Download Team 3

Document related concepts
no text concepts found
Transcript
Poolside Alarm

Jay Bombien – BSEE


Darren Pallesen- BSEE


Lead Presentation Manager
Peter Brunner- BSEE


Lead Project Integrator
Louis Chatfield- BSEE


Lead Report Manager
Lead System Designer
Milja Cumbo- BSEE

Lead Manufacturing Mgr
1
Major Functions and Features

Functions:



Monitor a pool for potential hazardous situations
Loud audible alarm when a child falls in unnoticeably
Features:




Outdoor unit will display water temperature
Solar cells on poolside unit to keep outdoor battery
charged
Wireless home receiver and display unit with loud audible
signal.
User Control On/Off and Alarm Active/Deactive
2
Poolside Alarm
Block Assignment
Outdoor
Peter
Darren
Jay
Milja
Indoor
Power Supply
Power Supply
Water Temp
Sensor
Wave
Sensor
Louis
Alarm
RF
Transceiver
Indoor MPU and Display
Motion
Sensor
Data Lines
Alarm
Power Lines
3
Performance Requirements
Operational Modes
On, Off
Alarm Active / De-active
Effectiveness

False Alarms
 Alarm Duration
< 5%
5 Minutes
Digital Signal Interface Requirements



Vih (min) = 2.0 v Vil (max) = 0.8 v Voh (min) = 2.4 v
Iih (max) = 5 uA
Iil (max) = -5 uA Ioh (max) = -3.2 mA
VoL (max) = 0.5 v IoL (max) = 24 mA
RF transmission Range:
300ft
4
Performance Requirements
Mechanical Interfaces






Water Temp Sensor
Motion Sensor
Wave Sensor
LED Display – Indoor Unit
7-segment Display – Outdoor Unit
Antenna for RF Transceiver
User Interface Types




Product On/Off switch
Alarm On/Off switch
7-segment water temp LED display – Outdoor unit
LED indicators – Indoor Unit
User Interface details

User can turn off alarm at discretion by means of a switch
5
Performance Requirements
Power Input Types
Indoor:
 Source(1): 120Vac
108V to 138V
Frequency Range:
57-63Hz
Connectors: 1) Type B (Flat blades with round grounding pin)
2) 2.1 mm male-to-female DC Plug
 Source(2): Lithium 9V
7.5 – 9.9V
 Battery Capacity:
1200 mAh
Outdoor:
 Source(1): Solar Cell
 Source(2): 3 x Li+
 Battery Capacity
 Connector (IP67)
0V to 16.5V
9.9V to 12.6V
2000 mAh
2-pin Micro-Con-X subminiature
6
Performance Requirements
User Interface Details
Outdoor: 3-digit, 7-segment display




Color: Red
Visibility: 5m (day), 10m (night)
Numeric Characters (0-9)
Size: 0.4”
Indoor: LED indicators




Red and Green LEDs
Display power, low battery, outdoor unit off, and alarm activated
Visibility: 10m (day)
24 Font Size Labels
Labeling




Indoor On/Off switch
Outdoor On/Off switch
Warning labels for shock hazard:
Temperature display
Indoor AC adapter, outdoor solar panel
7
ºF
Standard Requirements
Market:





Est. Total Market Size
Est. Annual Vol.
Min. List Price
Target
Demographic
$1,000,000
2,000
$300
United States
Parents with pools
Manufacturing:

Min. Total Parts Count
 Max. Unique Parts Count
 Max. Parts & Materials Cost
 Max. MFG Assembly / Test Cost
200
100
$175
$50
8
Standard Requirements
Life Cycle:





Est. Max. Production Lifetime
Product Life Reliability in MTBF
Full Warranty Period
Reliability (warranty)
Disposal
5 years
4 years
30 days
95%
Throw Away
Application and Limitations

Pool size
 Battery Type (outdoor)
 Weight of child (min)
 Loudness of alarm
Round, up to 24’ diameter
Lithium Ion (3.7V nominal)
18lbs
100dB at 10ft
9
Standard Requirements
Mechanical:







Max. Product Vol.
Max. Shipping Container Vol.
Max. Product Mass
Max. # of boards
Max. Total PCB Area
Max. Shock Force
• Indoor
• Outdoor
Max. Shock Repetitions / Year
Environmental:






Operating temperature range
Operating humidity
Operating Pressure Range
Storage temperature range
Storage Ambient Humidity Range
Storage / Shipping Altitude Range
5,000 cm3
7,000 cm3
13 kg
3
425 cm2
50 G’s
10 G’s
15
5 to 55 C
0 to 100%
-500m to 5000m
-20C to 65C
0%RH to 100%RH
-1000m to 5000m
10
Safety Standards

UL 464 - Audible Signal Appliances


UL 1703 - Flat-Plate Photovoltaic Modules and Panels


Alarms sound at poolside and in adjacent buildings when a minimum
weight of 18 lbs hits the water.
PS 128-01, Provisional Specification for Pool Alarms


Flat-plate photovoltaic modules used as either freestanding or attached
to buildings
PS 128-01, Provisional Specification for Pool Alarms


Electrically and electronically operated bells, buzzers, horns, and similar
audible signal appliances intended for indoor or outdoor locations.
Alarms sound at poolside and in adjacent buildings that a minimum
sound of 80dB at 100ft is possible
IEC 61558-1

Safety of power transformers, power supply units and similar devices
11
EMC Standard Summary Table
EMC Standards Summary PS/Outdoor PS/Indoor User Interface Sensors RFTrans. Alarms
IEC61000-3-3 EMC Part3
xx
xx
xx
xx
xx
xx
IEC61000-4-2 EMC Part4
xx
xx
xx
xx
xx
IEC61000-4-3 EMC Part4
xx
IEC61000-4-11 EMC Part4
xx
xx
xx
xx
IEC61000-4-6 EMC Part4
xx
US/FCC47 CFR 15
xx
US/FCC47 CFR 18
xx
CISPR 11
xx
CISPR 16
xx
CISPR 22
xx
12
Outdoor Power Supply
Peter Brunner
13
Poolside Alarm
Block Assignment
Outdoor
Indoor
Power Supply
Power Supply
Water
Sensor
Wave
Sensor
Peter
Alarm
RF
Transceiver
Indoor MPU and Display
Motion
Sensor
Data Lines
Alarm
Power Lines
14
Outdoor Power Supply
Block Description

To receive Infra red rays from the sun
to charge the solar panels

To recharge the batteries through a regulator
when it is 9.9V or lower.

To output the required regulated voltage for
the other block power inputs
15
Outdoor Power Supply
Performance requirements
Electrical Interfaces:



Signal Type: Power - DC
Power Input: 19.8Wmax
Source1: Battery
•
•
•
•
•

Type: 3 X Lithium Ion
VBAT, MIN = 3.3V
Capacity = 2000mAH
Max. Charging current: 2.4A
Max. Discharging current 3A
Source2: 30 X Solar Cells
• Voltage (30X cells):
Nominal: 16.5
Range: 0 – 16.8
• Current max: 1A

Output Voltage:




Nominal: 3.3
Nominal: 9
VRIPPLE = 100mV
Range: 3-3.6
Range: 8.1-9.9
Output Current max: 2 * 0.5A = 1A
16
Outdoor Power Supply
Performance requirements
Mechanical interfaces

Connector: Solar Panel to Unit

IP67 rated: 2-pin Micro-Con-X subminiature

Power on/off toggle switch
Operational Modes

On, Slow charge, Fast charge
17
Outdoor Power Supply
Mechanical







Standard requirements
Block cost
Cost Allocation
Parts count
Part Allocation
Unique parts count
PCB Area
PCB allocation
<$34
15%
<45
23%
<25
40 cm2
9%
Environment:






