw of the wind has a magnitude of 60 and a direction angle of 45. vw vwcos i vwsin j 60cos 45i 60sin 45j 60cos 45i sin 45j 60cos 45, sin 45, or 302, 302 (c) The velocity vector vj of the jet has a magnitude of 580 and a direction angle of 118. vj vjcos i vjsin j 580cos 118i 580sin 118j 580cos 118i sin 118j 580cos 118, sin 118 —CONTINUED— v 40° Wind speed: w 50.5507 129.2065 2 S x 32° 50.5507i 129.2065j Wind: E u w 559 560 Chapter 6 Additional Topics in Trigonometry 84. —CONTINUED— (d) The velocity of the jet (in the wind) is v vw vj 60cos 45, sin 45 580cos 118, sin 118 60 cos 45 580 cos 118, 60 sin 45 580 sin 118 229.87, 554.54 The resultant speed of the jet is v 229.872 554.542 600.3 miles per hour (e) If is the direction of the flight path, then tan 554.54 2.4124 229.87 Because lies in the Quadrant II, 180 arctan2.4124 180 67.5 112.5. The true bearing of the jet is 112.5 90 22.5 west of north, or 360 22.5 337.5. 85. W FD 100 cos 5030 1928.4 foot–pounds 86. Horizontal force: u ui Weight: w j Rope: t t cos 135i sin 135j 100 lb u w t 0 ⇒ u t cos 135 0 1 t sin 135 0 50° t 2 pounds 30 ft u 1 pound 87. True. See Example 1. 88. True. u a2 b2 1 ⇒ a2 b2 1 89. (a) The angle between them is 0. (b) The angle between them is 180. (c) No. At most it can be equal to the sum when the angle between them is 0. 90. F1 10, 0, F2 5cos , sin (a) F1 F2 10 5 cos , 5 sin (b) 15 F1 F2 10 5 cos 2 5 sin 2 100 100 cos 25 cos2 25 sin2 54 4 cos cos2 sin2 2 0 0 54 4 cos 1 55 4 cos (c) Range: 5, 15 Maximum is 15 when 0. Minimum is 5 when . (d) The magnitude of the resultant is never 0 because the magnitudes of F1 and F2 are not the same. Section 6.3 Vectors in the Plane 91. Let v cos i sin j. v cos2 sin2 1 1 Therefore, v is a unit vector for any value of . 92. The following program is written for a TI-82 or TI-83 or TI-83 Plus graphing calculator. The program sketches two vectors u ai bj and v ci dj in standard position, and then sketches the vector difference u v using the parallelogram law. 93. u 5 1, 2 6 4, 4 PROGRAM: SUBVECT :Input “ENTER A”, A :Input “ENTER B”, B :Input “ENTER C”, C :Input “ENTER D”, D :Line (0, 0, A, B) :Line (0, 0, C, D) :Pause :A – C→E :B – D→F :Line (A, B, C, D) :Line (A, B, E, F) :Line (0, 0, E, F) :Pause :ClrDraw :Stop 94. v 9 4, 4 5 5, 1 u 80 10, 80 60 70, 20 v 20 100, 70 0 80, 70 u v 1, 3 or v u 1, 3 u v 70 80, 20 70 10, 50 v u 80 70, 70 20 10, 50 96. x 8 sin 95. x2 64 8 sec 2 64 64 x2 64 8 sin2 64sec2 1 64 64 sin2 8tan2 8 tan for 0 < < 2 81 sin2 8cos2 8 cos for 0 < < 2 98. x 5 sec 97. x2 36 6 tan 2 36 x2 253 5 sec 2 253 36tan2 1 25 sec2 253 6sec2 6 sec for 0 < < 2 25sec2 13 25 tan2 3 15,625 tan6 125 tan3 for 0 < < 99. cos xcos x 1 0 cos x 0 x or n 2 cos x 1 0 cos x 1 x 2n 2 561 562 Chapter 6 Additional Topics in Trigonometry 100. sin x2 sin x 2 0 101. 3 sec x sin x 23 sin x 0 sin x3 sec x 23 0 2 sin x 2 0 sin x 0 x 0 n sin x sin x 0 2 or 3 sec x 23 0 2 x n 7 5 2 n, 2 n x 4 4 5 7 x n, 2 n, 2 n 4 4 sec x 23 3 cos x 3 3 23 2 x 2n 6 x 11 2n 6 102. cos x csc x cos x2 0 cos x csc x 2 0 cos x 0 x csc x 2 0 n 2 csc x 2 x x 5 7 2 n, 2 n 4 4 5 7 n , 2 n, 2 n 2 4 4 Section 6.4 Vectors and Dot Products ■ Know the definition of the dot product of u u1, u2 and v v1, v2 . ■ Know the following properties of the dot product: u v u1v1 u2v2 ■ 1. uvvu 2. 0v0 3. u v w u v u w 4. v v v2 5. cu v cu v u cv If is the angle between two nonzero vectors u and v, then cos uv . u v ■ The vectors u and v are orthogonal if u v 0. ■ Know the definition of vector components. u w1 w2 where w1 and w2 are orthogonal, and w1 is parallel to v. w1 is called the projection of u onto v and is denoted by w1 projvu ■ v v. Then we have w u v 2 2 Know the definition of work. \ 1. Projection form: w projPQ F PQ 2. Dot product form: w F PQ \ \ u w1. Section 6.4 Vocabulary Check 1. dot product 2. uv u v 3. orthogonal 4. uv vv Vectors and Dot Products 563 2 5. projPQ F PQ ; F PQ \ \ \ 1. u 6, 1, v 2, 3 u v 62 13 9 4. u 2, 5, v 1, 2 u v 21 52 3. u 4, 1, v 2, 3 2. u 5, 12, v 3, 2 u v 42 13 11 u v 53 122 9 6. u 3i 4j, v 7i 2j 5. u 4i 2j, v i j u v 41 21 6 u v 37 42 13 2 10 8 7. u 3i 2j, v 2i 3j u v 32 23 12 8. u i 2j, v 2i j 9. u 2, 2 u u 22 22 8 u v 12 21 4 The result is a scalar. 10. u 2, 2, v 3, 4 3u v 323 24 32 6 The result is a scalar. 11. u 2, 2, v 3, 4 u vv 23 24 3, 4 23, 4 6, 8 The result is a vector. 12. u 2, 2, v 3, 4, w 1, 2 v uw 32 42 1, 2 13. u 2, 2, v 3, 4, w 1, 2 3w vu 313 324 2, 2 21, 2 332, 2 2, 4 vector 66, 66 The result is a vector. 14. u 2, 2, v 3, 4, w 1, 2 15. w 1, 2 2v 6, 8 w 1 1222 1 5 1 u 2vw 26 28 1, 2 The result is a scalar. 41, 2 4, 8 vector 16. u 2, 2 2 u 2 u u 17. u 2, 2, v 3, 4, w 1, 2 u v u w 23 24 21 22 2 22 22 2 2 2 8 4 2 22 scalar The result is a scalar. 564 Chapter 6 Additional Topics in Trigonometry 18. u 2, 2, v 3, 4, w 1, 2 v u w v 32 42 13 24 2 11 13 scalar 20. u 2, 4 19. u 5, 12 u u u 52 122 13 u u u 22 44 20 25 22. u 12i 16j 21. u 20i 25j u u u 1212 1616 u u u 20 25 1025 541 2 2 400 20 24. u 21i 23. u 6j u u u 2121 00 u u u 0 6 36 6 2 2 212 21 25. u 1, 0, v 0, 2 cos uv 0 0 u v 12 27. u 3i 4j, v 2j 26. u 3, 2, v 4, 0 cos 90 uv 34 20 u v 13 4 3 13 cos 5 0.83205 arccos 33.69 28. u 2i 3j, v i 2j cos uv u v 21 32 22 3212 22 8 65 143.13 29. u 2i j, v 6i 4j cos uv 8 0.4961 u v 552 60.26 0.992278 7.13 30. u 6i 3j, v 8i 4j cos u uv 68 34 36 0.6 u v 60 4580 53.13 32. u 2i 3j, v 4i 3j cos uv 24 33 0.0555 1325 u v 93.18 uv 8 u v 52 31. u 5i 5j, v 6i 6j cos uv 0 u v 90 4 Section 6.4 3 1 i sin j i j 3 3 2 2 2 2 3 3 i sin j i j 4 4 2 2 33. u cos v cos 34. u cos v cos uv uv u v 2 2 2 2 1 2 arccos 3 2 6 4 2 2 i 2 2 j 2 i s in 2 j j 4 u v u v cos 8 64 34 62 32 42 42 cos 6 uv u v v 4 u −8 −6 −4 −2 12 1210 cos x 2 32 cos 12 45 2 37 45 374 574 2 36. u 6i 3j, v 4i 4j y 1 75 512 v 7i 5j 2 6 4 35. u 3i 4j cos 4 i sin 4 j 565 2 2 0 1 2 uv 2 2 cos u v 11 2 u v 1 cos Vectors and Dot Products 4 −2 1 −4 10 0.0232 cos1 91.3 cos 110 ⇒ 108.4 y 8 6 4 v u 2 −6 −4 −2 x 2 4 6 −2 −4 37. u 5i 5j v 8i 8j cos uv u v 58 58 50128 0 90 38. u 2i 3j, v 8i 3j y u v u v cos 10 8 v 28 33 22 32 82 32 cos 6 u 4 7 13 2 −8 − 6 − 4 − 2 −2 7 x 2 4 6 13 −4 cos1 73 cos 13 7 73 ⇒ 76.9 y 6 4 v 2 −2 x 2 −2 −4 −6 73 cos u 4 6 8 10 566 Chapter 6 Additional Topics in Trigonometry 39. P 1, 2, Q 3, 4, R 2, 5 \ \ \ PQ 2, 2, PR 1, 3, QR 1, 1 \ cos PQ \ \ \ PQ PR \ cos PR PQ QR 2 8 ⇒ arccos 26.57 5 2210 \ \ \ PQ QR 0 ⇒ 90. Thus, 180 26.57 90 63.43. 