Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Review for Trigonometry Test Name: __________________________________________ Due Date: ________ SECTION 1: TRIG REVIEW Evaluate. ⎛ sin ⎜ − 1. ⎝ ⎛ 8π ⎞ 3 ⎟⎠ 2. cos ⎜ − 3π ⎞ 4 ⎟⎠ 5. sec ⎜ − csc ⎜ − 4. ⎝ ⎛ ⎝ ⎛ ⎝ 7π ⎞ 3 ⎟⎠ π⎞ 2 ⎟⎠ tan −π 6. cot ⎜ − Find the exact value of the remaining trig functions if: 5. P = (–4, –1) 4 6. cos θ = 6 sin θ = ______ cos tan θ = ______ θ = ______ csc sec cot θ = ______ θ = ______ θ = ______ sin ( ) 3. ⎛ ⎝ and 17π ⎞ 6 ⎟⎠ tan θ < 0. θ = ______ cot θ = ______ sec θ = ______ csc θ = ______ tan θ = ______ SECTION 2: INVERSES 1. 4. 7. 10. 13. 15. 2. 3. 5. 6. 8. 11. 9. ⎛ ⎛ 3⎞⎞ sin ⎜ sin −1 ⎜ ⎟ ⎟ ⎝ 2⎠⎠ ⎝ 14. 16. 12. ⎛ ⎛ 3⎞⎞ tan ⎜ tan −1 ⎜ ⎟ ⎟ ⎝ 2⎠⎠ ⎝ SECTION 3: FORMULAS Match the following sum and difference formulas. List the double angle formulas sin(2θ ) = _____1. A. _____2. B. _____3. C. _____4. D. _____5. E. _____6. F. 7. sin165 9. cos ⎜ π⎞ ⎟ ⎝ 12 ⎠ ⎛ cos(2θ ) = cos(2θ ) = cos(2θ ) = 8. cos135 ! cos90 ! – sin135 ! sin90 10. tan ⎜ ⎛ 5π ⎞ ⎟ ⎝ 12 ⎠ ! 11. ⎛ 5π ⎞ ⎛ 5π ⎞ ⎛π ⎞ π⎞ cos ⎜ ⎟ + sin ⎜ ⎟ cos ⎜ ⎟ ⎟ ⎝ 12 ⎠ ⎝ 12 ⎠ ⎝ 12 ⎠ ⎝ 12 ⎠ ⎛ sin ⎜ 21 π ≤ a ≤π 53 2 Given that: cos cosaa==− , Quadrant: __________ and 12. 5π 2π − tan 6 3 5π 2π 1+ tan tan 6 3 tan tan b = 5 3π . , π ≤b≤ 12 2 Quadrant: __________ Find the exact values of the following: 13. cos(a – b) 14. sin(a + b) 15. 16. cos(2a) sin(2a) SECTION 4: IDENTITIES Write the three Pythagorean identities in the blanks below. 1. ______________________ 2. ______________________ 3. ______________________ Match each identity. _____4. A. B. _____5. _____6. C. D. E. F. G. _____7. _____8. _____9. 10. (1− sin x )(1+ tan x ) = 1 2 2 11. sec2 x = secx cscx tan x 12. 1− tan 2 x = 1− 2sin 2 x 1+ tan 2 x 13. cosx + sin x tan x = secx 14. (1+ tanθ ) 15. sin 2 x − sin 4 x = cos2 x − cos4 x 16. sinθ + cosθ = secθ + cscθ sinθ cosθ 17. secθ + tanθ = sinθ sec2 θ cosθ + cotθ 2 = sec2 θ + 2tanθ SECTION 5: SOLVING EQUATIONS Solve each equation and find the solutions on the interval [0,2 π ) 2. tanθ = 2sinθ 1. 2sinθ + 3 = 0 3. ⎛ ⎞ (cotθ +1) ⎜⎝ cscθ − 12 ⎟⎠ = 0 4. cos ( 2θ ) = 1 2 5. ⎛ sin ⎜ 3x + ⎝ π⎞ =1 18 ⎟⎠ 6. sin ( 2θ )sinθ = cosθ Solve the equation and write the solutions in GENERAL FORM =) 1 8. 2cos2 θ − 5cosθ = −2 7. tan 2 θ = 3