Operating temperature range
Operating humidity
Operating Pressure Range
Storage temperature range
Storage Ambient Humidity Range
Storage / Shipping Altitude Range
5 to 55 C
0 to 100%
-1000m to 5000m
-20C to 65C
0%RH to 100%RH
-1500m to 5000m
18
Outdoor Power Supply
Standard requirements
Life Cycle




Reliability MTBF
Reliability %
R (warranty)
Disposal
5 years
45%
95%
Throw away
19
Outdoor Power Supply
Standards

Safety Feature Requirements





Safety Standard:


Waterproof (IP67) Connector/cap to avoid water on input pins.
Components possess high voltage and current ratings so overheating
does not occur
Completely enclosed supply reduces shock potential and chance for
water shorting
Heat sink for VSOLAR input.
UL 1703 - Flat-Plate Photovoltaic Modules and Panels
EMC Standard:

EMC 61000-3-3: Limitation of voltage fluctuations and flicker in lowvoltage supplies <16A
20
Outdoor Power Supply
Block Assignment
Sun
Solar Panel
VCharge
Charging
Circuit
VPower
Switching Regulator
Battery
V3.3V
V9V
Other Blocks
21
Outdoor Power Supply
Electrical Interfaces
Power Signals
Power1 V 3.3V
Power2 V 9V
Source1 Vcharge
Source2 Vpower
Type
DC Power
DC Power
DC Power
DC Power
Direction
Output
Output
Input
Input
Voltage
Nominal
3.3
9
16.5
11.1
Voltage Range
Freq
Freq Range
Min
Max Nominal Min Max
3
8.1
0
9.9
3.6
9.9
16.8
12.6
DC
DC
DC
DC
0
0
0
0
N/A
N/A
N/A
N/A
% V-Reg
Max
10.00%
10.00%
-100%/+5%
-10%/+11%
V-Ripple Current
Max
Max
0.1V
0.1V
0.1V
0.1v
0.5A
0.5A
1.2A
1A
22
Outdoor Power Supply
Schematic
23
Outdoor Power Supply
Schematic
24
Outdoor Power Supply
Calculations
[(VOUT – 1.22 ) * R4 ]
1.22
Set R 4  13.3k
R3 
VOUT = 9V
R 3  85k
VUVLO  ( 1 
R1
)*1.85.
R2
Set VUVLO  9.9V
Set R 1  1M
R 2  230k
LMIN 
((V IN – VOUT ) * DO )
0.3*I OUT,MAX*f SW
With VIN  11.1V
DO 
VOUT
 0.81081
VIN
L MIN  45.4uH
D (Schottky Diode)
• 1.5A rating, 0.45V forward voltage
Input Filter Capacitor Selection - VRIPPLE  100 mV
ΔI L 
(VIN – VOUT ) * VOUT
VIN *f SW * L
C IN 
I OUT * Do ( 1-Do)
ΔVQ * f SW
 300mA
 61uF
Output filter capacitor
ΔI L
COUT 
 55uF
2.2* Δ OQ*f SW
25
Outdoor Power Supply
Calculations
VOUT = 3.3V
 VUVLO
R
 (1  1 ) *1.85. VUVLO  6.5V
R2
Set R 1  1M
R 2  400k
 L MIN 
((VIN – VOUT ) * D O )
(0.3 * I OUT, MAX * f SW )
With VIN  11.1V
DO 
VOUT
 0.2973
VIN
L MIN  62uH (using I OUT, MAX  1A)
D (Schottky Diode) - 1.5A rating, 0.45V VF
Input filter capacitor - VRIPPLE  100 mV
I L 
(VIN – VOUT ) * VOUT
 300mA
VIN * f SW * L
C IN 
I OUT * D(1 - D)
 84uF
VQ * f SW
Output filter capacitor
VOESR
ESR OUT 
 (.08 / .300)  270 m
I L
C OUT 
I L
 55uF
2.2 * VOQ * f SW
26
Outdoor Power Supply
Calculations
Max Battery Voltage
VBATT  (# Cells)(V REF  (VVCTL – 1.8) / 9.52)
# Cells  3, VBATT  12.6 V
• VVCTL  1.576V
Max Source Current  3A
0.075 VCLS
I IN  (
)(
)
R S1 VREF
Choose I IN  3A, VCLS  VREF
• R S1  25 m
Max Charge Current  2.4A
MOSFET power rating :
VICTL  3.6V
RDSN(ON)  0.04, RDSP(ON)  0.08
I CHG  (
V
0.075
) * ( ICTL )
R S2
3.6V
• R S2  13.68 m
Find R 2
R2 
VLDO * R 3
- R3
VCTL
R 3  100K
 R 2  55.6K
VBATT ILOAD
)(
)2 x RDSP(ON)
VDCIN
2
• PD(P1)  15.3mW
VBATT
ILOAD
PD(N1)  [1 – (
)] (
)2 x RDSN(ON)
VDCIN
2
• PD(N1)  2.36mW
Input / output capacitor rating
PD(P1)  (
VBATT(VDCI N – VBATT)) 1/2
IRMS  ICHG [
]
VDCIN
• IRMS  1.02A
27
Outdoor Power Supply
Component Selection

Solar Panel is 18AWG


All other wires are 22AWG





Easily handle max 1.2A
Weatherproof connection
Max5035




Can easily handle circuitry current
RS2 & RS1 are 1/2W
Both resistors can handle current required
Conxall IP67 connector – 7A max contact


Handle more than 1A current at 16.5V
Large input voltage range
1A output current
Highly efficient regulated output
Max1909



Up to 7A input current
Up to 4A charge current
Automatically switches from Battery to DC power
28
Outdoor Power Supply
Worst-Case DFM analysis
Passive Discrete Specifications
Nominal Value
or Max Value
Tolerance
Around
Nominal
Derated
Pow er
Capacity
1%
1%
1%
1%
1%
1%
1%
1%
1%
1%
1%
1/8 W
1/8 W
1/8 W
1/8 W
1/8 W
1/8 W
1/8 W
1/8 W
1/8 W
1/8 W
2W
Tolerance
Around
Nominal
Derated
Pow er
Capacity
Maximum
Working
Voltage
Maximum
Constant
Current(mA)
Maximum
Surge
Current(mA)
Composition
Dielectric or
Form
Q Factor or
Frequency
Variation
Package
Component
Resistor
Resistor
Resistor
Resistor
Resistor
Resistor
Resistor
Resistor
Resistor
Resistor
Resistor
1.000E+06
4.020E+05
2.320E+05
8.450E+04
1.330E+04
5.900E+05
1.960E+05
1.000E+05
1.000E+04
3.320E+04
0.015
Nominal Value
or Max Value
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Capacitor
Capacitor
Capacitor
Capacitor
Capacitor
Capacitor
Capacitor
Capacitor
10uF
47uF
68uF
0.01uF
.1uF
1uF
22uF
DC Gain vs
Max Offset Component
Voltage
Variations
200V
200V
200V
200V
200V
200V
200V
200V
200V
200V
.075V
Maximum
Working
Voltage
20%
20%
20%
5%
5%
20%
10%
Gain vs
Freq vs
Comp Var
Phase vs
Freq vs
Comp Var
N/A
N/A
Thick Film
Thick Film
Thick Film
Thick Film
Thick Film
Thick Film
Thick Film
Thick Film
Thick Film
Thick Film
Metal Strip
Maximum
Constant
Current
Maximum
Surge
Current
25
16
16
25
25
25
35
Slew rate
Pulse
Pow er
Response &
Input
Bandw idth
Delay
Impedance
Composition
Dielectric or
Form
Aluminum
Aluminum
Aluminum
Ceramic
Ceramic
Ceramic
Ceramic
Output
Open Loop
Impedance Gain Margin
Open Loop
Phase
Margin
1206
1206
1206
1206
1206
1206
1206
1206
1206
1206
4527
Q Factor or
Frequency
Variation
120 HZ
120 HZ
120 HZ
Over
Current
Protect
Noise
and/or
Ripple
1..5A
N/A
100mV
Package
UWX
UWX
UWX
805
805
805
1210
V or I
Regulation
Semicond
Pow er &
Junct Temps
Analog Circuit Type
Power Mosfet
Switching Voltage Regulator, PS
150mV
200mV
N/A
N/A
N/A
50 nS
N/A
N/A
N/A
N/A
29
150°C
7.8V
150°C
Outdoor Power Supply
Worst-Case DFM analysis
 Input