40. P 3, 4, Q 1, 7, R 8, 2 \ 41. P 3, 0, Q 2, 2, R 0, 6 \ PQ 4, 11, QR 7, 5, \ \ \ \ PR 11, 6, QP 4, 11 \ cos PQ PR 110 cos ⇒ 41.41 PQ PR 137 157 \ \ \ \ \ \ \ PQ \ PR \ \ \ PQ PR \ cos QR QP 27 cos ⇒ 74.45 QR QP 74 137 \ \ QP 5, 2, PR 3, 6, QR 2, 4, PQ 5, 2 QP \ QR 27 2945 ⇒ 41.63 \ \ QP PR 2 2920 ⇒ 85.24 180 41.63 85.24 53.13 180 41.41 74.45 64.14 43. u v u v cos 42. P 3, 5, Q 1, 9, R 7, 9 \ \ PQ 2, 4, QR 8, 0, \ 410 cos \ PR 10, 4, QP 2, 4 cos 2 40 PQ PR 36 ⇒ 41.6 PQ PR 20 116 \ \ \ \ \ \ \ 1 20 QR QP 16 cos ⇒ 116.6 QR QP 820 \ 2 3 180 41.6 116.6 21.8 44. u 100, v 250, u 6 45. u v u v cos v u v cos 936 cos 100250 cos 25,000 6 324 3 2 2 3 4 1622 229.1 2 46. u 4 v 12 3 u v u v cos 412 cos 12,5003 412 47. u 12, 30, v 12, 45 48. u 3, 15, v 1, 5 u kv ⇒ Not parallel u 24v ⇒ u and v are parallel. u v0 Neither ⇒ Not orthogonal 3 2 24 1 1 49. u 3i j, v 5i 6j 4 u kv ⇒ Not parallel u v 0 ⇒ Not orthogonal Neither Section 6.4 50. u 1, v 2i 2j 51. u 2i 2j, v i j u kv ⇒ Not parallel u v0 u v0 Vectors and Dot Products 567 52. u cos , sin ⇒ u and v are orthogonal. v sin , cos u v 0 ⇒ u and v are orthogonal. ⇒ Not orthogonal Neither 53. u 2, 2, v 6, 1 w1 projvu uv vv 37146, 1 371 84, 14 2 w2 u w1 2, 2 u 1 14 10 60 10 6, 1 , 1, 6 10, 60 37 37 37 37 37 1 1 84, 14 10, 60 2, 2 37 37 54. u 4, 2, v 1, 2 w1 projvu 55. u 0, 3, v 2, 15 v v 01, 2 0, 0 u v 2 w2 u w1 4, 2 0, 0 4, 2 u 4, 2 0, 0 4, 2 w1 projvu 45 2, 15 uv v v 229 w2 u w1 0, 3 u 56. u 3, 2, v 4, 1 w1 projvu 45 90 12 2, 15 , 229 229 229 6 15, 2 229 45 6 2, 15 15, 2 0, 3 229 229 57. projvu 0 since they are perpendicular. 4, 1 uv vv 14 17 2 14 5 w2 u w1 3, 2 4, 1 1, 4 17 17 u 2 Since u and v are orthogonal, u v 0 and projv u 0. projvu uv v 0, since u v 0. v2 14 5 4, 1 1, 4 3, 2 17 17 58. Because u and v are orthogonal, the projection of u onto v is 0. projw u uv v 0 since u v2 v 0. 59. u 3, 5 60. u 8, 3 For v to be orthogonal to u, u v must equal 0. For v to be orthogonal to u, u v must be equal to 0. Two possibilities: 5, 3 and 5, 3 Two possibilities: 3, 8, 3, 8 1 2 61. u 2i 3j 5 62. u 2i 3j For u and v to be orthogonal, u v must equal 0. For v to be orthogonal to u, u v must be equal to 0. 2 1 2 1 Two possibilities: v 3i 2j and v 3i 2j 5 Two possibilities: v 3i 2j and v 3i 2j 5 568 Chapter 6 Additional Topics in Trigonometry \ 64. P 1, 3, Q 3, 5, v 2i 3j \ 63. w projPQ v PQ where PQ 4, 7 and v 1, 4. \ PQ PQ \ proj PQ v \ v \ 2 work v PQ \ 32 PQ 4, 7 65 \ 326565 \ w proj PQ v PQ \ 2i 3j 4i 2j 24 32 14 65 32 65. (a) u 1650, 3200, v 15.25, 10.50 u (b) Increase prices by 5%: 1.05v The operation is scalar multiplication. v 165015.25 320010.50 $58,762.50 u This gives the total revenue that can be earned by selling all of the pans. 1.05v 1.05u v 1.05165015.25 320010.50 1.0558,762.50 61,700.63 66. (a) u 3240, 2450, v 1.75, 1.25 (b) Increase prices by 2.5%: u v 32401.75 24501.25 8732.5 1.025v scalar multiplication The fast food stand sold $8732.50 of hamburgers and hot dogs in one month. 67. (a) Force due to gravity: F 30,000j Unit vector along hill: v cos di sin dj Projection of F onto v: w1 projv F Fv vv F vv 30,000 sin d v 2 The magnitude of the force is 30,000 sin d. (b) d 0 1 2 3 4 5 6 7 8 9 10 Force 0 523.6 1047.0 1570.1 2092.7 2614.7 3135.9 3656.1 4175.2 4693.0 5209.4 (c) Force perpendicular to the hill when d 5: Force 30,0002 2614.72 29,885.8 pounds 68. Force due to gravity: F 5400j Unit vector along hill: v cos 10i sin 10j Projection of F onto v: w1 projvF Fv vv 2 F vv because v is a unit vector, v 1 0cos 10 5400sin 10 v 5400sin 10v 937.7v The magnitude of the force is 937.7, so a force of 937.7 pounds is required to keep the vehicle from rolling down the hill. Force perpendicular to the hill: Force 54002 9372 5318.0 pounds Section 6.4 Vectors and Dot Products 69. w 2453 735 newton-meters 70. work 24005 12,000 foot-pounds 71. w cos 304520 779.4 foot-pounds 72. work cos 3515,691800 10,282,652 newton-meters 73. w cos 30250100 21,650.64 foot-pounds \ 74. work cos F PQ cos 2025 pounds50 feet 1174.62 foot-pounds 75. False. Work is represented by a scalar. 76. True. W F PQ 0 if F and PQ are orthogonal. \ v0 77. (a) u ⇒ u and v are orthogonal and (b) u v > 0 ⇒ cos > 0 ⇒ 0 ≤ < (c) u v < 0 ⇒ cos < 0 ⇒ . 2 \ 78. (a) projvu u ⇒ u and v are parallel. (b) projvu 0 ⇒ u and v are orthogonal. 2 < ≤ 2 80. Let u u1, u2 and v v1, v2 . 79. In a rhombus, u v. The diagonals are u v and u v. u v u1 v1, u2 v2 u v u v u v u u v v u v2 u1 v12 u2 v22 uuvuuvvv u12 2u1v1 v12 u22 2u2v2 v22 u2 v2 0 u12 u22 v12 v22 2u1v1 2u2v2 Therefore, the diagonals are orthogonal. u 2 v 2 2u1v1 u2v2 u 2 v 2 2u v u−v u u+v v 81. 42 24 1008 144 82. 18 7 2 3 127 83. 3 8 3i22i 112 18 112 32 24 7 26i 2 222 7 26 1214 84. 12 96 i12 i 212 22 2 23 i96 96 3 25 26 32 32 242 85. sin 2x 3 sin x 0 2 sin x cos x 3 sin x 0 3 sin x2 cos x 3 0 sin x 0 or 2 cos x 3 0 x 0, cos x x 3 2 11 , 6 6 569 570 Chapter 6 Additional Topics in Trigonometry 86. sin 2x 2 cos x 0 2 tan x tan 2x 87. 2 sin x cos x 2 cos x 0 2 tan x cos x2 sin x 2 0 cos x 0 sin x x x 2 tan x1 tan2 x 2 tan x 2 sin x 2 0 3 x , 2 2 2 tan x 1 tan2 x 2 tan x1 tan2 x 2 tan x 0 2 2 tan x1 tan2 x 1 0 2 2 tan xtan2 x 0 5 7 , 4 4 2 tan3 x 0 5 3 7 , , , 2 4 2 4 tan x 0 x 0, 88. cos 2x 3 sin x 2 1 2 sin2 x 3 sin x 2 0 2 sin2 x 3 sin x 1 0 2 sin x 1sin x 1 0 2 sin x 1 0 sin x x x sin x 1 0 1 2 sin x 1 7 11 , 6 6 x 3 2 7 3 11 , , 6 2 6 For Exercises 89–92: 5 sin u 12 13 , u in Quadrant IV ⇒ cos u 13 89. sin u v sin u cos v cos u sin v 24 5 7 12 13 25 13 25 253 325 7 cos v 24 25 , v in Quadrant IV ⇒ sin v 25 12 12 5 90. sin u 13, cos u 1 13 13 2 24 7 cos v 24 25 , sin v 1 25 25 2 sinu v sin u cos v cos u sin v 24 5 7 12 13 25 13 25 323 325 91. cosv u cos v cos u sin v sin u 92. sin u 12 5 12 , cos u , tan u 13 13 5 5 7 12 24 25 13 25 13 cos v 204 325 tanu v 24 7 7 , sin v , tan v 25 25 24 tan u tan v 1 tan u tan v 125 247 253 120 7 17 1 12 5 24 10 253 204 Section 6.5 Section 6.5 Trigonometric Form of a Complex Number Trigonometric Form of a Complex Number ■ You should be able to graphically represent complex numbers and know the following facts about them. ■ The absolute value of the complex number z a bi is z a2 b2. ■ The trigonometric form of the complex number z a bi is z rcos i sin where (a) a r cos (b) b r sin (c) r a2 b2; r is called the modulus of z. b (d) tan ; is called the argument of z. a Given z1 r1cos 1 i sin 1 and z2 r2cos 2 i sin 2: ■ (a) z1z2 r1r2cos1 2 i sin1 2 (b) z1 r1 cos1 2 i sin1 2, z2 0 z2 r2 You should know DeMoivre’s Theorem: If z rcos i sin , then for any positive integer n, ■ zn rn cos n i sin n. You should know that for any positive integer n, z rcos i sin has n distinct nth roots given by ■ n r cos 2k 2k i sin n n where k 0, 1, 2, . . . , n 1. Vocabulary Check 1. absolute value 2. trigonometric form; modulus; argument 3. DeMoivre’s 4. nth root 1. 