Download Simplifying Radical Expressions - simulation

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Simplifying Radical Expressions
Multiply.
23 = 6
2 3 = 2 3
2 3 6
Multiply.
5  7 =35
5 7 = 5 7
5  7  35
Simplify the following:
20, 40, 50, 48, 120, 85, 200, 150,
3
16, 3 54, 3 128, 3 256, 4 32, 4 64, 4 162, 4 512,
5
64, and 5 128.
Solution :
20  4  5  4  5  2 5
40  4  10  4  10  2 10
50  25  2  25  2  5 2
48  16  3  16  3  4 3
120  4  30  4  30  2 30
85  85
200  100  2  100  2  10 2
150  25  6  25  6  5 6
3
16  3 8  2  3 8  3 2  2 3 2
3
54  3 27  2  3 27  3 2  3 3 2
3
128  3 64  2  3 64  3 2  4 3 2
3
256  3 64  4  3 64  3 4  4 3 4
4
32  4 16  2  4 16  4 2  2 4 2
4
64  4 16  4  4 16  4 4  2 4 4
4
162  4 81  2  4 81  4 2  3 4 2
4
512  4 256  2  4 256  4 2  4 4 2
5
64  5 32  2  5 32  5 2  2 5 2
5
128  5 32  4  5 32  5 4  2 5 4
Simplify the following:
20 x 2
Solution :
20 x 2  20 x 2  4  5 x 2  4 5 x 2  2  5  x  2 x 5
Simplify the following:
45 x 5
Solution :
45 x 5  9  5 x 2  x 2  x1  9 5 x 2 x 2 x
 3  5  x  x  x  3x 2 5 x
 3x2 5x
Simplify the following:
80 x 5 y 6
Solution :
80 x 5 y 6  16  5 x 2  x 2  x1  y 2  y 2  y 2
 16 5 x 2 x 2 x y 2 y 2 y 2
= 4 5  x x x  y y y
 4 x2 y3 5 x
 4 x2 y3 5x
Simplify the following:
3
80 x 5 y 6
Solution :
3
80 x 5 y 6  3 8  10 x 3 x 2 y 3 y 3
= 3 8  3 10  3 x 3  3 x 2  3 y 3  3 y 3
= 2  3 10  x  3 x 2  y  y
= 2y 2 x  3 10  3 x 2
= 2xy 2 3 10 x 2
Simplify the following:
8 5
a
27
Solution :
8 5
8  a2  a2  a
a 

27
27
=
=
4  2  a2  a2  a
93
4 2 a2 a2 a
9 3
2 2aa a
3 3
2  a 2  2a
=
3 3
Simplify the following:
3
8 10 10
a b
27
Solution :
3
8 10 10 3 8  a 3  a 3  a 3  a  b3  b3  b3  b
a b 
3
27
27
3
8  3 a 3  3 a 3  3 a 3  3 a  3 b3  3 b3  3 b3  3 b
3
27
3
8  3 a 3  3 a 3  3 a 3  3 a  3 b3  3 b3  3 b3  3 b
3
27
=
=
2a a a  3 a bbb 3 b
=
3
2  a 3  b3  3 a  3 b
=
3
2  a 3  b3  3 ab
=
3
Simplify the following:
5
a 22b15
Solution :
5
a 22b15  5 a 5  a 5  a 5  a 5  a 2  b5  b5  b5
= 5 a 5  5 a 5  5 a 5  5 a 5  5 a 2  5 b5  5 b5  5 b5
= a  a  a  a  5 a2  b  b  b
= a 4  b3  5 a 2
Right Triangle Problems
a
c
b
a2 + b2 = c 2
(leg 1)2 + (leg 2)2 =  hypotenuse 
2
Find the missing side.
x
4
8
Solution :
4 2  82  x 2
16  64  x 2
80  x 2
x 2  80
x 2  80
x  16  5
x  16 5  4 5
Find the missing side.
10
4
b
Solution :
42  b 2  102
16  b 2  100
16  b 2  16  100  16
b 2  84
b 2  84
b  4  21
b  4 21  2 21
Distance Between Two Points
Distance Between Two Points =
 x2  x1    y2  y1 
2
2
 x1 , y1 
 x2 , y2 
Example 1
Find the distance between (4, 5) and (11, 3)
Solution :
x1  4; y1  5; x2  11; y2  3
Distance Between Two Points =
 x2  x1 
Distance Between Two Points =
11  4 
Distance Between Two Points =
7 
2
2
2
  y2  y1 
 3  5
  2 
2
2
2
Distance Between Two Points = 49  4
Distance Between Two Points = 53  7.28
Midpoint of the segment joining (4, 5) and (11, 3):
 x  x y  y2   4  11 5  3 
Midpoint =  1 2 , 1
,
   7.5, 4 

2   2
2 
 2
Example 2
Find the distance between (-4, 5) and (-1, 8)
Solution :
x1  4; y1  5; x2  1; y2  8
Distance Between Two Points =
 x2  x1 
Distance Between Two Points =
 (1)  (4) 
Distance Between Two Points =
 3
2
2
  3
  y2  y1 
2
2
 8  5 
2
2
Distance Between Two Points = 9  9
Distance Between Two Points = 18= 9  2=3 2  4.24
Midpoint of the segment joining (-4, 5) and (-1, 8):
 x  x y  y2   4  (1) 5  8 
Midpoint =  1 2 , 1
,
   2.5, 6.5 

2
2
2
2


 
Example 3
Find the distance between (4.2, -5.7) and (-1.8, 8.2)
Solution :
x1  4.2; y1  5.7; x2  1.8; y2  8.2
Distance Between Two Points =
 x2  x1 
Distance Between Two Points =
 (1.8)  (4.2) 
Distance Between Two Points =
 6 
2
2
  y2  y1 
 13.9 
2
2
  8.2  (5.7) 
2
2
Distance Between Two Points = 229.21  15.14
Midpoint of the segment joining (4.2, -5.7) and (-1.8, 8.2):
 x  x y  y2   4.2  (1.8) (5.7)  8.2 
Midpoint =  1 2 , 1
,
  1.2, 1.25 

2
2
2
2


 
Example 4
Find the distance between ( 5, 10) and ( 14, 19)
Solution :
x1  5; y1  10; x2  14; y2  19
Distance Between Two Points =
 x2  x1 
Distance Between Two Points =

Distance Between Two Points =
1.5055894 
2
  y2  y1 
14  5
 
2

2
2
19  10

2
 1.196621283
Distance Between Two Points = 3.698701965  1.923
2
Related documents