VBATT,MIN = 9.9V
VIN,MIN = 9.6V
VBATT,MIN ≥ VIN,MIN
As long as VBATT,MIN > 9.6V, Chip will remain on, output will be 9V or 3.3V,
respectively
 Input





voltage range (min) 9V & 3.3V:
voltage range (max)
VBATT,MAX = 12.6V, VSOLAR, MAX = 16.5V
VCHIP,MAX = 76V
VBATT,MAX < VCHIP,MAX
VSOLAR, MAX < VCHIP,MAX
Neither solar or battery voltage will exceed max input voltage
30
Outdoor Power Supply
Worst-Case DFM analysis
 Battery life

Max mAH
• Momentarily ON


Alarm on for 5 minutes = 31.667mA
Water Temp = 1 minute/day = 3.65mA
• Continuously ON



Motion Sensor = 25mA
Wave Sensor = 17mA
RF transceiver = 43mA
31
Outdoor Power Supply
Worst-Case DFM analysis
 Battery
Charging Continued
• 1 hour max mA

25 + 17 + 42 + 219/60 + 380/12 = 120.3
• 1 hour avg mA

25+17+43 = 85
• Worst-Case average mA = (23*85 + 120.3) / 24 = 86.472
• Worst-Case Battery Life = (2000mA*H /86.743) = 23Hrs
32
Outdoor Power Supply
Worst-Case DFM analysis
• VOUT = 3.3V and VUVLO, Shutdown = 5.2V
 990k 
VUVLO ,SHUTDOWN  (1  
) *1.85  6.433V
400k