7i 02 72 2. 7 72 02 49 7 49 7 −2 4 −8 Imaginary axis 6 Real axis − 4 + 4i 4 −2 −6 32 42 8 2 2 −7 −4 4 4i 42 42 Imaginary axis Imaginary axis −4 3. −8 −6 −4 −2 4 3 2 Real axis 2 1 −2 −7i 5 −5 − 4 −3 −2 −1 −1 1 Real axis 571 572 Chapter 6 Additional Topics in Trigonometry 4. 5 12i 52 122 6 7i 62 72 5. 169 13 73 Imaginary axis Imaginary axis 2 4 Real axis 6 2 4 6 Real axis 8 6 − 8 + 3i −2 −4 2 −8 − 10 − 8 −6 − 10 r 22 02 4 2 3 tan , undefined ⇒ 0 2 tan i sin 2 2 0 ⇒ 2 1 1 tan , is in Quadrant IV. 3 5.96 radians 11. z 3 3i r 1 3 4 2 3 −2 z 10cos 5.96 i sin 5.96 10. z 1 3i 2 Real axis r 32 12 10 z 2cos i sin −2 9. z 3 i r 02 32 9 3 z 3 cos −4 −4 8. z 2 7. z 3i −6 6 − 7i −8 5 − 12i − 12 z 2 cos 4 −4 −6 tan 85 Imaginary axis −6 −4 −2 −2 6. 8 3i 82 32 2 3 ⇒ 2 2 i sin 3 3 r 32 32 18 32 2 3 tan 3 7 1, is in Quadrant IV ⇒ . 3 4 7 7 i sin 4 4 1 2 z 32 cos Imaginary axis Real axis 3 −1 −2 −3 12. z 2 2i 13. z 3 i r 3 12 4 2 r 22 22 8 22 tan 2 2 1 ⇒ 2 4 z 22 cos 3 − 3i i sin 4 4 tan Imaginary axis 1 3 z 2 cos 3 3 3 ⇒ i sin 6 6 6 Imaginary axis 2 + 2i 2 2 3+i 1 1 1 2 3 Real axis −1 1 −1 2 Real axis Section 6.5 15. z 21 3i 14. z 4 43i r 22 232 16 4 r 42 43 2 8 43 5 3 ⇒ 4 3 tan z 8 cos Trigonometric Form of a Complex Number 5 5 i sin 3 3 3 tan 1 z 4 cos 3, is in Quadrant III ⇒ 4 4 i sin 3 3 Imaginary axis Imaginary axis Real axis 2 −2 2 4 6 −4 Real axis 8 −3 −2 −1 −2 −2 −4 −3 −6 4−4 −8 16. z r −2( 1 + 3i) 3i 5 3 i 2 17. z 5i 2 5 3 2 1 tan 3 5 1 2 2 3 11 ⇒ 3 6 11 11 z 5 cos i sin 6 6 100 25 5 4 r 02 52 25 5 5 3 , undefined ⇒ 0 2 tan z 5 cos Imaginary axis 3 3 i sin 2 2 Imaginary axis −4 −2 2 4 Real axis −2 2 1 −1 −1 2 3 4 −4 Real axis 5 −5i −6 −2 −8 −3 5 2 −4 ( 3 − i) 19. z 7 4i 18. z 4i r −4 02 42 162 4 4 tan , undefined ⇒ 0 2 z 4 cos i sin 2 2 Imaginary axis r 72 42 65 tan 4 , is in Quadrant II ⇒ 2.62. 7 z 65 cos 2.62 i sin 2.62 Imaginary axis −7 + 4 i 4 5 4 2 4i 3 −8 2 −6 −4 Real axis −2 −2 1 −3 − 2 − 1 −1 1 2 3 Real axis −4 4 . 3 573 574 Chapter 6 Additional Topics in Trigonometry 20. z 3 i 21. z 7 0i r 32 12 10 tan 1 5.96 radians 3 z 10 cos 5.96 i sin 5.96 Imaginary axis r 72 02 49 7 z 7 cos 0 i sin 0 Imaginary axis 4 1 2 2 Real axis 3 7 2 3−i −1 4 6 Real axis 8 −2 −4 −2 22. z 4 r 0 0 ⇒ 0 7 tan 23. z 3 3i 42 02 162 4 r 32 3 12 2 23 0 0 ⇒ 0 4 tan tan z 4cos 0 i sin 0 3 3 Imaginary axis ⇒ z 23 cos 6 i sin 6 6 2 Imaginary axis 1 4 1 2 3 4 Real axis 4 3 −1 3+ 2 3i −2 1 −1 1 2 3 4 Real axis −1 25. z 3 i 24. z 22 i r 222 12 9 3 tan 2 1 ⇒ 5.94 radians 22 4 z 3cos 5.94 i sin 5.94 r 32 12 10 tan 1 1 , is in Quadrant III ⇒ 3.46. 3 3 z 10 cos 3.46 i sin 3.46 Imaginary axis Imaginary axis −4 1 2 −1 −2 3 Real axis 2 2−i −3 −3 − i Real axis −2 −1 −2 −3 −4 Section 6.5 26. z 1 3i Trigonometric Form of a Complex Number 27. z 5 2i r 52 22 29 r 12 32 10 tan 31 3 ⇒ 1.25 radians tan 25 0.38 z 10 cos 1.25 i sin 1.25 z 29cos 0.38 i sin 0.38 Imaginary axis Imaginary axis 1 + 3i 3 5 2 4 1 3 −1 3 2 1 Real axis 5 + 2i 2 1 −1 −1 −1 2 3 4 5 r 82 53 2 139 r 82 32 73 3 8 tan 53 8 3.97 0.36 z 73cos 0.36 i sin 0.36 z 139cos 3.97 i sin 3.97 Imaginary axis Imaginary axis 6 − 10 − 8 −6 −4 Real axis −2 −2 8 + 3i 4 −4 2 −2 2 4 6 8 −6 Real axis −8 −2 − 8 − 5 3i −4 30. z 9 210i r 92 2102 121 − 10 1 3 31. 3cos 120 i sin 120 3 i 2 2 3 33 i 2 2 r 11 tan 210 9 Imaginary axis 4 3.75 −3 + 3 3 i 2 2 z 11cos 3.75 i sin 3.75 3 2 Imaginary axis − 10 − 8 Real axis 29. z 8 53i 28. z 8 3i tan 1 −6 −4 Real axis −2 −2 −4 −6 − 9 − 2 10 i −8 − 10 −3 −2 −1 1 −1 2 Real axis 575 576 Chapter 6 Additional Topics in Trigonometry 32. 5cos 135 i sin 135 5 2 2 i 2 2 33. 3 3 1 3 i cos 300 i sin 300 2 2 2 2 52 52 i 2 2 Imaginary axis − 5 2 5 2 + i 2 2 4 −1 1 −1 1 34. −2 3 33 i 4 4 1 2 −3 Imaginary axis 3 −4 Real axis −1 Real axis 2 3 −3 3 i 4 4 −2 2 2 1 1 cos 225 i sin 225 i 4 4 2 2 2 8 i 35. 3.75 cos 3 3 152 152 i sin i 4 4 8 8 2 8 Imaginary axis Imaginary axis − 15 2 + 15 2 i 8 8 3 2 −1 2 −4 −1 4 2 2 i − 8 8 − 1 Real axis −1 4 −3 −2 Real axis −1 −1 −1 2 36. 6 cos 5 5 i sin 1.5529 5.7956i 12 12 37. 8 cos i sin 80 i 8i 2 2 Imaginary axis Imaginary axis 10 6 1.5529 + 5.7956i 8 4 6 2 4 −2 2 4 Real axis 6 2 −2 −2 −2 8i 2 4 6 8 Real axis 10 39. 3cos1845 i sin1845 2.8408 0.9643i 38. 7cos 0 i sin 0 7 Imaginary axis Imaginary axis 4 2 2 2.8408 + 0.9643i 1 7 2 4 6 8 Real axis 1 −2 −1 −4 −2 2 3 4 Real axis Section 6.5 Trigonometric Form of a Complex Number 577 40. 6cos230 30 i sin230 30 3.8165 4.6297i Imaginary axis 1 −5 −4 −3 −2 −1 1 Real axis −2 −3 −4 − 3.8165 − 4.6297i − 5 41. 5 cos i sin 4.6985 1.7101i 9 9 42. 10 cos 43. 3cos 165.5 i sin 165.5 2.9044 0.7511i 45. z 2 2 1 i cos 45 i sin 45 cos 135 i sin 135 46. z 2 2 1 i r −2 z4 = −1 2 1 2 z 1 cos 3 2 1 ( 3i ( z= z 3 = −1 −2 z4 = −1 1 −1 − 2 ( 1 1+ 2 ( 1 3i ( Real axis 3i ( 1 3 i sin i 3 3 2 2 z2 12 cos 2 (1 + i) 2 1 −1 + 2 −2 z2 = i 1 2 z2 = 3 Imaginary axis z= Imaginary axis tan 3 The absolute value of each is 1, and consecutive powers of z are each 45 apart. 2 z3 = (−1 + i) 2 1 1 3i 2 zn r ncos n i sin n z4 cos 180 i sin 180 1 2 44. 9cos 58 i sin 58 4.7693 7.6324i z2 cos 90 i sin 90 i z3 2 2 3.0902 9.5106i i sin 5 5 2 1 3 2 i sin i 3 3 2 2 z3 13cos i sin 1 Real axis z4 14 cos −1 4 4 1 3 i sin i 3 3 2 2 The absolute value of each is 1 and consecutive powers of z are each 3 radians apart. 47. 2cos 4 i sin 4 6cos 12 i sin 12 26cos4 12 i sin4 12 12 cos 48. 34 cos 3 i sin 3 4cos 34 i sin 34 344cos 3 34 i sin3 34 3 cos 49. i sin 3 3 13 13 i sin 12 12 53cos 140 i sin 140º 23cos 60 i sin 60 53 23 cos140 60 i sin140 60 10 9 cos 200 i sin 200 578 Chapter 6 Additional Topics in Trigonometry 50. 0.5cos 100 i sin 1000.8cos 300 i sin 300 0.50.8cos100 300 i sin100 300 0.4cos 400 i sin 400 0.4cos 40 i sin 40 51. 0.45cos 310 i sin 310 0.60cos 200 i sin 200 0.450.60cos310 200 i sin310 200 0.27cos 510 i sin 510 0.27cos 150 i sin 150 52. cos 5 i sin 5cos 20 i sin 20 cos5 20 i sin5 20 cos 25 i sin 25 53. cos 50 i sin 50 cos50 20 i sin50 20 cos 30 i sin 30 cos 20 i sin 20 54. 2cos 120 i sin 120 2 cos120 40 i sin120 40 4cos 40 i sin 40 4 1 cos 80 i sin 80 2 5 5 i sin 3 3 5 5 2 2 cos i sin cos i sin cos i sin 3 3 3 3 cos 55. 56. 5cos 4.3 i sin4.3 5 cos4.3 2.1 i sin4.3 2.1 4cos 2.1 i sin2.1 4 5 cos2.2 i sin2.2 4 57. 12cos 52 i sin 52 4cos52 110 i sin52 110 3cos 110 i sin 110 4cos58 i sin(58 4cos 302 i sin 302 58. 