Download Contents

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Contents
1. Introduction
9. Liquid Handling
2. Fluids
10.Microarrays
3. Physics of Microfluidic
Systems
11.Microreactors
12.Analytical Chips
4. Microfabrication Technologies
Pr isbexa ispel: Ausar beitun gspha
Au tsarbei ungde rStand ard-Ze el
13.Particle-Laden Fluids
5. Flow Control
a. Measurement Techniques
6. Micropumps
7. Sensors
b. Fundamentals of
Biotechnology
8. Ink-Jet Technology
c. High-Throughput Screening
Microfluidics - Jens Ducrée
Fluids: Transport Phenomena
1
2. Fluids
2.1. General Characteristics
2.2. Dispersions
2.3. Thermodynamics
2.4. Transport Phenomena
2.5. Solutions
2.6. Surface Tension
Pr isbexa ispel: Ausar beitun gspha
Au tsarbei ungde rStand ard-Ze el
2.7. Electrical Properties
2.8. Optical Properties
2.9. Biological Fluids
Microfluidics - Jens Ducrée
Fluids: Transport Phenomena
2
2.4. Transport Phenomena
2.4.1. Diffusion
2.4.2. Viscosity
2.4.3. Transport of Heat
2.4.4. Characteristic Numbers
Pr isbexa ispel: Ausar beitun gspha
Au tsarbei ungde rStand ard-Ze el
Microfluidics - Jens Ducrée
Fluids: Transport Phenomena
3
2.4 Summary of Phenomenological Laws
 Transport processes
 Arbitrary thermal motion on molecular level
 Driven by gradients (inhomogeneities)
 Mostly linear relationship
Flow = coefficient  force
Pr isbexa ispel: Ausar beitun gspha
Au tsarbei ungde rStand ard-Ze el
Microfluidics - Jens Ducrée
Fluids: Transport Phenomena
4
2.4.1. Diffusion
 Diffusion
 Counteracts nonuniform particle densities
 Thermal „Brownian“ motion
 Process underlying all other transport phenomena in fluids
 Fick‘s first law
Pr isbexa ispel: Ausar beitun gspha
Au tsarbei ungde rStand ard-Ze el
 Current density jN antiparallel to gradient
 Systems seeks homogeneity
 Diffusion coefficient D [m² s-1]
Microfluidics - Jens Ducrée
Fluids: Transport Phenomena
5
2.4.1. Diffusion
 Fick‘s second law
 Time domain
 Fixed location
 Combining Fick‘s first law and equation of continuity
Pr isbexa ispel: Ausar beitun gspha
Au tsarbei ungde rStand ard-Ze el
 Laplace equation
 Stationary conditions
Microfluidics - Jens Ducrée
Fluids: Transport Phenomena
6
2.4.1 Molecular Picture
 Derivation of diffusion constant D
 Flow through surface z1
 Between two planes with diverging
particle densities
 Distance = mean free path lmfp
 Particles reach plane without collisions
(statistically)
Pr isbexa ispel: Ausar beitun gspha
Au tsarbei ungde rStand ard-Ze el
 Linear term of Taylor expansion
Microfluidics - Jens Ducrée
Fluids: Transport Phenomena
7
2.4.1 Diffusion coefficient
 Calculation of diffusion coefficient
 Assumption: uniformly distributed directions of all vectors v
average over
Ensemble
Pr isbexa ispel: Ausar beitun gspha
Au tsarbei ungde rStand ard-Ze el
Microfluidics - Jens Ducrée
Fluids: Transport Phenomena
8
2.4.1 Examples for Diffusional Processes
 Example
 Bilateral diffusion from 2-D layer
 Within pure solvent
 Initial conditions
Pr isbexa ispel: Ausar beitun gspha
Au tsarbei ungde rStand ard-Ze el
 Solution by „educated guess“
Microfluidics - Jens Ducrée
Fluids: Transport Phenomena
9
2.4.1 Examples for Diffusive Processes
Pr isbexa ispel: Ausar beitun gspha
Au tsarbei ungde rStand ard-Ze el
Microfluidics - Jens Ducrée
Fluids: Transport Phenomena
10
2.4.1 Examples for Diffusive Processes
Pr isbexa ispel: Ausar beitun gspha
Au tsarbei ungde rStand ard-Ze el
Microfluidics - Jens Ducrée
Fluids: Transport Phenomena
11
2.4.1 Examples for Diffusive Processes
Pr isbexa ispel: Ausar beitun gspha
Au tsarbei ungde rStand ard-Ze el
Microfluidics - Jens Ducrée
Fluids: Transport Phenomena
12
2.4.1 Examples for Diffusive Processes
Pr isbexa ispel: Ausar beitun gspha