VUVLO, LOW  VUVLO, SHUTDOWN
• VOUT = 9V with VUVLO, Shutdown = 9.9V
 85.35k 
VOUT , MAX  1.22
  1.22  9.173V
 13.17k 
 83.66k 
VOUT , MIN  1.22
  1.22  8.82V
 13.43k 
• Meet min requirement
of Vout = +/- 10%
 990k 
VUVLO , LOW  (1  
) *1.85  9.9V
 228k 
VUVLO, LOW  VUVLO, SHUTDOWN
LCALC,MIN  62uH
L MIN  82uH * 90%  73.8 uH
L MIN  LCALC,MIN
LCALC,MIN  45.4uH
L MIN  56uH * 90%  50.4 uH
L MIN  LCALC,MIN
33
Outdoor Power Supply
Worst-Case DFM analysis
Battery Charger
R S2  (
0.075
3.6
)*( )
I CHG
3.6
0.075
3.6
R S2  (
) * ( )  31.23mΩ  Choose 35m
2.4
3.6
0.075
3.6
I CHARGE, MAX  (
) * ( )  2.165A
.03465
3.6
* I CHARGE,MAX  I CHARGE,MAX REQ
R S1 
0.075 * VCLS
I IN * VREF
0.075 * 4.2235
 25mΩ  Choose 30mΩ
3A * 4.2235
0.075 * 4.2235
I IN,MAX 
 3.95A
14.85 * 4.2235
* I IN,MAX  I IN,MAX REQ
R S1 
tOFF  (
1
f NOM
)*(
VCSSN - VBATT
), f NOM  400kHz
VCSSN
1
16.5 - 12.1
)*(
)  0.667 uS
400kHz
16.5
V
*t
I RIPPLE  ( BATT OFF )
L
12.6 * 667ns
I RIPPLE  (
)  0.84 A
10uH
L * I RIPPLE
tON  (
)
VCSSN - VBATT
tOFF  (
10uH * 0.84
)  2.154uS
16.5 - 12.6
1
f OPERATING 
t ON  t OFF
tON  (
1
 355kHz
2.154uS  667nS
* f OPERATING  f MAX
f
34
Bill Of Materials
QTY Generic Name
Mfg 1
Mfg 1 Part #
TH/SMT Package Placement Area mm 2 Function or
Auto/Man
Description
PCB
3
1
1
1
1
1
1
1
1
2
1
1
Thick Film Resistor - 1M 1%
Thick Film Resistor - 396k 1%
Thick Film Resistor - 226k 1%
Thick Film Resistor - 84.5k 1%
Thick Film Resistor - 13.3k 1%
Thick Film Resistor - 590k 1%
Thick Film Resistor - 196k 1%
Metal Film Resistor - 0.015 1%
Metal Film Resistor - 0.015 1%
Thick Film Resistor - 100k 1%
Thick Film Resistor - 10k 1%
Thick Film Resistor - 33.2 1%
Xicon pg461
Xicon
Xicon
Xicon
Xicon
Xicon
Xicon
Vishay
Vishay
Xicon
Xicon
Xicon
290-1M
290-396K
290-226K
290-84.5K
290-13.3K
290-590K
290-196k
WSL1206-0.015-E3
WSL1206-0.03-E3
290-100k
290-10k
290-33.2
SMT
SMT
SMT
SMT
SMT
SMT
SMT
SMT
SMT
SMT
SMT
SMT
1206
1206
1206
1206
1206
1206
1206
1206
1206
1206
1206
1206
Auto
Auto
Auto
Auto
Auto
Auto
Auto
Auto
Auto
Auto
Auto
Auto
4.5
4.5
4.5
4.5
4.5
4.5
4.5
78
78
4.5
4.5
4.5
1
3
2
2
2
2
2
7
1
1
3
1
1
2
1
1
2
2
1
1
1
Battery Clip
Li+
Capacitor - 10uF
Capacitor - 47uF
Capacitor - 68µF
Capacitor - 1µF
Capacitor - .01µF
Capacitor - .1µF
Capacitor - 22uF
Zener Diode - 25V
Single P-Channel MOSFET
dual n-channel MOSFET
dual P-channel MOSFET
Inductor - 22uH
Inductor - 56uH
Inductor - 82uH
Shottky Diode
1A, 76V DC-DC converter
Field installable connector
Bulkhead connector w/ cap
Li+ Battery Pack Charger
EPD
SunoCell
Nichicon
Nichicon
Nichicon
AVX
AVX
AVX
AVX
Fairchild
Fairchild
Fairchild
Fairchild
API Delevan
API Delevan
API Delevan
Fairchild
Maxim
Conxall
Conxall
Maxim
12BH381
171-079-001
UWX1E100MCL1GB
UWX1C470MCL1GB
UWX1C680MCL1GB
08053G105ZAT2A
08055C103JAT2A
08055C104JAT2A
1210YD226KAT2A
BZX84C25V1
FDS6675
FDS8958A
FDS8958A
4922-21L
4922-22L
4922-24L
MBRS320
MAX5035
16282-2PG-315
17282-2SG-300
Max1909
N/A
N/A
SMT
SMT
SMT
SMT
SMT
SMT
SMT
SMT
SMT
SMT
SMT
SMT
SMT
SMT
SMT
SMT
N/A
N/A
SMT
N/A
N/A
UWX
UWX
UWX
805
805
805
1210
SOT-352
SO-8
SO-8
SO-8
805
805
805
SOT-353
8-Pin SO
Manual
Manual
Auto
Auto
Auto
Auto
Auto
Auto
Auto
Auto
Auto
Auto
Auto
Auto
Auto
Auto
Auto
Auto
Manual
Manual
Auto
N/A
N/A
21
21
21
8
8
8
8
5.00
31.00
31.00
31.00
72
72
72
80
45
N/A
N/A
25
Total Parts:
84
Total
Cost:
28 QFN
Current Sense
Current Sense
Attributes Tol% $Cost/ $Cost
One
Total
1/8W
1/8W
1/8W
1/8W
1/8W
1/8W
1/8W
1/2W
1/2W
1/8W
1/8W
1/8W
Battery holder
11.1V total
35V
35V
35V
25V
25V
25V
35V
9.1V
1
1
1
1
1
1
1
1
1
1
1
1
N/A
N/A
Electrolytic 20
Electrolytic 20
Electrolytic 20
Ceramic
10
Ceramic
10
Ceramic
10
Tantalum
Zener
5
Power Mosfet
Power Mosfet
Power Mosfet
1.61A
Ferrite
10
1.04A
Ferrite
10
1.A
Ferrite
10
3A forward current Shottkey
5
DC/DC converter
10%
Solar Connect 2-pin
N/A
Solar Connect 2-pin
N/A
Battery charger
10
$116.34
* Total Parts and Total Cost exceed standard requirement.
Can reduce major cost by using lower quality solar cells
$0.01
$0.01
$0.01
$0.01
$0.01
$0.01
$0.01
$0.50
$0.50
$0.01
$0.01
$0.01
$0.02
$0.01
$0.01
$0.01
$0.01
$0.01
$0.01
$0.50
$0.50
$0.01
$0.01
$0.01
$1.30 $1.30
$3.71 $11.13
$0.12 $0.24
$0.12 $0.24
$0.22 $0.44
$0.13 $0.26
$0.13 $0.26
$0.13 $0.91
$1.80 $1.80
$0.10 $0.10
$0.67 $2.02
$0.58 $0.58
$0.58 $0.58
$0.99 $1.98
$0.99 $0.99
$1.09 $1.09
$0.26 $0.53
$1.90 $3.80
$2.09 $2.09
$1.88 $1.88
$5.04 $5.04
35
Outdoor Power Supply
Manufacturing Process
Manufacturing:
1) X-ray solder joints of SMT components. Inspection of defects
such as gull wings, J-Lead defects, or discrete chip resistors
2) Manual placement of specified components
- Machine Placement:
- SMD passives
- SMD IC’s
- Machine Solder:
- SMD passives
- SMD IC’s
- Manual Placement:
- Battery clip
- Bulkhead connector / cap
- Solar Panel
- Toggle switch
- Pushbutton switch
- Manual Solder:
- Socket connector to Solar panel
- Lead wires to PCB
- 30 X solar cells
36
Outdoor Power Supply
Test 1:
Test Processes
- Action: Place solar panel under bright light
- Verify: Proper open-circuit voltage and short-circuit current
Test 2:
- Action: Apply different loads to the 9V and 3.3V output
- Verify: Max required current, acceptable nominal voltage outputs
Test 3:
- Action: Connect solar panel to enclosure. Then remove it
- Verify: Proper switching between Solar panel and battery source
Test 4:
- Action: Mechanical vibration. Use machine to gently shake the circuit board.
This test will NOT include the Solar Panel
- Verify: Parts do not fall off
37
Parts Count Reliability
Component Description
Solar Cells
Resistors (metal film)
Resistor (power)
Caps (ceramic)
Caps (Electrolyte)
Caps(tantalum)
NPN Transistor
PNP Transistor
dual n-channel MOSFETs,
dual p-channel MOSFETs,
Single p-channel MOSFETs
Inductors
Voltage Switching regulator IC
Li+ Battery
Zener Diode
Schottky Diode
Battery Charge IC
Plastic Shell Connector - Jack
Plastic Shell Connector - Plug
Total
Base l
FITs
M ax R ated
M a x O pe r
T e m p C o ( T r) T e m p C o ( T a )
M ax R ated
V o lt a ge ( V r)
M a x O pe r
V o lt a ge ( V a )
pT
pV
pE
pQ
30
13
2
11
6
1
1
1
1
1
3
3
22
0.2
5
1.2
120
10
4
4
4
4
4
12
90
125
125
125
125
125
150
150
80
80
80
125
55
55
55
55
55
55
55
55
55
55
55
55
25
200
200
25
35
35
50
50
30
30
30
50
16.5
16.5
16.5
16.5
16.5
16.5
16.5
16.5
16.5
16.5
16.5
16.5
4.414
1.794
1.794
1.794
1.794
1.794
1.384
1.384
8.625
8.625
8.625
1.794
0.943
0.148
0.148
0.943
0.330
0.330
0.221
0.221
0.459
0.459
0.459
0.221
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
l
10299.44
2.589898
9.961147
83.72873
1599.317
22.21274
4.598272
4.598272
59.43831
59.43831
178.3149
53.63732
2
3
1
2
1
1
1
113.3
22
70
70
113.3
105
105
125
125
150
200
150
125
125
55
55
55
55
55
55
55
75
30
35
30
30
600
600
16.5
12.6
16.5
16.5
16.5
16.5
16.5
1.794
1.794
1.384
1.061
1.384
1.794
1.794
0.179
0.279
0.330
0.459
0.459
0.139
0.139
3.000
3.000
3.000
3.000
3.000
3.000
3.000
1.250
1.250
1.250
1.250
1.250
1.250
1.250
273.5341
123.9628
119.9693
255.9784
270.1859
98.3396
98.3396
Qty
84
T o tal
13618
- Total Fits = 13618, Total MTBF (yrs) = 8.377
- Reliability (1 warranty) = 97.1%
- The required reliability (MTBF) goal is 5 years and reliability after 1 warranty is 97.1%. This
block exceeds the requirements
- Dominant Failure part is the Solar Panel. Not much can be done to improve this part for higher
38
reliability.
Outdoor Power Supply
Sustainability
µ+2.5σ (µ+2.5σ ) - 2006 µ+3.5σ
σ
µ
Primary Attribute
Thick Film Resistor
Secondary Attribute
Voltage Regulator
Primary Attribute
Primary Attribute
Primary Attribute
Inductor
Electroclytic Capacitor
Ceramic Capacitor
1985
1980
1985
10
14
10
Primary Attribute
Battery
SOP - Small Outline Package
1998
6
Secondary Attribute
Secondary Attribute
Secondary Attribute
QFP - Quad Flat Pack
CMOS
1985
10
2010
(µ+3.5σ ) - 2006
4
2020
14
2010
2015
2010
14.25
4
9
4
2026.75
2020
2029
2020
20.75
14
23
14
2013
7
2019
13
5.25
2017.75
11.75
3
35.25
2013.2
2053.75
7.2
47.75
2004 6.5 2020.25
1995 6.5 2011.25
1999 4.2 2009
2010 12.5 2041.25
Life Cycle: 5 years
Major Problem Part: The Quad Flat Pack (Li+ battery charge controller) will be obsolete
in March, 2013. But since our life cycle is only 5 years, this part will not be a problem for
this product.
Near obsolete parts: The thick film resistors, inductors, ceramic capacitors, SOP
package and the Quad Flat Pack are the most dangerous parts to use since they will be
phasing out near the end of our product life. However, they will not be completely
39
obsolete by the end of the product life so there is not a need to change them.
RF Transceiver
Milja Cumbo
40
Poolside Alarm
Block Assignment
Outdoor
Indoor
Power Supply
Power Supply
Air / Water
Sensor
Wave
Sensor
Milja
Alarm
RF
Transceiver
Indoor MPU and Display
Motion
Sensor
Data Lines
Alarm
Power Lines
41
RF Transceiver
Block Purpose and Description
Processing and controlling data from sensors,
power supplies, and switches
Transmitting and receiving data between outdoor and
indoor units
42
Product Performance
Requirements
I/O Interface
Vih(min)=2.0[V]
Vil(max)=0.8[V]
Iih(max)=5[uA]
Iil(min)=-5[uA]
Vol(max)=0.5[V]
Ioh(min)=-24[mA]
Iol(max)=24[mA]
Mechanical interfaces
Sensors, Indoor MPU
Voltage Range
2.1 V – 3.6 V
Supply Current
30 mA
Effectiveness
I/O pins >15
speed 10 ns
Different Signal Directions
I/O/Bi-Dir
Operational Mode
Power/Alarm: On/Off
43
RF Transceiver
Product Standard Requirements
Block cost
Parts count
Unique parts count
PCB Area
Power consumption
Operating temperature range
Storage temperature range
Operating humidity
<$50 10%(tot.)
<60 25%(tot.)
<5 5 %(tot.)
50 cm2 15%(tot.)
<2W
5 0C to 55 0C
-20 0C to 65 0C
0-100% RH
Life Cycle
MTBF
R(t) %
R (%) Allocation
Disposal
50 years
90 %
10 %
Throw Away
44
EMC Standards Summary
US/FCC:
47 CFR 15 - Radio Frequency Devices
47 CFR 18 - Industrial Scientific and Medical Equipment
61000-3-3 EMC Part 3: Limits - Section 3: Limitation of voltage fluctuations and flicker
in low-voltage supplies <16A
61000-4-2 EMC Part 4: Test/measurement techniques - Section 2: ESD immunity tests
61000-4-3 EMC Part 4: Test/measurement techniques - Section 3: Radiated
radiofrequency immunity tests
61000-4-6 EMC Part 4: Test/measurement techniques - Section 6: Conducted
Radiofrequency immunity tests
CISPR: 11 Limits and methods of measurement for Industrial, Scientific and Medical Equipment
16 Specifications for Radio Interference Measuring Apparatus and Measurement
Methods
22 Limits and Methods of Measurements of Radio Interference of Information
Technology Equipment
45
RF Transceiver Block Diagram
CLK
digital
signals
digital
signals Alarm Status
Water Sensor
Motion Sensor
Power
Low Battery
Outside
Controller
Power Status
Low Battery
Alarm
Deactivated
From Inside
PushButton
Outdoor
Transceiver
Crystal
Indoor
Transceiver
¼ whip
antenna
¼ whip
antenna
(outdoor)
(indoor)
Crystal
46
RF Transceiver Electrical Interfaces
Power
Signals
Type
Direction
Voltage
Nominal
Power
Supply
DC Power
Input
3.3V
3.0V
3.6V
Digital
Signals
Type
Dir
Output
Str.
Input
Str.
Tech
Std
TX/Rx
from
Sensors
Indoor
PLD from
Tx/Rx
Digital
Input
Tri
Digital
Output
Tri
Voltage Range
Min
Max
Freq
Nominal
Freq Range
Min
Max
N/A
N/A
% V-Reg
Max
V-Ripple
Max
+/-9%
0.1V
Freq
Nom.
Logic
Voltage
Vih Min
CMOS
2.0Mhz
3V
2.0V
5uA
0.8V
CMOS
2.0Mhz
3V
N/A
N/A
N/A
Input Characteristics
Iih Max ViL Max
47
RF Transceiver Block Schmatic
(PLD)
48
RF Transceiver Block Schematic
Transceiver
49
RF Transceiver Detailed Design
Calculations
The fundamental link to deliver sufficient power from the transmitter to the
receiver.
Free space path loss can be calculated from the following formula
Lp(dB) = 32.4 + 20log(f[MHz]) + 20log(d[km]), from there we can substitute Lp
into the equation to calculate expected signal power at the receiver:
Lr = Ptx – Lp.
MAX7031 Transceiver specifications are:
Frequency is 433.92 MHz
Typical output power of 10 dBm into a 50 Ohm load, and typical sensitivity of 108 dBm
Transmitting distance is 300 ft (91.44 m or 0.9144 km). After substituting, we
find that the expected signal power at the receiver is -74.37 dBm which
satisfies the specifications of the receiver sensitivity (-108 dBm)
50
RF Transceiver Detailed Design
Calculations