6cos 40 i sin 40 6 cos 40 100 i sin40 100 7cos 100 i sin 100 7 6 cos 300 i sin 300 7 59. (a) 2 2i 22 cos i sin 4 4 4 i sin 4 2cos (a) 1 i 2 cos (b) 2 2i1 i 22 cos i sin 4 4 7 7 i sin 4 4 7 7 2cos 4 i sin 4 4cos 2 i sin 2 4cos 0 i sin 0 4 (c) 2 2i1 i 2 2i 2i 2i2 2 2 4 Section 6.5 Trigonometric Form of a Complex Number 60. (a) 3 i 2cos 30 i sin 30 1 i 2cos 45 i sin 45 (b) 3 i1 i 2cos 30 i sin 302cos 45 i sin 45 22cos 75 i sin 75 22 6 2 4 6 2 4 i 3 1 3 1 i 0.732 2.732i (c) 3 i1 i 3 3 1 i i2 3 1 3 1 i 0.732 2.732i 61. (a) 2 i sin 2 2cos 2i 2 cos (a) 1 i 2 cos i sin 4 4 3 3 i sin 2 2 3 3 2 i sin 2 2cos 4 i sin 4 (b) 2i1 i 2 cos 7 7 4 i sin 4 (b) 22 cos (b) 22 2 2i 2 2i 1 1 (c) 2i1 i 2i 2i2 2i 2 2 2i 62. (a) 3 i sin 3 (b) 41 3i 8 cos 4 4cos 0 i sin 0 3 i sin3 1 3i 2 cos 8 (c) 41 3i 4 43i 63. (a) 5 5 i sin 3 3 3 4i 3 4i (c) 1 3i 1 3i 4 43i 3 4i 5cos 0.93 i sin 0.93 1 3 i 2 cos 12 i 23 (b) 3 4i 5cos 0.93 i sin 0.93 5 1 3 i 5 i sin 2 cos 3 3 2.5cos4.31 i sin4.31 1 3 i 1 3 i 5 cos 1.97 i sin 1.97 2 3 4 33 i 43i2 13 0.982 2.299i 3 43 4 33 i 4 4 0.982 2.299i 64. (a) 1 3i 2 cos i sin 3 3 6 3i 35 cos0.464 i sin0.464 (b) 1 3i 2 cos 0.464 i sin 0.464 6 3i 3 3 35 (c) 1 3i 6 3i 6 3i 6 3i 2155 cos 1.51 i sin 1.51 0.018 0.298i 6 33 i 3 63 2 3 i 1 23 0.018 0.298i 45 15 15 579 580 Chapter 6 Additional Topics in Trigonometry 65. (a) 5 5cos 0 i sin 0 (a) 2 3i 13cos 0.98 i sin 0.98 (b) 5 5cos 0 i sin 0 5 5 cos0.98 i sin0.98 cos 5.30 i sin 5.30 0.769 1.154i 13 2 3i 13cos 0.98 i sin 0.98 13 (c) 5 5 2 3i 2 3i 2 3i 2 3i 10 15i 10 15 i 0.769 1.154i 13 13 13 4i 4cos 90 i sin 90 66. (a) (b) 4 2i 25cos 153.4 i sin 153.4 4i 4i (c) 4 2i 4 2i 4cos 90 i sin 90 4i 4 2i 25cos 153.4 i sin 153.4 0.400 0.800i 8 16i 2 4 i 0.400 0.800i 20 5 5 67. Let z x iy such that: z 2 ⇒ 2 x2 ⇒ 4 circle with radius of 2 x2 25 cos 296.6 i sin 296.6 5 4 i 4 2i 68. z 3 Imaginary axis y2 3 Imaginary axis y2: 4 1 −1 1 3 Real axis 2 1 −1 −2 −1 1 2 Real axis 4 −2 −3 −4 69. Let . 6 Imaginary axis 70. 4 Since r ≥ 0, we have the portion of the line 6 in Quadrant I. 2 −4 2 4 Real axis 5 4 Imaginary axis Since r ≥ 0, we have the portion of the line 54 in Quadrant III. 2 1 −3 −2 −1 −2 i sin 4 4 2 cos 5 42 4 4i 2 2 i −3 5 5 5 i sin 4 4 2 2 72. 2 2i6 22 cos −1 −2 −4 71. 1 i5 2 cos 1 i sin 4 4 22 cos 6 512 cos 512i 6 6 6 i sin 4 4 3 3 i sin 2 2 2 Real axis Section 6.5 3 3 i sin 4 4 73. 1 i10 2 cos 3 2 32 cos 10 6 i sin 2 3 2 10 6 cos Trigonometric Form of a Complex Number 30 30 i sin 4 4 32cos 32 i sin 32 320 i1 32i 74. 3 2i8 13 cosarctan23 i sinarctan23 8 13 cos8 arctan23 i sin8 arctan23 8 239 28,560i 75. 23 i 2 2 cos 7 i sin 6 6 2 27 cos 256 7 7 7 i sin 6 6 3 2 1 i 2 76. 41 3i 4 2 cos 3 5 5 i sin 3 3 3 423cos 5 i sin 5 321 32 1283 128i 77. 5cos 20 i sin 203 53cos 60 i sin 60 125 1253 i 2 2 78. 3cos 150 i sin 1504 34cos 600 i sin 600 79. cos 4 i sin 4 12 cos 12 12 i sin 4 4 81cos 240 i sin 240 cos 3 i sin 3 81cos 60 i sin 60 1 81 813 i 2 2 80. 2cos 2 i sin 2 8 28cos 4 i sin 4 81. 5cos 3.2 i sin 3.24 54cos 12.8 i sin 12.8 608.02 144.69i 256cos 0 i sin 0 256 82. cos 0 i sin 020 cos 0 i sin 0 83. 3 2i5 3.6056cos0.588 i sin0.5885 3.60565cos2.94 i sin2.94 1 597 122i 84. 5 4i3 21cos1.06106 i sin1.06106 3 21 3cos31.06106 i sin31.06106 96.15 4.00i 85. 3cos 15 i sin 154 81cos 60 i sin 60 81 813 i 2 2 86. 2cos 10 i sin 108 256cos 80 i sin 80 44.45 252.11i 581 582 87. Chapter 6 2 cos Additional Topics in Trigonometry i sin 10 10 5 25 cos i sin 2 2 88. 2cos 8 i sin 8 6 89. (a) Square roots of 5cos 120 i sin 120: 120 360k 120 360k i sin 2 2 (b) , k 0, 1 3 1 −3 (a) k 1: 5cos 240 i sin 240 5 2 15 2 i, 5 2 15 2 −1 (b) 16 cos 6 k 0: 4cos 30 i sin 30 2 −6 k 1: 4cos 210 i sin 210 −2 (c) 23 2i, 23 2i 3 8 cos 2 2 i sin : 3 3 2 2 k 0: 2 cos i sin 9 9 8 8 i sin 9 9 14 14 i sin 9 9 k 2: 2 cos Real axis 2 6 Real axis 3 Real axis −6 (b) Imaginary axis 23 2k 23 2k i sin , k 0, 1, 2 3 3 k 1: 2 cos 3 Imaginary axis 60 2k 360 i sin60 2k 360, k 0, 1 (c) 1 −3 i 90. (a) Square roots of 16cos 60 i sin 60: 91. (a) Cube roots of 8 cos Imaginary axis (a) k 0: 5cos 60 i sin 60 (c) 3 3 i sin 4 4 322 322i 32i (a) 5 cos 64 cos 3 1 −3 −1 −1 1 −3 1.5321 1.2856i, 1.8794 0.6840i, 0.3473 1.9696i 92. (a) Fifth roots of 32 cos 5 5 i sin : 6 6 (b) Imaginary axis 565 2k i sin565 2k, k 0, 1, 2, 3, 4 3 5 32 cos i sin 6 6 17 17 i sin 30 30 29 29 i sin 30 30 41 41 i sin 30 30 53 53 i sin 30 30 k 0: 2 cos k 1: 2 cos k 2: 2 cos k 3: 2 cos k 4: 2 cos −3 3 Real axis −3 (c) 3 i, 0.4158 1.9563i, 1.9890 0.2091i, 0.8135 1.8271i, 1.4863 1.3383i Section 6.5 3 3 : i sin 2 2 93. (a) Square roots of 25i 25 cos 3 2k 2 (a) 25 cos 2 3 3 i sin 4 4 7 7 i sin 4 4 (a) k 0: 5 cos (a) k 1: 5 cos (c) 3 2k 2 i sin 2 Trigonometric Form of a Complex Number (b) Imaginary axis 6 4 2 , k 0, 1 −6 −2 −2 2 4 6 Real axis 4 6 Real axis 4 6 Real axis −4 −6 52 52 52 52 i, i 2 2 2 2 94. (a) Fourth roots of 625i 625 cos i sin : 2 2 (b) 2k 2 4 625 cos 4 Imaginary axis 2k 2 i sin 2 6 −6 k 0, 1, 2, 3 −4 −6 i sin 8 8 5 5 i sin 8 8 9 9 i sin 8 8 13 13 i sin 8 8 k 0: 5 cos k 1: 5 cos k 2: 5 cos k 3: 5 cos −2 2 (c) 4.6194 1.9134i, 1.9134 4.6194i, 4.6194 1.9134i, 1.9134 4.6194i 95. (a) Cube roots of 125 4 4 1 3i 125 cos i sin : 2 3 3 4 2k 3 3 (a) 125 cos 3 (a) k 0: 5 cos 4 2k 3 i sin 3 4 4 i sin 9 9 2 , k 0, 1, 2 −6 −2 −6 16 16 i sin 9 9 Imaginary axis −4 (b) 6 10 10 (a) k 1: 5 cos i sin 9 9 (a) k 2: 5 cos (c) 0.8682 4.9240i, 4.6985 1.7101i, 3.8302 3.2140i 583 584 Chapter 6 Additional Topics in Trigonometry 96. (a) Cube roots of 421 i 8 cos 3 2k 4 3 8 cos 3 k 0: 2 cos i sin 4 4 (b) 19 19 i sin 12 12 Imaginary axis 3 , k 0, 1, 2 −3 3 2k 4 i sin 3 11 11 k 1: 2 cos i sin 12 12 k 2: 2 cos 3 3 i sin : 4 4 Real axis 3 −3 (c) 2 2i, 1.9319 0.5176i, 0.5176 1.9319i 97. (a) Fourth roots of 16 16cos 0 i sin 0: 4 16 cos (b) Imaginary axis 0 2k 0 2k i sin , k 0, 1, 2, 3 4 4 3 k 0: 2cos 0 i sin 0 k 1: 2 cos i sin 2 2 1 −3 k 2: 2cos i sin k 3: 2 cos 3 3 i sin 2 2 −1 1 3 Real axis −1 −3 (c) 2, 2i, 2, 2i 98. (a) Fourth roots of i cos 2k 2 4 1 cos 4 k 0: cos i sin : 2 2 2k 2 i sin 4 i sin 8 8 5 5 k 1: cos i sin 8 8 k 2: cos 9 9 i sin 8 8 k 3: cos 13 13 i sin 8 8 (c) 0.9239 0.3827i, 0.3827 0.9239i, 0.9239 0.3827i, 0.3827 0.9239i (b) Imaginary axis 2 , k 0, 1, 2, 3 −2 2 −2 Real axis Section 6.5 99. (a) Fifth roots of 1 cos 0 i sin 0: (a) cos 2k Trigonometric Form of a Complex Number (b) Imaginary axis 2k 5 i sin 5 , k 0, 1, 2, 3, 4 2 (a) k 0: cos 0 i sin 0 (a) k 1: cos −2 2 2 i sin 5 5 Real axis 2 −2 4 4 i sin (a ) k 2: cos 5 5 ( a) k 3: cos 6 6 i sin 5 5 (a) k 4: cos 8 8 i sin 5 5 (c) 1, 0.3090 0.9511i, 0.8090 0.5878i, 0.8090 0.5878i, 0.3090 0.9511i 100. (a) Cube roots of 1000 1000cos 0 i sin 0: 3 1000 cos 2k 2k i sin 3 