Au tsarbei ungde rStand ard-Ze el
Microfluidics - Jens Ducrée
Fluids: Transport Phenomena
13
2.4.1 Examples for Diffusive Processes
Pr isbexa ispel: Ausar beitun gspha
Au tsarbei ungde rStand ard-Ze el
Microfluidics - Jens Ducrée
Fluids: Transport Phenomena
14
2.4.1 Examples for Diffusive Processes
 Example
 Diffusion through permeable diaphragm
 Initial conditions
Pr isbexa ispel: Ausar beitun gspha
Au tsarbei ungde rStand ard-Ze el
Microfluidics - Jens Ducrée
Fluids: Transport Phenomena
15
2.4.1. Laminar Mixing
Pr isbexa ispel: Ausar beitun gspha
Au tsarbei ungde rStand ard-Ze el
Microfluidics - Jens Ducrée
Fluids: Transport Phenomena
16
2.4.1 Time and Length Scales
 Distance
2
(“rules of thumb”)
 Time
Pr isbexa ispel: Ausar beitun gspha
Au tsarbei ungde rStand ard-Ze el
2
~l2/D
Microfluidics - Jens Ducrée
Fluids: Transport Phenomena
17
2.4.1 Brownian Motion
 Discovered by Scottish
Botanist Robert Brown
in 1827
 Random thermal
motion of pollen under
microscope
 Closely related to
thermal velocity
Pr isbexa ispel: Ausar beitun gspha
Au tsarbei ungde rStand ard-Ze el
 Mesoscopic particle




Width of distribution
of particle locations
r0 = 1 µm
m = 10-15 kg
T = 293 K
vT  3 mm s-1
Microfluidics - Jens Ducrée
Fluids: Transport Phenomena
18
2.4.1 Brownian Motion
 Fluorescent particles
Pr isbexa ispel: Ausar beitun gspha
Au tsarbei ungde rStand ard-Ze el
 4 seconds of data
 2 µm in diameter
 Left picture
 Particles moving in pure water
 Right picture shows
 Particles moving in concentrated solution of DNA
 I.e., in viscoelastic solution in other words
From http://www.deas.harvard.edu/projects/weitzlab/research/brownian.html
Microfluidics - Jens Ducrée
Fluids: Transport Phenomena
19
2.4.1 Brownian Motion
Pr isbexa ispel: Ausar beitun gspha
Au tsarbei ungde rStand ard-Ze el
 Erratic motion of single milk droplets in water
 Droplets size of about 1 micrometer
 Continuously kicked by fast-moving water molecules
 Size 5000 times smaller
 Magnification factor of about 10,000
http://www.microscopy-uk.org.uk/
Microfluidics - Jens Ducrée
Fluids: Transport Phenomena
20
2.4.1 Boltzmann Distribution
 System at T in thermal
equilibrium
 Each particle with certain
kinetic energy
 Potential gradient
 Particles accumulate in
potential minimum
 Counteracting diffusive current
Pr isbexa ispel: Ausar beitun gspha
Au tsarbei ungde rStand ard-Ze el
 Boltzmann distribution
 Ratio of particle densities Ni
at two locations separated by
potential difference E
Boltzmann function at T = 273 K
calibrated to N0 = 1
Microfluidics - Jens Ducrée
Fluids: Transport Phenomena
21
2.4.1 Maxwell Distribution
 Maxwell distribution
 Fraction of molecules in
velocity interval [v, v + dv]
 f(v)dv is probability of finding a vector v
in [v, v + dv]
 Normalization of integrand function f(v) to
unity
Pr isbexa ispel: Ausar beitun gspha
Au tsarbei ungde rStand ard-Ze el
 Leads to Maxwell distribution
Microfluidics - Jens Ducrée
Fluids: Transport Phenomena
22
2.4.1 Maxwell Distribution
 Transformation into energy
space
 Replacing v with kinetic energy
E = 1/2 mv2
Pr isbexa ispel: Ausar beitun gspha
Au tsarbei ungde rStand ard-Ze el
 Helps determining which fraction
of particles is capable of
„jumping“ over a certain potential
energy barrier E0
 Analytical expression for this
fraction
Microfluidics - Jens Ducrée
Fluids: Transport Phenomena
23
2.4.1 Reaction Kinetics
 Chemical Reactions
 Binary collisions
 Collision rate scales linearly with vT and thus with T1/2
 Concentration of reaction partners c also influences speed of reaction
 For single step reaction
Pr isbexa ispel: Ausar beitun gspha
Au tsarbei ungde rStand ard-Ze el
 Reaction rate
- Governed by stoichiometry (x, y, ...)