Data Filter (Receiver)
Coefficients to calculate C3 and C4
using the coefficients of
Butterworth filter(Q=0.707) are:
a=1.414, b=1.000, if the corner
frequency fc of 5Khz is chosen and
using the following equations:
C3= b/[a*100k*p*fc]
=1.000/[1.414*100k*3.14*5kHz]
C3= 450[pF]
C4= a/[4*100k*p*fc]
= 1.414/[4*100k*3.14*5kHz]
C4= 225[pF]
standard capacitor values are
obtained C3=470[pF] and C4=220[pF]
Cf1 corresponds to C3
Cf2 corresponds to C4
51
RF Transceiver Detailed Design
Calculations contd.

Crystal Oscillator - Xtal (Transmitter)
Need to use a crystal with a load capacitance that is equal to the
capacitance of the MAX7031 crystal oscillator plus PC board
parasitics:
fp = [Cm/2]*{[[1/(Ccase+Cload)]-[1/(Ccase+Cspec)]]*106}, where
fp is the amount the crystal frequency is pulled in ppm
Cm is the motional capacitance of the crystal
Ccase is the case capacitance
Cspec is the specified load capacitance
Cload is the actual load capacitance
When the crystal is loaded as specified Cload = Cspec, the frequency
pulling fp equals 0.
52
RF Transceiver Component
Selection

PLD
Lattice Semiconductor Mach4A3-64/32-10VC PLD IC
64 Macrocells 32 I/Os in 44-pin PLCC
Low Cost, Easily Programmable
Clock
Multiphase Spread-spectrum
Ideally suited as a clock generator for switched mode power supplies,
sillicon oscillator generates four multiphase, spread-spectrum, squarewave outputs, frequencies between 2MHz-31.25kHz can be output.
Transceiver Module
Maxim MAX7031, low-cost, crystal based, programmable fractional-N
transceiver is designed to transmit and receive FSK data in the 300 Mhz
to 450 MHz freq. range.
53
RF Transceiver
States Description of PLD

By defining states of the system we
are representing an abstract
concept to identify a system in a
particular condition (coding in
VHDL). There are only two
postulated states in the RF
Transceiver Block, and those are
when the Alarm is ON and when the
Alarm is OFF. The rest of the
Sensors Activated
conditions will decide when does
the state of the system change. By
using state diagram we can
represent the following design
methodology:
Alarm On
Alarm ON
Alarm Off
Alarm Deactivated
Alarm OFF
Sensors Off
54
RF Transceiver Worst Case
Calculations contd.

Crystal Oscillator - Xtal (Transmitter)
fp = [Cm/2]*{[[1/(Ccase+Cload)]-[1/(Ccase+Cspec)]]*106},
In the previous calculations we assumed that the values for the capacitance
of the case and the capacitance of the actual load capacitance were 0. If
we take into consideration that the Cload and the Cspec are not equal, we
can calculate the actual amount of the crystal when frequency is pulled
expressed in ppm. Cm = 4.5 pF, Ccase = 3 pF, Cload = 4.5 pF, and Cspec
= 10 pF, we obtain pf = 0.126 pF *106
55
RF Transceiver Worst Case
Calculations

Data Filter (Receiver)

In the previous calculations it was assumed that the resistors used for the
Sallen-Key filter are 100k, considering the tolerances of the resistors
chosen, and by using the new values in the equation:

C3= b/[a*105k*p*fc], and similarly for the second capacitor value
C4= a/[4*105k*p*fc] (the cut-off frequency is still assumed to be at 5kHz).