3 (b) Imaginary axis 8 6 4 k 0, 1, 2 −8 −6 −4 −2 k 0: 10cos 0 i sin 0 2 2 i sin 3 3 4 4 i sin 3 3 k 1: 10 cos k 2: 10 cos Real axis 2 4 6 8 −6 −8 (c) 10, 5 53i, 5 53i 101. (a) Cube roots of 125 125cos i sin : (b) Imaginary axis 32k i sin 32k, k 0, 1, 2 6 3 (a) 125 cos (a) k 0: 5 cos i sin 3 3 2 −6 (a) k 1: 5cos i sin 5 5 (a) k 2: 5 cos i sin 3 3 (c) 5 53 5 53 i, 5, i 2 2 2 2 4 −2 2 −4 −6 4 6 Real axis 585 586 Chapter 6 Additional Topics in Trigonometry 102. (a) Fourth roots of 4 4cos i sin : 4 4 cos 2k 2k i sin 4 4 (b) Imaginary axis 2 1 k 0, 1, 2, 3 i sin 4 4 3 3 i sin 4 4 5 5 i sin 4 4 7 7 i sin 4 4 k 0: 2 cos k 1: 2 cos k 2: 2 cos k 3: 2 cos −2 3 3 3 3 i sin 2152 cos i sin 4 4 4 4 11 11 i sin 20 20 19 19 i sin 20 20 (b) 27 27 i sin (a) k 3: 22 cos 20 20 7 7 i sin (a) k 4: 22 cos 4 4 −2 2 2k 2 2k i sin 6 6 (b) 3 1 −3 i sin 12 12 5 5 i sin 12 12 3 3 i sin 4 4 13 13 i sin 12 12 17 17 i sin 12 12 7 7 i sin 4 4 k 1: 2 cos k 2: 2 cos k 3: 2 cos k 4: 2 cos k 5: 2 cos Real axis 2 Imaginary axis k 0, 1, 2, 3, 4, 5 k 0: 2 cos 1 (c) 2.5201 1.2841i, 0.4425 2.7936i, 2.7936 0.4425i, 1.2841 2.5201i, 2 2i −1 −2 Imaginary axis 1 i sin : 2 2 104. (a) Sixth roots of 64i 64 cos 6 64 cos (a) k 2: 22 cos 3 2k 4 , k 0, 1, 2, 3, 4 i sin 5 3 3 i sin 20 20 (a) k 1: 22 cos Real axis (c) 1 i, 1 i, 1 i, 1 i (a) k 0: 22 cos 2 −2 232 1 −1 103. (a) Fifth roots of 1281 i 1282 cos 3 2k 4 cos 5 −1 1 3 Real axis −3 (c) 1.9319 0.5176i, 0.5176 1.9319i, 2 2 i, 1.9319 0.5176i, 0.5176 1.9319i, 2 2i Section 6.5 Trigonometric Form of a Complex Number 105. x4 i 0 x4 i The solutions are the fourth roots of i cos 3 2k 2 4 1 cos 4 3 2k 2 i sin 4 3 3 i sin : 2 2 , k 0, 1, 2, 3 k 0: cos 3 3 i sin 0.3827 0.9239i 8 8 k 1: cos 7 7 i sin 0.9239 0.3827i 8 8 k 2: cos 11 11 i sin 0.3827 0.9239i 8 8 k 3: cos 15 15 i sin 0.9239 0.3827i 8 8 Imaginary axis 1 2 Real axis 1 −2 106. x3 1 0 Imaginary axis x 1 3 2 The solutions are the cube roots of 1 cos i sin : 2k 2k cos i sin 3 3 −2 −2 k 0, 1, 2 k 0: cos Real axis 2 1 3 i sin i 3 3 2 2 k 1: cos i sin 1 k 2: cos 5 5 1 3 i sin i 3 3 2 2 107. x5 243 0 x5 243 The solutions are the fifth roots of 243 243cos i sin : 5 243 cos 2k 2k i sin 5 5 , k 0, 1, 2, 3, 4 i sin 2.4271 1.7634i 5 5 3 3 i sin 0.9271 2.8532i 5 5 k 0: 3 cos k 1: 3 cos 7 7 i sin 0.9271 2.8532i k 3: 3 cos 5 5 k 4: 3 cos 4 k 2: 3cos i sin 3 Imaginary axis 9 9 i sin 2.4271 1.7634i 5 5 −4 −2 2 −4 4 Real axis 587 588 Chapter 6 Additional Topics in Trigonometry 108. x 3 27 0 Imaginary axis x 3 27 4 The solutions are the cube roots of 27 27cos 0 i sin 0: 3 27 2 2k 2k cos i sin 3 3 −4 −2 −1 1 k 0, 1, 2 −2 k 0: 3cos 0 i sin 0 3 −4 2 3 33 2 i sin i 3 3 2 2 4 4 3 33 i sin i 3 3 2 2 k 1: 3 cos k 2: 3 cos 2 4 Real axis 109. x4 16i 0 x4 16i The solutions are the fourth roots of 16i 16 cos 3 3 i sin : 2 2 3 3 2k 2 k 2 2 4 16 cos i sin , k 0, 1, 2, 3 4 4 Imaginary axis 3 3 i sin 0.7654 1.8478i 8 8 3 7 7 i sin 1.8478 0.7654i 8 8 1 11 11 i sin 0.7654 1.8478i 8 8 k 0: 2 cos k 1: 2 cos k 2: 2 cos −3 −1 3 Real axis −3 15 15 i sin 1.8478 0.7654i k 3: 2 cos 8 8 110. x6 64i 0 x6 Imaginary axis 64i 3 3 3 i sin : The solutions are the sixth roots of 64i 64 cos 2 2 32 2k 32 2k 6 64 cos i sin 6 6 i sin 2 2 i 4 4 7 7 i sin 0.5176 1.9319i 12 12 11 11 i sin 1.9319 0.5176i 12 12 5 5 i sin 2 2 i 4 4 19 19 i sin 0.5176 1.9319i 12 12 23 23 i sin 1.9319 0.5176i 12 12 k 1: 2 cos k 2: 2 cos k 3: 2 cos k 4: 2 cos k 5: 2 cos −3 −1 −1 −3 k 0, 1, 2, 3, 4, 5 k 0: 2 cos 1 1 3 Real axis Section 6.5 Trigonometric Form of a Complex Number 589 111. x3 1 i 0 x3 1 i 2 cos 7 7 i sin 4 4 The solutions are the cube roots of 1 i: 3 2 cos 74 2k 74 2k i sin , k 0, 1, 2 3 3 7 Imaginary axis 7 12 i sin 12 0.2905 1.0842i 5 5 k 1: 2cos i sin 0.7937 0.7937i 4 4 6 2 cos k 0: 2 6 6 2 cos k 2: −2 23 23 1.0842 0.2905i i sin 12 12 2 Real axis −2 112. x4 1 i 0 Imaginary axis x4 1 i 2cos 225 i sin 225 2 The solutions are the fourth roots of 1 i: 4 2 cos 225 360k 225 360k i sin 4 4 −2 k 0, 1, 2, 3 2 Real axis −2 8 2cos 56.25 i sin 56.25 0.6059 0.9067i k 0: 8 2cos 146.25 i sin 146.25 0.9067 0.6059i k 1: 8 2cos 236.25 i sin 236.25 0.6059 0.9067i k 2: 8 2cos 326.25 i sin 326.25 0.9067 0.6059i k 3: 113. True, by the definition of the absolute value of a complex number. 114. False. They are equally spaced along the circle centered n r. at the origin with radius 115. True. z1z2 r1r2cos1 2 i sin1 2 andz1z2 0 if and only if r1 0 and/or r2 0. 116. False. The complex number must be converted to trigonometric form before applying DeMoivre’s Theorem. 4 6i 8 22 cosarctan 117. z1 r1cos 1 i sin 1 z2 r2cos 2 i sin 2 6 4 i sinarctan 46 8 cos i sin cos 2 i sin 2 2 2 r1 cos 1 cos 2 sin 1 sin 2 isin 1 cos 2 sin 2 cos 1 2 r2cos 2 sin2 2 r1 cos1 2 i sin1 2 r2 590 Chapter 6 Additional Topics in Trigonometry 118. z r cos i sin 119. (a) zz r cos i sin r cos i sin r cos i sin (a) r2cos i sin r cos ir sin (a) r2cos 0 i sin 0 (a) r2 which is the complex conjugate of r cos i sin r cos ir sin . z rcos i sin z rcos i sin r (b) cos i sin r (b) cos 2 i sin 2 (b) 120. z r cos i sin 121. z r cos i sin 1 1 3i cos 43 i sin 43 2 21 1 3i cos 43 i sin 43 6 r cos i sin r cos i sin 6 cos 8 i sin 8 1 2141 i 214 2 cos 122. 214 cos 2 cos 74 i sin 74 4 14 7 7 i sin 4 4 7 7 i sin 4 4 2144cos 7 i sin 7 2cos i sin 2 123. (a) 2cos 30 i sin 30 124. (a) 3cos 45 i sin 45 2cos 150 i sin 150 3cos 135 i sin 135 2cos 270 i sin 270 3cos 225 i sin 225 (b) These are the cube roots of 8i. 3cos 315 i sin 315 (b) These are the fourth roots of 81. (c) The fourth roots of 81: Imaginary axis 4 −4 4 −4 Real axis Section 6.5 Trigonometric Form of a Complex Number 126. B 66, a 33.5 125. A 22, a 8 A 90 66 24 B 90 A 68 tan 22 8 8 19.80 ⇒ b b tan 22 b a sin B 33.5 sin 66 75.24 sin A sin 24 sin 22 8 8 ⇒ c 21.36 c sin 22 c a sin C 33.5 sin 90 82.36 sin A sin 24 128. B 6, b 211.2 127. A 30, b 112.6 A 90 6 84 B 90 A 60 tan 30 a ⇒ a 112.6 tan 30 65.01 112.6 a b sin A 211.2 sin 84 2009.43 sin B sin 6 cos 30 112.6 112.6 ⇒ c 130.02 c cos 30 c b sin C 211.2 sin 90 2020.50 sin B sin 6 130. B 81 30, c 6.8 129. A 4215 42.25, c 11.2 A 90 81 30 8 30 B 90 A 4745 sin 42.25 a ⇒ a 11.2 sin 42.25 7.53 11.2 a c sin A 6.8 sin 8 30 1.01 sin C 1 cos 42.25 b ⇒ b 11.2 cos 42.25 8.29 11.2 b c sin B 6.8 sin 81 30 6.73 sin C 1 131. d 16 cos t 4 132. d Maximum displacement: 16 16 16 cos t0 ⇒ t ⇒ t2 4 4 2 1 133. d 16 sin54 t Maximum displacement: 1 16 sin54 t 0 5 4 t 591 1 16 1 cos 12 t 8 Maximum displacement: d 0 when 12t 1 8 1 , or t 2 24 1 134. d 12 sin 60 t 1 16 Maximum displacement: 1 12 1 d 0 when 60 t , or t 60 4 t5 135. 