 Concentrations c(X), c(Y), …
 Reaction velocity constant k’c
Microfluidics - Jens Ducrée
Fluids: Transport Phenomena
24
2.4.1 Reaction Kinetics
 Chemical reactions
 Activation energy (Gibbs energy)
 Simple model reaction
 For simplicity: G = U = Eact
 Typically Eact = 60 to 250 kJ mol-1
 G = Gact – G‘act
Pr isbexa ispel: Ausar beitun gspha
Au tsarbei ungde rStand ard-Ze el
 G < 0 exothermic
 G > 0 endothermic
 Velocity constant of reaction
 Strongly dependent on T
 Reaction-specific
 Arrhenius equation
Microfluidics - Jens Ducrée
Fluids: Transport Phenomena
25
2.4. Transport Phenomena
2.4.1. Diffusion
2.4.2. Viscosity
2.4.3. Transport of Heat
2.4.4. Characteristic Numbers
Pr isbexa ispel: Ausar beitun gspha
Au tsarbei ungde rStand ard-Ze el
Microfluidics - Jens Ducrée
Fluids: Transport Phenomena
26
2.4.2. Viscosity
 Viscosity
 Transfer of momentum from one plane sliding parallel to another
 Mediated by fluid sandwiched between them
 „Internal friction“ of fluid
 Newton’s law of viscosity
Pr isbexa ispel: Ausar beitun gspha
Au tsarbei ungde rStand ard-Ze el
 Relates flow of axial momentum pz = m vZ along lateral x-direction
from one plane sliding parallel to another one by viscosity 
 Unit of : Pa s = kg m-1 s-1 or old Poise with 1 Ps = 0.1 Pa s
Microfluidics - Jens Ducrée
Fluids: Transport Phenomena
27
2.4.2 Viscosity of Gases
 Assumptions for picture:
- Flow in z-direction
- Uniform particle density
 Net flux in x-direction of longitudinal momentum pz
Newton
Pr isbexa ispel: Ausar beitun gspha
Au tsarbei ungde rStand ard-Ze el
 Viscosity of gases
T
 Kinematic viscosity
- „Momentum diffusivity“
Microfluidics - Jens Ducrée
Fluids: Transport Phenomena
28
2.4.2 Viscosity of Gases
Order: 10-5 Pa s
Pr isbexa ispel: Ausar beitun gspha
Au tsarbei ungde rStand ard-Ze el
Microfluidics - Jens Ducrée
Fluids: Transport Phenomena
29
2.4.2 Viscosity of Liquids
 Liquid
 Very dense gas
 lmfp  average distance
between molecules
 Macroscopic behavior governed
by intermolecular potentials
 Picture
 Moving A to A‘
 Activation energy E0
 External shear stress xz
Pr isbexa ispel: Ausar beitun gspha
Au tsarbei ungde rStand ard-Ze el
- Force f on each particle on wall
- f counteracts motion in
negative z-direction
- Momentum loss transferred to B
- „Activation energy“ E = f a / 2
Microfluidics - Jens Ducrée
Fluids: Transport Phenomena
30
2.4.2 Viscosity of Liquids
 Transfer of momentum pZ = m vZ
 Lateral velocity gradient
 net difference between number of jumps +Z and -Z in
positive and negative z-direction, respectively
 Evaluation of gradient (using Boltzmann Ansatz)
Pr isbexa ispel: Ausar beitun gspha
Au tsarbei ungde rStand ard-Ze el
0 fundamental oscillation frequency
of molecule between neighbors
Microfluidics - Jens Ducrée
Fluids: Transport Phenomena
31
2.4.2 Viscosity of Liquids
 First order Taylor expansion for E / kBT
 Viscosity of liquids
Pr isbexa ispel: Ausar beitun gspha
Au tsarbei ungde rStand ard-Ze el
T
Microfluidics - Jens Ducrée
Fluids: Transport Phenomena
32
2.4.2 Viscosity of Liquids
Order: 10-3 Pa s
(gases: 10-5 Pa s)
Microfluidics - Jens Ducrée
Pr isbexa ispel: Ausar beitun gspha
Au tsarbei ungde rStand ard-Ze el
Fluids: Transport Phenomena
33
2.4.2 Newtonian Fluids
 Newtonian fluids
 Classical idealized fluids
 Linear stress-strain relationship
 I.e. linear relationship between tension tensor 
and tensor of rate of deformation (strain rate) 
- Viscosity  : constant of proportionality
 Approximated by gases and
„simple“ liquids like water
Pr isbexa ispel: Ausar beitun gspha
Au tsarbei ungde rStand ard-Ze el
 Non-Newtonian fluids
 Dispersions containing large
structured macromolecules
 E.g. polymers and proteins
Microfluidics - Jens Ducrée
Fluids: Transport Phenomena
34
2.4. Transport Phenomena
2.4.1. Diffusion
2.4.2. Viscosity
2.4.3. Transport of Heat