New values for the capacitor C3 and C4 are 429 pF and 214.4 pF
respectively. The new capacitor values can be substituted with the standard
values of 470 pF and 220 pF, therefore the new capacitor values will not
affect the outcome of a filter.
56
RF Transceiver
Parts Count Reliability
Component
Description
M4A364/32-10JC PLD
Clock
Crystal
Resistors
Capacitors
Inductors
MAX7031
Total
Qty
1
1
1
6
48
6
2
65
Base l
FITs
31
13.3
20
2.6
1.2
5
13.3
M ax R ated
T emp C o
( T r)
150
90
120
125
125
125
125
M a x O pe r
T emp C o
(T a)
70
70
70
65
85
60
60
M ax R ated
V o lt a ge
( V r)
4.5
15
15
15
100
25
15
M a x O pe r
V o lt a ge
(Va)
pT
pV
pE
3.6 1.999 7.389 2.500
3.6 32.715 0.186 2.500
3.6 3.655 0.186 2.500
5 2.555 0.223 2.500
5 7.973 0.143 2.500
3.6 2.117 0.160 2.500
3.6 2.117 0.186 2.500
pQ
1.250
1.250
1.250
1.250
1.250
1.250
1.250
l
1430.825
252.3546
42.39824
27.78694
204.7186
31.78095
32.65983
2022.524
T o tal

MTBF(years) = 56.403
 R(t) = e^-(1/56.403) = 98.24 %
 The most unreliable part is the CPLD chip. Replace the CPLD chip with the
advance technology IC.
 2022.5237/25838 = 0.078 => 7.8% (requirement allocation satisfied)
57
RF Transceiver Product
Sustainability
μ
Primary Attribute
Secondary Attribute
Secondary Attribute
Secondary Attribute
Primary Attribute
Secondary Attribute
Secondary Attribute
Primary Attribute
Primary Attribute
Primary Attribute

Device Type
Technology
Package
Process Voltage
Device Type
Package
Voltage
Device Type
Device Type
Device Type
Mach4A3 CPLD
CMOS
TQFP
3.0V
2MHz Clck
SOP
3.0V
Thick Film Res.
Ceramic Cap.
MAX7031 Tx/Rx
2010
2010
1998.5
1998.5
2001.5
1995
1998.5
1985
1980
2010
σ
6
12.5
4.2
4.5
7.8
6.5
4.5
10
14
6
μ + 2.5σ - p μ + 3.5σ - p
19
35.25
3
3.75
15
5.25
3.75
4
9
19
25
47.75
7.2
8.25
22.8
11.75
8.25
14
23
25
Programmable Logic Device will
become obsolete in the period of
7.2 years (within the product
limits)
58
Indoor Power Supply
Jay Bombien
59
Poolside Alarm
Block Assignment
Outdoor
Indoor
Power Supply
Power Supply
Air / Water
Sensor
Wave
Sensor
Jay
Alarm
RF
Transceiver
Indoor MPU and Display
Motion
Sensor
Data Lines
Alarm
Power Lines
60
Indoor Power Supply
Block Description and Purpose:
 Electrical
device that will transform the
standard wall electricity (AC) to lower
voltages (DC).
 The DC voltage will power the indoor
control panel, RF transceiver, and the
indoor alarm.
61
Indoor Power Supply
Performance Requirements
Electrical Interfaces: Dual Source Supply
Source 1 – AC Supply



Input Voltage:
Input Frequency:
Input Current max:
Nominal: 120 VAC (Range:108 - 138 VAC)
Nominal: 60 Hz (Range: 57 – 63 Hz)
175 mA (175mA Fuse)
Source 2 – Battery Backup Supply





Input Voltage:
V-Ripple max. :
Input Current max:
Battery Type:
Battery Capacity:
Nominal: 9 VDC (Range: 8.7 – 9.3 VDC)
100 mV
1.2 A (1.2A Fuse)
Lithium
1200 mAh
Output



Output Voltage:
V-Ripple max. :
Output Current max. :
Nominal: 3.3 VDC (Range: 3.0 – 3.6 VDC)
100 mV
1A
62
Indoor Power Supply
Performance Requirements
Operational Modes:
Input/Output Connections:
 Input:
On/Off
Type B Plug (NEMA 5-15)
9 Volt Battery Connector
2.1x5.5 mm male connector
Output:
Safety Standard:
 IEC 61558-1: Safety of power transformers, power supply units and
similar devices EMC Standard:
EMC Standard:
 EMC 61000-3-3: Limitation of voltage fluctuations and flicker in lowvoltage supplies <16A

63
Indoor Power Supply
Standard Requirements
Mechanical:
 Block cost
 Cost percentage allocation
 Parts count
 Unique parts count
 Parts percentage allocation
 PCB Area
 PCB percentage allocation
Environmental:
 Operating temperature range
 Operating humidity
 Operating Altitude Range
 Storage temperature range
 Storage Ambient Humidity Range
Life Cycle:
 Reliability MTBF
 Disposal
<$35
10%
<30
<18
11.25%
40 cm2
15.29%
5 to 55 C
0 to 100%
-1000m to 20000m
-20C to 65C
0%RH to 100%RH
80 years
Throw away
64
Indoor Power Supply
Power Lines
120 VAC to 12.6 VDC
Converter Block
DC Regulator
Circuit
3.3 Volts DC
12.6 Volts DC
Source Supervisory
Switch
3.3 Volts DC
9 Volts DC
Alarm
9V Battery
DC Regulator
Circuit
3.3 Volts DC
Indoor MPU
and Display
65
Indoor Power Supply
Signal Input/Output Summary
PowerSig
Type
Dir
Voltage
V Range
Freq Freq Range % V-Reg V-Ripple Current
Nominal Min Max Nominal Min Max
Max
Max
Max
AC Input
AC Power Input
120
108 138
60 Hz
57
63 -10%/+15%
NA
175mA
9 Volts DC DC Power Input
9V
8.7 V 9.3 V
DC
0
N/A
+/- 3.33%
100 mV
1A
3.3 Volts DC DC Power Output
3.3V
3.0V 3.6V
DC
0
N/A
+/- 9%
100 mV
1A
66
Indoor Power Supply
67
Indoor Power Supply
Cap and Inductor Calculations
Input filter capacitor :
Choose VRIPPLE  100 mV
ΔI L 
VIN – VOUT  * VOUT
VIN *f SW * L
ΔI L ( 12V)  299mA, ΔAL( 9V)  814mA
ΔV ESR  90% * VRIPPLE  0.09
ΔVQ  10% * VRIPPLE  0.01
ΔV ESR
 ESRIN( 12V)  78m, ESRIN( 9V)  64m
ΔI L
I OUT 
2
I
* D 1-D 
 OUT
 C IN( 12V)  160 uF, CIN( 9V)  186 uF
ΔVQ * f SW
ESRIN 
C IN
LMIN 
VIN – VO  * D
0.3*I OUTMAX*f SW 
UT
f SW  125 kHz
D
VOUT
 D12V  0.275, D9V  0.367
VIN
With I OUTMAX  1A  L12V  64uH , L9V  56uH
Output filter capacitor
VOESR  80% * VRIPPLE  0.08
VOQ  20% * VRIPPLE  0.02
ESROUT 
VOESR