6 sin 8 cos 3 612 sin8 3 sin8 3 3sin 11 sin 5 136. 2 cos 5 sin 2 2 12sin5 2 sin5 2 sin 7 sin 3 592 Chapter 6 Additional Topics in Trigonometry Review Exercises for Chapter 6 1. Given: A 35, B 71, a 8 C 180 35 71 74 2. Given: A 22, B 121, a 17 C 180 A B 37 b a sin B 8 sin 71 13.19 sin A sin 35 b a sin B 17 sin 121 38.90 sin A sin 22 c a sin C 8 sin 74 13.41 sin A sin 35 c a sin C 17 sin 37 27.31 sin A sin 22 3. Given: B 72, C 82, b 54 A 180 72 82 26 4. Given: B 10, C 20, c 33 A 180 B C 150 a b sin A 54 sin 26 24.89 sin B sin 72 a c sin A 33 sin 150 48.24 sin C sin 20 c b sin C 54 sin 82 56.23 sin B sin 72 b c sin B 33 sin 10 16.75 sin C sin 20 5. Given: A 16, B 98, c 8.4 C 180 16 98 66 6. Given: A 95, B 45, c 104.8 C 180 A B 40 a c sin A 8.4 sin 16 2.53 sin C sin 66 a c sin A 104.8 sin 95 162.42 sin C sin 40 b c sin B 8.4 sin 98 9.11 sin C sin 66 b c sin B 104.8 sin 45 115.29 sin C sin 40 7. Given: A 24, C 48, b 27.5 B 180 24 48 108 8. Given: B 64, C 36, a 367 A 180 B C 80 a b sin A 27.5 sin 24 11.76 sin B sin 108 b a sin B 367 sin 64 334.95 sin A sin 80 c b sin C 27.5 sin 48 21.49 sin B sin 108 c a sin C 367 sin 36 219.04 sin A sin 80 9. Given: B 150, b 30, c 10 sin C c sin B 10 sin 150 0.1667 ⇒ C 9.59 b 30 A 180 150 9.59 20.41 b sin A 30 sin 20.41 a 20.92 sin B sin 150 11. A 75, a 51.2, b 33.7 sin B b sin A 33.7 sin 75 0.6358 ⇒ B 39.48 a 51.2 C 180 75 39.48 65.52 c a sin C 51.2 sin 65.52 48.24 sin A sin 75 10. Given: B 150, a 10, b 3 sin A a sin B 10 sin 150 1.67 > 1 b 3 No solution Review Exercises for Chapter 6 593 12. Given: B 25, a 6.2, b 4 sin A a sin B 0.65506 ⇒ A 40.92 or 139.08 b Case 1: A 40.92 Case 2: A 139.08 C 180 25 40.92 114.08 C 180 25 139.08 15.92 c 8.64 c 2.60 13. Area 12bc sin A 1257sin 27 7.9 14. B 80º, a 4, c 8 Area 12ac sin B 12480.9848 15.8 1 1 15. Area 2ab sin C 2165sin 123 33.5 16. A 11, b 22, c 21 Area 12 bc sin A 12 22210.1908 44.1 17. tan 17 h ⇒ h x 50 tan 17 x 50 h h x tan 17 50 tan 17 tan 31 31° x 17° 50 h ⇒ h x tan 31 x x tan 17 50 tan 17 x tan 31 50 tan 17 xtan 31 tan 17 50 tan 17 x tan 31 tan 17 x 51.7959 h x tan 31 51.7959 tan 31 31.1 meters The height of the building is approximately 31.1 meters. 18. 162 w2 122 2w12 cos 140 w2 24 cos 140w 112 0 ⇒ w 4.83 19. h 75 sin 17 sin 45 75 sin 17 h sin 45 45° 118° h 31.01 feet ft 75 62° 17° 28° 20. The triangle of base 400 feet formed by the two angles of sight to the tree has base angles of 90 22 30 67 30, or 67.5, and 90 15 75. The angle at the tree measures 180 67.5 75 37.5. 400 sin 75 b 634.683 sin 37.5 h 634.683 sin 67.5 h 586.4 The width of the river is about 586.4 feet. 45° Tree A N W E S 15° h 22° 30' C 400 ft B h 594 Chapter 6 Additional Topics in Trigonometry 21. Given: a 5, b 8, c 10 a2 cos C 2ab b2 c2 22. Given: a 80, b 60, c 100 0.1375 ⇒ C 97.90 a2 c2 b2 0.61 ⇒ B 52.41 2ac cos B a2 b2 c2 6400 3600 10,000 2ab 28060 cos C 0 ⇒ C 90 A 180 B C 29.69 sin A 80 0.8 ⇒ A 53.13º 100 sin B 60 0.6 ⇒ B 36.87º 100 23. Given: a 2.5, b 5.0, c 4.5 cos B a2 c2 b2 0.0667 ⇒ B 86.18 2ac cos C a2 b2 c2 0.44 ⇒ C 63.90 2ab A 180 B C 29.92 24. Given: a 16.4, b 8.8, c 12.2 cos A b2 c2 a2 8.82 12.22 16.42 0.1988 ⇒ A 101.47 2bc 28.812.2 sin B b sin A 8.8 sin 101.47 0.5259 ⇒ B 31.73 a 16.4 C 180 101.47 31.73 46.80 25. Given: B 110, a 4, c 4 b a2 c2 26. Given: B 150, a 10, c 20 2ac cos B 6.55 A C 12 180 110 35 b2 102 202 21020cos 150 ⇒ b 29.09 sin A a sin B 10 sin 150 ⇒ A 9.90 b 29.09 C 180 150 9.90 20.10 27. Given: C 43, a 22.5, b 31.4 c a2 b2 2ab cos C 21.42 cos B a2 c2 b2 0.02169 ⇒ B 91.24 2ac A 180 B C 45.76 28. Given: A 62, b 11.34, c 19.52 a2 11.342 19.522 211.3419.52 cos 62 ⇒ a 17.37 sin B b sin A 11.34 sin 62 ⇒ B 35.20 a 17.37 C 180 62 35.20 82.80 Review Exercises for Chapter 6 29. 5 ft 8 ft 8 ft 28° 5 ft 152° 30. 595 15 m a 20 m b 20 m 34° 15 m 146° s1 s2 a2 52 82 258cos 28 18.364 a 4.3 feet b2 82 52 285cos 152 159.636 b 12.6 feet s12 152 202 2 15 20 cos 34 127.58 s1 11.3 meters s22 15 2 202 2 15 20 cos 146 1122.42 s2 33.5 meters 31. Length of AC 3002 4252 2300425 cos 115 32. d 2 8502 10602 28501060 cos 72 1,289,251 615.1 meters d 1135 miles N W d 5° E S 850 67° 33. a 4, b 5, c 7 s 1060 34. a 15, b 8, c 10 abc 457 8 2 2 s 15 8 10 16.5 2 Area 16.51.58.56.5 36.979 Area ss as bs c 8431 9.80 35. a 12.3, b 15.8, c 3.7 s 36. a 38.1, b 26.7, c 19.4 a b c 12.3 15.8 3.7 15.9 2 2 Area ss as bs c s 38.1 26.7 19.4 42.1 2 Area 42.1415.422.7 242.630 15.93.60.112.2 8.36 37. u 4 22 6 12 61 v 6 02 3 22 61 38. u 3 12 2 42 210 v 1 32 4 22 210 u is directed along a line with a slope of 61 5 . 4 2 6 u is directed along a line with a slope of 2 4 3. 31 v is directed along a line with a slope of 3 2 5 . 60 6 v is directed along a line with a slope of 4 2 3. 1 3 Since u and v have identical magnitudes and directions, u v. 39. Initial point: 5, 4 Since u and v have identical magnitudes and directions, u v. 40. Initial point: 0, 1 Terminal point: 2, 1 7 Terminal point: 6, 2 v 2 5, 1 4 7, 5 v 6 0, 72 1 6, 52 596 Chapter 6 Additional Topics in Trigonometry 41. Initial point: 0, 10 42. Initial point: 1, 5 Terminal point: 7, 3 Terminal point: 15, 9 v 7 0, 3 10 7, 7 v 15 1, 9 5 14, 4 43. v 8, 120 8 cos 120, 8 sin 120 4, 43 45. u 1, 3, v 3, 6 1 44. v , 225 2 12 cos 225, 21 sin 225 42, 42 46. u 4, 5, v 0, 1 (a) u v 1, 3 3, 6 4, 3 (a) u v 4 0, 5 1 4, 4 (b) u v 1, 3 3, 6 2, 9 (b) u v 4 0, 5 1 4, 6 (c) 3u 31, 3 3, 9 (c) 3u 34, 35 12, 15 (d) 2v 5u 23, 6 51, 3 (d) 2v 5u 20, 21 54, 55 6, 12 5, 15 11, 3 47. u 5, 2, v 4, 4 0 20, 2 25 20, 23 48. u 1, 8, v 3, 2 (a) u v 5, 2 4, 4 1, 6 (a) u v 1 3, 8 2 4, 10 (b) u v 5, 2 4, 4 9, 2 (b) u v 1 3, 8 2 2, 6 (c) 3u 35, 2 15, 6 (c) 3u 31, 38 3, 24 (d) 2v 5u 24, 4 55, 2 (d) 2v 5u 23, 22 51, 58 8, 8 25, 10 17,18 49. u 2i j, v 5i 3j 6 5, 4 40 11, 44 50. u 7i 3j, v 4i j (a) u v 2i j 5i 3j 7i 2j (a) u v 7i 3j 4i j 3i 4j (b) u v 2i j 5i 3j 3i 4j (b) u v 7i 3j 4i j 11i 2j (c) 3u 32i j 6i 3j (c) 3u 37i 3j 21i 9j (d) 2v 5u 25i 3j 52i j (d) 2v 5u 8i 2j 35i 15j 10i 6j 10i 5j 20i j 51. u 4i, v i 6j 27i 17j 52. u 6j, v i j (a) u v 4i i 6j 3i 6j (a) u v 6j i j i 5j (b) u v 4i i 6j 5i 6j (b) u v 6j i j i 7j (c) 3u 34i 12i (c) 3u 18j (d) 2v 5u 2i 6j 54i (d) 2v 5u 2i 2j 30j 2i 12j 20i 18i 12j 2i 28j Review Exercises for Chapter 6 53. u 6i 5j, v 10i 3j 597 54. u 6i 5j, v 10i 3j 2u v 26i 5j 10i 3j 22i 7j 4u 5v 24i 20j 50i 15j 26i 35j y v 2 22, 7 26,35 x −5 10 −2 y 20 20 25 30 x − 60 −4 − 40 20 −5v 4u −6 −8 2u + v 2u 4u − 5v − 40 − 10 − 60 − 12 55. v 10i 3j 56. v 10i 3j y 3v 310i 3j 1 2v 20 30i 9j y 5i 32j 5, 32 8 6 10 30, 9 3v 4 v v 2 x 10 20 30 1 v 2 x 2 − 10 57. u 3, 4 3i 4j 58. u 6, 8 6i 8j 59. Initial point: 3, 4 60. Initial point: 2, 7 6 Terminal point: 5, 9 u 9 3i 8 4j 6i 4j u 5 2, 9 7 7, 16 7i 16j 62. v 4i j v 10 10 200 102 2 tan 2 10 1 ⇒ 135 since 10 v is in Quadrant II. v 102i cos 135 j sin 135 v 7cos 60 i sin 60 j v 42 12 17 tan 1 , in Quadrant IV ⇒ 346 4 v 17cos 346 i sin 346 j 64. v 3cos 150i sin 150 j v 3, 150 v 7 60 65. 