2.4.4. Characteristic Numbers
Pr isbexa ispel: Ausar beitun gspha
Au tsarbei ungde rStand ard-Ze el
Microfluidics - Jens Ducrée
Fluids: Transport Phenomena
35
2.4.3. Transport of Heat
 Equilibrium thermodynamics
 System seeks uniform temperature distribution
 Inhomogeneous T-distribution
 Transport of heat
 Two basic modes
 Diffusion
- Statistical phenomenon (related to entropy)
- Summarized in macroscopic thermal conductivity 
Pr isbexa ispel: Ausar beitun gspha
Au tsarbei ungde rStand ard-Ze el
 Convection
- Far more complicated
- Macroscopic ramifications
- Minor importance in microworld
 Another frequently encountered issue
 Transfer of thermal energy at interface between two media/phases
 No inter-phase diffusion / exchange of particles
 Transmission and transition of heat
Microfluidics - Jens Ducrée
Fluids: Transport Phenomena
36
2.4.3 Thermal Conductivity
 Fourier‘s law
 Basic equation quantifying diffusive transport of heat
 Net flow of energy jQ
 Thermal conductivity 
 Power
Pr isbexa ispel: Ausar beitun gspha
Au tsarbei ungde rStand ard-Ze el
 Cross-section of flow A
 Relaxation time for temperature gradient
 Distance d
Microfluidics - Jens Ducrée
Fluids: Transport Phenomena
37
2.4.3 Thermal Conductivity
 Molecular picture
 Net energy flow in positive z-direction
 Using linear terms of Taylor-expansion
Pr isbexa ispel: Ausar beitun gspha
Au tsarbei ungde rStand ard-Ze el
Microfluidics - Jens Ducrée
Fluids: Transport Phenomena
38
2.4.3 Thermal Conductivity
 Thermal conductivity
 Approximating on lmfp
Pr isbexa ispel: Ausar beitun gspha
Au tsarbei ungde rStand ard-Ze el
 Independent of particle density N for ideal gas
 Heat diffusion coefficient
kinematic viscosity
Microfluidics - Jens Ducrée
Fluids: Transport Phenomena
39
2.4.3 Thermal Conductivity
 Typical values
Pr isbexa ispel: Ausar beitun gspha
Au tsarbei ungde rStand ard-Ze el
Microfluidics - Jens Ducrée
Fluids: Transport Phenomena
40
2.4.3 Convection
 Macroscopic transport of particles
 Characteristic for macro-devices
 Important for heat transport in liquids and gases
 Forced convection
 Transport of heat by macroscopic particle flow
 E.g., by an external mechanical source
Pr isbexa ispel: Ausar beitun gspha
Au tsarbei ungde rStand ard-Ze el
 Free convection
 For instance driven by buoyancy
Microfluidics - Jens Ducrée
Fluids: Transport Phenomena
41
2.4.3 Convection
 Convective currents
 Stationary or non-stationary flow patterns
 Simulation of convection
 Often fail to coincide with experimental observations
 E.g., atmospheric weather and climate
Pr isbexa ispel: Ausar beitun gspha
Au tsarbei ungde rStand ard-Ze el
 Free Convection of minor importance in microdevices
 Laminar conditions
Microfluidics - Jens Ducrée
Fluids: Transport Phenomena
42
2.4. Transport Phenomena
2.4.1. Diffusion
2.4.2. Viscosity
2.4.3. Transport of Heat
2.4.4. Characteristic Numbers
Pr isbexa ispel: Ausar beitun gspha
Au tsarbei ungde rStand ard-Ze el
Microfluidics - Jens Ducrée
Fluids: Transport Phenomena
43
2.4.4. Characteristic Numbers
 Fourier mass number
 Characterizes diffusion
 Time t, e.g. residence in chemical reaction chamber
 Typical diffusive time scale tD = l2 / D
Pr isbexa ispel: Ausar beitun gspha
Au tsarbei ungde rStand ard-Ze el
 Schmidt number
 Relates viscosity and diffusion
 Roughly 0.8 for gases
Microfluidics - Jens Ducrée
Fluids: Transport Phenomena
44
2.4.4. Characteristic Numbers
 Fourier number
 Diffusion of heat
 Stored thermal energy
 Prandtl number
Pr isbexa ispel: Ausar beitun gspha
Au tsarbei ungde rStand ard-Ze el
 Ratio between momentum diffusivity (via dynamic viscosity )
and heat diffusivity (via thermal conductivity )
 Specific heat capacity Cm
 Typically 3 to 300 for liquids and 0.7 to1.0 for gases
Microfluidics - Jens Ducrée
Fluids: Transport Phenomena
45