I L
ESROUT( 12V)  0.268 mW, ESROUT ( 9V )  0.098 mW
COUT 
I L
 COUT( 12V)  54uF, COUT( 9V)  148uF
2.2* VOQ*f SW
68
Indoor Power Supply
Component Selection

All wires are 22AWG and can easily handle circuitry current

Diode bridge is rated at 4A which far exceeds the circuitry current

Voltage regulators

Wide input voltage range

Max output current of 1A far exceeds product demand
Supervisory IC

Wide voltage range

Fast source switching

Digital output can disable unused voltage regulator

69
Indoor Power Supply
Digital Block DFM – DC Drive Analysis Table
Digital
Device
MAX6363 –
BATT ON
Signal
Output
Type
STD
Input
Type
Tech
Type
CMOS
DC Drive Device Parameters
Vil
max
Vih
min
Iil (-)
Max
Iih
max
Vol
max
Voh
min
Iol
max
Ioh (-)
Min
Vhyst
N/A
N/A
N/A
N/A
0.4V
2.4V
5mA
-3.2mA
N/A
Checked
70
Indoor Power Supply
Passive Discrete Specifications
Nominal
Tolerance Derated Maximum Maximum Maximu
Value or
Around
Power
Working Constant m Surge
Max
Nominal Capacity Voltage
Current
Current
Value
Q Factor
Composition
or
Package
Dielectric or Form Frequency
Variation
Component
Resistor
Resistor
Resistor
Fixed Capacitor
Fixed Capacitor
Fixed Capacitor
Fixed Capacitor
Fixed Capacitor
Fixed Inductor
10K
1M
330K
0.1uF
56uF
148uF
330uF
186uF
100uH
1%
1%
1%
20%
20%
20%
20%
20%
5%
0.125W
0.125W
0.125W
0.287W
200V
200V
200V
50V
10V
16V
25V
16V
120mA
120mA
Film
Film
Film
Aluminum
Polymer Aluminum
Polymer Aluminum
Aluminum
Polymer Aluminum
Ferrite Core
1206
1206
1206
UWP
Radial
Radial
Radial
Radial
1210
30
71
Indoor Power Supply
Worst-Case Calculations
AC Input Voltage :
VPP( MIN )  108 2  152.7V
VPP( MAX )  138 2  195.16V
turns ratio  a  9.5238
108 2
 16.04V
a
138 2
VSEC( MAX ) 
 20.5V
a
VIN(MIN)  7.5V
VSEC( MIN ) 
VIN(MAX)  76V 

R 
VUVLO(TH)  1  1  * 1.85V.
R2 

VUVLO(TH )( MIN )  6.5V 
Set R1  1M  R2  398K  R2  330 K
With R1  1M, R2  330 K  VUVLO(TH)  7.46V
R1(W C)  1M  1%  990 K
R2 (W C)  330 K  1%  333.3K 
VUVLO(TH)(W C)  7.35V VUVLO(TH)(W C)  VUVLO(TH )( MIN )
VSEC( MIN )  VIN(MIN)
VSEC( MAX )  VIN(MAX)
72
Indoor Power Supply
Worst-Case Calculations
Battery life :
Battery capacity    1200mAh
I MAX ( MPU )  150mA
I MAX ( ALARM )  380mA 
With no alarm  t MAX  8hours
With I OUTMAX  1A  L12V  64uH, L9V  56uH
Worstcase :1 alarm sequence 
alarm sequence  0.0833hours 
380mA  150mA* 0.0833hours  44.167mAh
Choose : L12V  L9V  100uH
t MAX 
  44.167mAh
t MAX (W C)
150mA
 7.788hours
LW ORSTCASE  L12V  5%  67uH
100uH  5%  95uH  LW ORSTCASE
 0.0833hours 
73
Indoor Power Supply
Bill of Materials
QTY
1
1
2
1
2
1
1
3
2
4
1
1
2
1
2
1
26
Name
Supervisory Circuit
Bridge Rectifier
DC-DC converter
Transformer
Schottky Diode
1M Resistor 1%, 0.125W
330k Resistor 1%, 0.125W
10k Resistor 1%, 0.125W
100uH Inductor
0.1uF (50V)
56uF (10V)
148uF (16V)
330uF (25v)
186uF (16V)
N-Channel MOSFET
Lithium Battery
Mfg 1
Maxim IC
Rectron
Maxim IC
Tamura
Fairchild
XICON
XICON
XICON
API DELEVAN
Nichicon
United Chemi-Con
United Chemi-Con
United Chemi-Con
United Chemi-Con
ALD
Poweriser
TH/S
Mfg 1 Part #
M
Package
MAX6363LUT31+T
SM SOT23-6
RS401L
TH
MAX5035AUPA
SM
SOP - 8
PL20-12-130B
TH
MBRS320
SM
290-1.0M
SM
1206
290-330k
SM
1206
290-10k
SM
1206
1210-104J
SM
UWP1H0R1MCL1GB SM
Radial
PXA10VC56RMF55TP SM
Radial
PXA16VC151MJ80TP SM
Radial
MKA25VC331MJ10TP SM
Radial
PXA16VC181MJ80TP SM
Radial
ALD110808ASCL
SM
SOP-16
RF22-6LK6-9V
NA
Placement
Auto/Man
Auto
Auto
Auto
Man
Auto
Auto
Auto
Auto
Auto
Auto
Auto
Auto
Auto
Auto
Auto
Man
PCB
Area
mm 2
2
40
78
1548
5
5
5
5
10
36
17
17
36
17
2
100
1923
Function or
Description
Switches power source
rectifies AC to DC
DC/DC converter
Transforms AC
Attributes
Tol%
50V, 4.0 Amp
Ioutmax= 1A, Vinmax=76V
120V/12.6V@ 1.6 A, 20VA
Vf=0.45, 1.5A
1
1
1
5
20
20
20
20
20
Turn On/Off Battery Reg. Vth=0.3V
9V, 1200 mAh
Totals
$Cost/
One
$1.58
$0.50
$1.90
$11.66
$0.42
$0.01
$0.01
$0.01
$0.38
$0.19
$0.56
$1.01
$0.42
$1.01
$0.60
$5.49
74
$Cost
Total
$1.58
$0.50
$3.80
$11.66
$0.84
$0.01
$0.01
$0.02
$0.76
$0.76
$0.56
$1.01
$0.84
$1.01
$1.20
5.49
$30.05
Indoor Power Supply
Manufacturing Processes & Testing
Manufacturing:


Hand solder input/output chords to circuit board
Hand solder transformer to circuit board
Testing:




Verify unit is supplying 3.3 VDC
After powering unit on, remove primary source and verify battery
backup system is operational and supplying 3.3 VDC
Hi Pot Leakage
X-ray solder joints of SMD
75
Indoor Power Supply
Block Parts Count Reliability
Max
Max
Base l Rated
Oper
Component Description Qty
FITs
Temp
Temp
Co (Tr) Co (Ta)
Lithium Battery
Voltage Regulator - MAX5035
Supervisory Circuit - MAX6363
Transformer - PL20-12-130B
Diode Bridge - RS401L
Shottkey Diode - MBRS320
Mosfet - ALD110808ASCL
Metal Film Resistor
Metal Film Resistor
Electrolytic Cap
Electrolytic Cap
Electrolytic Cap
Electrolytic Cap
Inductor
Total