66. v 4i 7j v 5i 4j v 52 42 41 tan 67. 8 Terminal point: 9, 8 61. v 10i 10j 63. 4 −2 4 ⇒ 38.7 5 v 3i 3j tan tan 7 , in Quadrant II ⇒ 119.7 4 68. v 8i j v 3 3 32 2 v 42 72 65 2 3 1 ⇒ 225 3 v 82 12 65 tan 1 , in Quadrant IV ⇒ 352.9 8 10 598 Chapter 6 Additional Topics in Trigonometry 69. Magnitude of resultant: 70. Rope One: 23i 21j c 852 502 28550 cos 165 u ucos 30i sin 30j u 133.92 pounds Rope Two: Let be the angle between the resultant and the 85-pound force. cos v u cos 30i sin 30j u 133.92 85 50 2133.9285 2 2 2 2 1 i j 2 Resultant: u v uj 180j 0.9953 u 180 ⇒ 5.6 Therefore, the tension on each rope is u 180 lb. 71. Airspeed: u 430cos 45i sin 45j 2152i j Wind: w 35cos 60 sin 60 j y u w N 135° W 35 i 3j 2 θ 35 353 i 2152 Groundspeed: u w 2152 2 2 215 2 35 2 2 E S x 45° u 353 2152 2 2 w 422.30 miles per hour Bearing: tan 17.53 2152 2152 17.5 40.4 90 130.4 72. Airspeed: u 724cos 60i sin 60j y 362i 3j Wind: w 32i Groundspeed u w 394i 3623j u w 3942 36232 740.5 kmhr tan 3 3623 ⇒ 57.9 394 724 30° x 32 Bearing: N 32.1 E 73. u 6, 7, v 3, 9 u v 63 79 45 75. u 3i 7j, v 11i 5j u v 311 75 2 77. u 3, 4 2u 6, 8 2u u 63 84 50 The result is a scalar. 74. u 7, 12, v 4, 14 u v 74 1214 140 76. u 7i 2j, v 16i 12j u v 716 212 136 78. v 2, 1 v2 v v 22 12 5; scalar Review Exercises for Chapter 6 79. u 3, 4, v 2, 1 599 80. u 3, 4, v 2, 1 u v 32 41 2 3u v 332 41 32 6; scalar uu v u2 2u 6, 8 The result is a vector. 81. u cos 7 7 1 1 , i sin j 2 2 4 4 82. u cos 45 i sin 45 j v cos 300 i sin 300 j v cos 3 1 5 5 i sin j , 6 6 2 2 cos 3 1 uv 11 ⇒ u v 22 12 Angle between u and v: 60 45 105 84. u 3, 3 , v 4, 33 83. u 22, 4, v 2, 1 cos uv 8 ⇒ 160.5 u v 243 86. u 85. u 3, 8 cos uv 21 ⇒ 22.4 u v 1243 14, 12, v 2, 4 87. u i v 8u ⇒ Parallel v 8, 3 v i 2j u v 38 83 0 u u and v are orthogonal. v ku ⇒ Not parallel v0 ⇒ Not orthogonal Neither 88. u 2i j, v 3i 6j u v0 ⇒ Orthogonal 89. u 4, 3, v 8, 2 w1 projvu v v 688, 2 174, 1 u v 26 w2 u w1 4, 3 u w1 w2 90. u 5, 6, v 10, 0 w1 projvu 50 10, 0 5, 0 uv vv 100 2 13 2 13 16 4, 1 1, 4 17 17 13 16 4, 1 1, 4 17 17 91. u 2, 7, v 1, 1 w1 projvu v v 2 1, 1 u v 5 2 w2 u w1 5, 6 5, 0 0, 6 5 1, 1 2 u w1 w2 5, 0 0, 6 w2 u w1 2, 7 521, 1 9 1, 1 2 5 9 u w1 w2 1, 1 1, 1 2 2 600 Chapter 6 Additional Topics in Trigonometry \ 93. P 5, 3, Q 8, 9 ⇒ PQ 3, 6 92. u 3, 5, v 5, 2 w1 projvu uv 25 v 5, 2 v2 29 \ w2 u w1 3, 5 u w1 w2 W v PQ 2, 7 3, 6 48 25 19 5, 2 2, 5 29 29 19 25 5, 2 2, 5 29 25 95. w 18,00048 12 72,000 foot-pounds 94. work v PQ \ 3i 6j 10i 17j 30 102 132 97. 7i 02 72 7 \ 96. W cos F PQ Imaginary axis cos 2025 pounds12 ft 10 281.9 foot-pounds 8 7i 6 4 2 −6 98. 6i 6 99. 5 3i 52 32 Imaginary axis 34 8 −2 2 4 Imaginary axis 5 + 3i 3 2 4 6 8 Real axis 2 1 −4 −6 −6i −1 −1 −8 100. 10 4i 102 42 229 tan 4 2 102. z 5 12i z tan 52 2 3 r 52 52 50 52 6 − 10 − 4i 1 101. 5 5i Imaginary axis −12 − 10 −8 − 6 Real axis 5 7 1 ⇒ since the 5 4 complex number is in Quadrant IV. −2 −4 5 5i 52 cos −6 7 7 i sin 4 4 103. 33 3i 122 13 12 ⇒ 1.176 5 z 13cos 1.176 i sin 1.176 Real axis −2 4 4 2 6 5 6 −8 −6 −4 −2 −4 r 33 2 32 36 6 tan 3 1 5 ⇒ 3 33 6 since the complex number is in Quadrant II. 33 3i 6 cos 5 5 i sin 6 6 4 5 Real axis Review Exercises for Chapter 6 601 z 7 104. z 7 tan 0 0 ⇒ 7 z 7cos i sin 105. (a) z1 23 2i 4 cos (a ) z2 10i 10 cos 3 3 i sin 2 2 11 11 i sin 6 6 10 10 i sin 3 3 (b) z1z2 4 cos 40 cos z1 z2 11 11 i sin 6 6 z2 23 i 4 cos 5 5 i sin 4 4 i sin 6 6 5 5 i sin 4 4 17 17 i sin 12 12 122 cos 5 (b) z1z2 32 cos 3 3 i sin 2 2 10 cos 107. 5 cos 11 11 i sin 6 6 2 cos i sin 3 3 5 3 3 i sin 10 cos 2 2 4 cos 106. (a) z1 31 i 32 cos z1 z2 4 cos 6 i sin 6 5 4 i sin 4 32 13 13 cos i sin 4 12 12 4 cos i sin 6 6 32 cos i sin 12 12 4 54 cos 4 4 i sin 12 12 625 cos 625 i sin 3 3 108. 4 4 2 cos 15 i sin 15 5 25 cos 32 12 23i 4 4 i sin 3 3 1 3 i 2 2 16 163i 625 6253 i 2 2 109. 2 3i6 13cos 56.3 i sin 56.36 110. 1 i8 2cos 315 i sin 315 8 133cos 337.9 i sin 337.9 16cos 2520 i sin 2520 13 0.9263 0.3769i 16cos 0 i sin 0 2035 828i 16 3 602 Chapter 6 Additional Topics in Trigonometry 111. Sixth roots of 729i 729 cos 3 3 : i sin 2 2 (a) and (c) (b) 6 729 cos 3 2k 2 6 i sin 3 2k 2 6 4 , k 0, 1, 2, 3, 4, 5 32 32 k 0: 3 cos i sin i 4 4 2 2 7 7 0.776 2.898i i sin 12 12 11 11 i sin 2.898 0.776i 12 12 5 5 32 32 i sin i 4 4 2 2 19 19 i sin 0.776 2.898i 12 12 23 23 i sin 2.898 0.776i 12 12 k 1: 3 cos k 2: 3 cos k 3: 3 cos k 4: 3 cos k 5: 3 cos Imaginary axis −4 −2 4 −2 −4 112. (a) 256i 256 cos i sin 2 2 (b) Imaginary axis 5 Fourth roots of 256i: 3 2k 2k 2 2 4 256 cos i sin , k 0, 1, 2, 3 4 4 i sin 8 8 5 5 i sin 8 8 9 9 i sin 8 8 13 13 i sin 8 8 k 0: 4 cos k 1: 4 cos k 2: 4 cos k 3: 4 cos 1 −3 −1 1 2 3 −2 −3 −5 (c) 3.696 1.531i 1.531 3.696i 3.696 1.531i 1.531 3.696i 113. Cube roots of 8 8cos 0 i sin 0, k 0, 1, 2 (a) and (c) 3 8 cos (b) 0 2k 0 2k i sin 3 3 Imaginary axis 3 k 0: 2cos 0 i sin 0 2 2 2 k 1: 2 cos i sin 1 3i 3 3 4 4 i sin 1 3i 3 3 k 2: 2 cos Real axis −3 −1 1 −3 3 Real axis 5 Real axis Review Exercises for Chapter 6 114. (a) 1024 1024cos i sin (b) Imaginary axis Fifth roots of 1024: 5 1024 cos 5 2k 2k , k 0, 1, 2, 3, 4 i sin 5 5 k 0: 4 cos i sin 5 5 k 1: 4 cos 3 3 i sin 5 5 7 7 i sin 5 5 9 9 i sin 5 5 k 4: 4 cos 2 3 Real axis 5 −5 (c) 3.236 2.351i k 2: 4cos i sin k 3: 4 cos 1 −3 −2 −1 1.236 3.804i 4 1.236 3.804i 3.236 2.351i 115. x4 81 0 x4 81 Solve by finding the fourth roots of 81. 81 81cos i sin 4 81 4 81 cos 2k 2k i sin , k 0, 1, 2, 3 4 4 Imaginary axis 4 32 32 k 0: 3 cos i sin i 4 4 2 2 3 3 32 32 i sin i 4 4 2 2 5 5 32 32 i sin i 4 4 2 2 7 7 32 32 i sin i 4 4 2 2 k 1: 3 cos k 2: 3 cos k 3: 3 cos 2 −4 −2 2 Real axis 4 −2 −4 116. x5 32 0 Imaginary axis x5 32 3 32 32cos 0 i sin 0 3 32 5 32 cos 0 2k 2k i sin 0 5 5 1 −3 −1 k 0, 1, 2, 3, 4 k 0: 2cos 0 i sin 0 2 2 2 i sin 0.6180 1.9021i 5 5 4 4 i sin 1.6180 1.1756i 5 5 6 6 i sin 1.6180 1.1756i 5 5 8 8 i sin 0.6180 1.9021i 5 5 k 1: 2 cos k 2: 2 cos k 3: 2 cos k 4: 2 cos −3 1 3 Real axis 603 604 Chapter 6 Additional Topics in Trigonometry 117. x3 8i 0 x3 Imaginary axis 8i Solve by finding the cube roots of 8i. 3 3 8i 8 cos i sin 2 2 3 8i 3 8 cos 3 2k 2 3 1 i sin i sin 2i 2 2 7 7 i sin 3 i 6 6 11 11 i sin 3 i 6 6 k 0: 2 cos k 1: 2 cos k 2: 2 cos 3 3 2 k 2 3 −3 , k 0, 1, 2 3 −1 Real axis −3 118. x3 1x2 1 0 Imaginary axis x3 1 0 2 x2 1 0 x3 1 −2 2 Real axis 1 1cos 0 i sin 0 3 3 1 1 cos 0 2k 0 2k i sin 3 3 , k 0, 1, 2 −2 1cos 0 i sin 0 1 2 2 1 3 i sin i 3 3 2 2 4 4 1 3 i sin i 3 3 2 2 1 cos 1 cos x2 1 0 x2 1 1 1cos i sin 1 1 cos 2k 2k i sin , k 0, 1 2 2 k 0, 1 i sin i 2 2 3 3 i sin i 2 2 1 cos 1 cos 119. True. sin 90 is defined in the Law of Sines. 