Download Lecture Notes

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Trigonometric Techniques of Integration - (6.3)
1. Consider integrals of the form:
 sin n x cos m xdx
a. Either n or m is an odd positive integer:
n is an odd positive integer: n − 1 is even
 sin n x cos m xdx   sin n−1 x cos m x sin xdx  − 1 − cos 2 x n−1/2 cos m xdcos x
m is an odd positive integer: m − 1 is even
 sin n x cos m xdx   sin n x cos m−1 x cos xdx   sin n x1 − sin 2 x m−1/2 dsin x
b. Both n and m are positive even numbers:
Use the identities:
sin 2 x  1 1 − cos2x, and cos 2 x  1 1  cos2x
2
2
to reduce the power of sin x and cos x.
Example Evaluate the following integrals:
1.  cos 4 x sin 3 xdx
2.  sin 4 x cos 5 xdx
1  cos 4 x sin 3 x dx, u  cos x, du  − sin xdx
 cos 4 x sin 3 x dx  −  cos 4 x1 − cos 2 xdcos x  − u 4 − u 6 du
 − 1 u 5  1 u 7  C  − 1 cos 5 x  1 cos 7 x  C
7
5
7
5
4
4
2 2
5
2  sin x cos xdx   sin x1 − sin x dsin x, u  sin x, du  cos x
 sin 4 x cos 5 xdx   u 4 1 − 2u 2  u 4 du  u 4 − 2u 6  u 8 du
 1 u 5 − 2 u 7  1 u 9  C  1 sin 5 x − 2 sin 7 x  1 sin 9 x  C
7
5
7
5
9
9
Example Evaluate the following.
1
 cos 2 x sin 2 xdx
2
 cos 2 2x sin 4 2xdx
1
 cos 2 x sin 2 xdx  
1 1  cos2x 1 1 − cos2xdx 
2
2
 1  1 − 1 1  cos4x dx  1 
4
2
4
 1 x − 1 sin4x  C
4
8
2
1
1 1 − cos 2 2xdx
4
1 − 1 cos4x dx
2
2
 cos 2 2x sin 4 2xdx  
1 1  cos4x 1 1 − cos4x 2 dx
4
2
 1 1  cos4x1 − 2 cos4x  cos 2 4xdx
8
 1 1  cos4x − 2 cos4x − 2 cos 2 4x  cos 2 4x − cos 3 4xdx
8
 1 1 − cos4x − cos 2 4x − cos 3 4xdx
8
 1  1 − cos4x − 1 1  cos8x dx −  1 1 − sin 2 4xd 1 sin4x
2
4
2
8
 1 1 x − 1 sin4x − 1 sin8x − 1 sin4x  1 1 sin 3 4x
C
8 2
4
16
8
8 3
2. Consider the integrals of the form:
 tan m x sec n xdx
a. n is an even positive numbers.
 tan m x sec n xdx   tan m x sec n−2 x sec 2 xdx   tan m x1  tan 2  n−2/2 dtan x
b. m is an odd positive numbers.
 tan m x sec n xdx   tan m−1 x sec n−1 xtan x sec xdx  sec 2 − 1 m−1/2 sec n−1 xdsec x
Example Evaluate
1
 tan 4 x sec 4 xdx
2
 tan 5 x sec 2 xdx
(1) u  tan x, du  sec 2 xdx,
 tan 4 x sec 4 xdx

 tan 4 x1  tan 2 xdtan x   u 4 1  u 2 du
 1 u 5  1 u 7  C  1 tan 5 x  1 tan 7 x  C
7
5
7
5
(2) u  sec x, du  sec x tan xdx
 tan 5 x sec 2 xdx  sec 2 − 1 2 sec 2 xdsec x  u 4 − 2u 2  1u 2 du
 u 6 − 2u 4  u 2 du  1 u 7 − 2 u 5  1 u 3  C
7
5
3
2
1
1
7
5
3
sec x − sec x  sec x  C

5
7
3
Example Evaluate  sec xdx
x  tan x dx  
 sec xdx   sec x sec
sec x  tan x

2

u  sec x  tan x,
sec 2 x  tan x sec x dx,
sec x  tan x
du  sec x tan x  sec 2 xdx
1 du  ln|u|  C  ln|sec x  tan x|  C
u
Related documents