120. False. There may be no solution, one solution, or two solutions. 121. True, by the definition of a unit vector. v so v vu u v 122. False, a b 0. Review Exercises for Chapter 6 123. False. x 3 i is a solution to x3 8i 0, not x2 8i 0. 124. a b c sin A sin B sin C or 605 sin A sin B sin C a b c Also, 3 i2 8i 2 23 8i 0. 125. a2 b2 c2 2bc cos A b2 a2 c2 2ac cos B 126. A vector in the plane has both a magnitude and a direction. c2 a2 b2 2ab cos C 127. A and C appear to have the same magnitude and direction. 128. u v is larger in figure (a) since the angle between u and v is acute rather than obtuse. 129. If k > 0, the direction of ku is the same, and the magnitude is ku. 130. The sum of u and v lies on the diagonal of the parallelogram with u and v as its adjacent sides. If k < 0, the direction of ku is the opposite direction of u, and the magnitude is k u. 131. (a) The trigonometric form of the three roots shown is: 4cos 60 i sin 60 132. (a) The trigonometric forms of the four roots shown are: 4cos 60 i sin 60 4cos 180 i sin 180 4cos 150 i sin 150 4cos 300 i sin 300 (b) Since there are three evenly spaced roots on the circle of radius 4, they are cube roots of a complex number of modulus 43 64. Cubing them yields 64. 4cos 60 i sin 603 64 4cos 180 i sin 1803 64 4cos 240 i sin 240 4cos 330 i sin 330 (b) Since there are four evenly spaced roots on the circle of radius 4, they are fourth roots of a complex number of modulus 44. In this case, raising them to the fourth power yields 128 1283i. 4cos 300 i sin 3003 64 133. z1 2cos i sin z2 2cos i sin z1z2 22cos i sin 4cos i sin 4 z1 2cos i sin z2 2cos i sin 1cos i sin cos2 i sin2 cos 2 cos sin 2 sin isin 2 cos cos 2 sin cos 2 i sin 2 134. (a) z has 4 fourth roots. Three are not shown. (b) The roots are located on the circle at 30 90k, k 0, 1, 2, 3. The three roots not shown are located at 120, 210, 300. 606 Chapter 6 Additional Topics in Trigonometry Problem Solving for Chapter 6 \ 1. PQ 2 4.72 62 24.76 cos 25 P 4.7 ft \ PQ 2.6409 feet θ φ 25° sin sin 25 ⇒ 48.78 4.7 2.6409 O θ β 6 ft γ α Q T 180 25 48.78 106.22 180 ⇒ 180 106.22 73.78 106.22 73.78 32.44 180 180 48.78 32.44 98.78 180 180 98.78 81.22 \ PT 4.7 sin 25 sin 81.22 \ PT 2.01 feet 2. 3 mile 1320 yards 4 55° 300 yd 55° 35° 25° x2 13202 3002 21320300cos 10 θ 1320 yd x 1025.881 yards 0.58 mile x sin sin 10 1320 1025.881 sin 0.2234 180 sin10.2234 167.09 Bearing: 55 90 22.09 S 22.09 E 3. (a) A 75 mi 30° 15° 135° x y 60° Lost party (c) B 75° A 80° 20° 60° 10° 20 mi Rescue party 27.452 mi (b) x 75 y 75 and sin 15 sin 135 sin 30 sin 135 x 27.45 miles y 53.03 miles z Lost party z2 27.452 202 227.4520 cos 20 z 11.03 miles sin sin 20 27.45 11.03 sin 0.8511 180 sin10.8511 121.7 To find the bearing, we have 10 90 21.7. Bearing: S 21.7 E Problem Solving for Chapter 6 4. (a) (b) 65° sin C sin 65 46 52 sin C 46 ft 607 46 sin 65 0.801734 52 C 53.296 52 ft A 180 B C 61.704 1 (c) Area 4652sin 61.704 1053.09 square feet 2 Number of bags: a 52 sin 61.704 sin 65 1053.09 21.06 50 a a 50.52 feet To entirely cover the courtyard, you would need to buy 22 bags. 5. If u 0, v 0, and u v 0, then (a) u 1, 1, v 1, 2, u 2, (b) v 5, u 0, 1, (c) (d) u v 1 u v 3, 2 v 18 32, u v 13 21, 72 u 1, u uu vv uu vv 1 since all of these are magnitudes of unit vectors. u v 0, 1 v 3, 3, u 1, 52 sin 61.704 sin 65 5 2 v 2, 3, u v 3, v 13, u v , u 2, 4, v 5, 5, 9 494 85 2 u v 7, 1 u 20 25, v 50 52, u v 50 52 6. (a) u 120j 120 (d) tan 40 ⇒ tan1 3 ⇒ 71.565 v 40i (e) Up (b) s u v 40i 120j 140 120 100 Up 80 140 60 120 s 100 80 v u s W E −20 − 20 20 40 60 80 100 Down v 20 W − 60 E −60 60 40 u 20 40 60 80 100 Down (c) s 402 1202 16000 4010 126.49 miles per hour This represents the actual rate of the skydiver’s fall. s 30i 120j s 302 1202 15300 123.69 miles per hour 608 Chapter 6 Additional Topics in Trigonometry 8. Let u v 0 and u w 0. 7. Initial point: 0, 0 Terminal point: u 1 v1 u2 v2 , 2 2 Then, u cv dw u cv u dw cu v du w u v1 u2 v2 1 , w 1 u v 2 2 2 c0 d0 0. Initial point: u1, u2 Terminal point: w u v Thus for all scalars c and d, u is orthogonal to cv dw. 1 u v1, u2 v2 2 1 1 v1 u v2 u1, 2 u2 2 2 1 u1 v2 u2 1 , v u 2 2 2 → 9. W cos F PQ and F1 F2 (a) F1 If 1 2 then the work is the same since cos cos . θ1 θ2 F2 P (b) Q If 1 60 then W1 F1 60° F2 If 2 30 then W2 30° P Q → 1 F PQ 2 1 3 2 → F2 PQ W2 3 W1 The amount of work done by F2 is 3 times as great as the amount of work done by F1. 10. (a) 100 sin 100 cos 0.5 0.8727 99.9962 1.0 1.7452 99.9848 1.5 2.6177 99.9657 2.0 3.4899 99.9391 2.5 4.3619 99.9048 3.0 5.2336 99.8630 (b) No, the airplane’s speed does not equal the sum of the vertical and horizontal components of its velocity. To find speed: speed v sin2 v cos2 (c) (i) speed 5.235 2 149.909 2 150 miles per hour (ii) speed 10.463 2 149.634 2 150 miles per hour Practice Test for Chapter 6 Chapter 6 Practice Test For Exercises 1 and 2, use the Law of Sines to find the remaining sides and angles of the triangle. 1. A 40, B 12, b 100 2. C 150, a 5, c 20 3. Find the area of the triangle: a 3, b 6, C 130. 4. Determine the number of solutions to the triangle: a 10, b 35, A 22.5. For Exercises 5 and 6, use the Law of Cosines to find the remaining sides and angles of the triangle. 5. a 49, b 53, c 38 6. C 29, a 100, b 300 7. Use Heron’s Formula to find the area of the triangle: a 4.1, b 6.8, c 5.5. 8. A ship travels 40 miles due east, then adjusts its course 12 southward. After traveling 70 miles in that direction, how far is the ship from its point of departure? 9. w 4u 7v where u 3i j and v i 2j. Find w. 10. Find a unit vector in the direction of v 5i 3j. 11. Find the dot product and the angle between u 6i 5j and v 2i 3j. 12. v is a vector of magnitude 4 making an angle of 30 with the positive x-axis. Find v in component form. 13. Find the projection of u onto v given u 3, 1 and v 2, 4. 14. Give the trigonometric form of z 5 5i. 15. Give the standard form of z 6cos 225 i sin 225. 16. Multiply 7cos 23 i sin 23 4cos 7 i sin 7. 5 5 i sin 4 4 . 3cos i sin 9 cos 17. Divide 19. Find the cube roots of 8 cos 18. Find 2 2i8. i sin . 3 3 20. Find all the solutions to x4 i 0. 609