1
2
1
1
1
2
2
2
3
4
2
2
1
2
22
13.3
13.3
5
2.4
2.4
4
0.2
0.2
120
120
120
120
5
125
85
85
125
125
125
125
125
125
125
125
125
125
125
55
55
55
55
55
55
55
55
55
55
55
55
55
55
Max
Rated
Volt.
(Vr)
Max
Oper
Volt.
(Va)
pT
pV
pE
pQ
Total l
30
80
6
250
250
30
30
200
200
50
25
16
10
25
5
3.6
3.6
132
132
3.6
3.6
12.6
9
3.6
13
5
3.6
3.6
1.794
5.855
5.855
1.794
1.794
1.794
1.794
1.794
1.794
1.794
1.794
1.794
1.794
1.794
0.165
0.142
0.607
0.414
0.414
0.155
0.155
0.145
0.142
0.146
0.400
0.213
0.238
0.160
1.000
1.000
1.000
1.000
1.000
1.000
1.000
3.000
3.000
1.000
1.000
1.000
1.000
1.000
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.000
1.000
1.250
1.250
1.250
1.250
1.250
8.155
27.617
59.036
4.644
2.229
1.670
2.783
0.312
0.458
157.425
215.196
114.751
63.916
3.591
26
Total FITs: 661.78 Total MTBF (years): 172.38
R = 99.995%
The required reliability (MTBF) goal is 80 years and reliability after 1 warranty is
99.91%. This block exceed those requirements.
Capacitors with 25V max rated voltage are the most unreliable.
661.78
76
Indoor Power Supply
Obsolescence Analysis
Component
Comparator
Voltage Regulator
Metal Film resistor
Inductor
Ceramic Capacitor
Battery
transformer
SOP Packages
3.3V Logic
μ
2003
2004
1990
1985
1980
1997
1999
1995
1998.5
σ
11.1
6.5
12
10
14
6
6
6.5
4.5
2.5σ
27.75
16.25
30
25
35
15
15
16.25
11.25
3.5σ
38.85
22.75
42
35
49
21
21
22.75
15.75
μ + 2.5σ
μ + 3.5σ
2030.75
2020.25
2020
2010
2015
2012
2014
2011.25
2009.75
2041.85
2026.75
2032
2020
2029
2018
2020
2017.75
2014.25
Phase out in (yrs)
24.75
14.25
14
4
9
6
8
5.25
3.75
Obsolete in (yrs)
35.85
20.75
26
14
23
12
14
11.75
8.25
The product life is 4 years. Within this time, the 3.3V logic and the
inductor components of the power supply will be in the phase out section
of the Sustainability Life Cycle Curve.
77
Motion Sensor
Louis Chatfield
78
Poolside Alarm
Block Assignment
Outdoor
Indoor
Power Supply
Power Supply
Air / Water
Sensor
Wave
Sensor
Louis
Alarm
RF
Transceiver
Indoor MPU and Display
Motion
Sensor
Data Lines
Alarm
Power Lines
79
Functionality Motion Sensor
 This
block utilizes a sensor which is
tripped by a person’s movement near a
pool.
 Once the Outdoor MPU receives this
signal, it triggers the indoor and outdoor
alarms.
80
Motion Sensor
Performance Requirements


Power Inputs

Min Input Voltage = 7.2 VDC

Max Input Voltage = 9.9 VDC

Max Input Current = 17 mA
Coverage Wide Angle

Required Pool Coverage: 24 ft x 24 ft (8m x 8m)

Actual Beam Coverage: 40 ft x 40 ft (12m x 12m)
81
Motion Sensor
Performance Requirements

Operational Modes

On

No false alarm at 20 V/m from 100 Mhz to 1 Ghz
• Temperature Compensation

Effectiveness

Alarm Period ~ 2.5 seconds

Sensitivity ~ 3.6 F (2C) at 2 ft/sec (0.6m/sec)
82
Motion Sensor
Performance Requirements

Digital Signal Interfaces (Indoor MPU)

Vih (min) = 2.0 v

Vil (max) = 0.8 v

Voh (min) = 2.4 v

Iih (max) = 5 uA

Iil (max) = -5 uA

Ioh (max) = -24 mA

VoL (max) = 0.5 v

IoL (max) = 24 mA

Mechanical Interfaces

PCB DC Terminal Blocks
83
Motion Sensor
Standard Requirements
Mechanical

Block cost

% Cost Allocation










<$35
15%
Parts count
% Parts Allocation
Unique parts count
% Unique Cost Allocation
PCB Area
18
9%
1
<1%
60 cm^2
% PCB Allocation
Weight
% Weight Allocation
Volume
% Volume Allocation
14%
~71 g
<1%
~ 260 cm^3
5%
84
Motion Sensor
Standard Requirements
Environment:

Operating temperature range

Storage temperature range

Operating humidity
5 to 55 C
-20C to 65C
0 to 100%
Life Cycle

Reliability MTBF

Reliability

Disposal
81.48 years
99.99%
Throw away
85
Motion Sensor
Standard Requirements

Safety Standards:




UL 464 – Audible Signal Appliances (sounding devices)
UL 486A-486B – Wire Connectors (aluminum or copper conductors)
UL 796 – Printed Wiring Boards
UL 2017 – General Purpose Signaling Devices and Systems
• Signaling devices for emergency i.e. motion sensor


IEC 61000-4-2 – Electro Static Discharge
IEC 61000-4-2 Part 4 – Test/measurement Techniques – Section 2:
ESD Immunity Tests
86
Motion Sensor Block Diagram
OUTDOOR
POWER
SUPPLY
PASSIVE IR
SENSOR
POWER
9 VDC
9VDC
POWER
OUTDOOR
MPU
SIGNAL
RF
TRANSCEIVER
Pull Up
Resistor
87
Power – Motion Sensor
Signal Input/Output Summary
Power Signals
Power Supply
Type
DC Power
Direction
Input
Voltage
Voltage Range
Nominal
Min
Max
9V
7.2V
9.9V
Freq
Nominal
Freq Range
% V-Reg
V-Ripple
Current
Min
Max
Max
Max
Max
N/A
N/A
.05
0.1V
17mA
88
Digital – Motion Sensor
Signal Input/Output Summary
Digital
Signals
Motion
Sensor
Type
Digital
Dir
Output
Output
Input
Str.
Str.
Std
Std
Tech
CMOS
Freq
Logic
Input Characteristics
Output Characteristics
Nom.
Voltage
Vih
Min
Iih
Max
ViL
Max
IiL
Max
Voh
Min
Ioh Max
VoL
Max
IoL Max
2.0Mhz
3V
2.0V
5uA
0.8V
-5uA
2.4V
-3.2mA
0.5V
24.0mA
89
Motion Sensor Schematic
90
Motion Sensor
Circuit Description

The alarm outputs a digital signal when triggered
 A 10 k-ohm pull resistor can be wired to the 3
volt power supply to make the digital signal
from the motion sensor equal to 3 volts
 This new voltage can be input into the Indoor
MPU (TTL/CMOS Logic)
91
Motion Sensor
Circuit Description

Pertinent Equations for determining Rpullup
Vss  Vih
 R max
Iih
Vss  Vih
 R min
Iol
3VDC  2VDC
 R max  200kohm
5uA
3VDC  2VDC
 R min  100ohm
10mA
92
Motion Sensor
Noise Analysis

E = ( 4 k T R Δf )½

(V RMS)
E = the Root-Mean-Square or RMS voltage level
k = Boltzmans constant (1.38∙10-23)
T = temperature in Kelvin (Room temp = 27 °C = 300 K)
R = resistance
Δf = Circuit bandwidth in Hz
E  (4 *1.38 *10 23 * 300 *10k * 20khz)1 / 2  1.82uVRMS

Noise Power

P = E2 = 4 k T R Δf
(V2)
P  1.82 2  3.312 *10 12V 2
93
Motion Sensor
Noise Analysis

Power Spectral Density

S=4kTR
S  4 *1.38 *1023 * 300K *10000  1.656 *1016

V2
Hz
Voltage Spectral Density

N = S ½ = E / Δf ½ = ( 4 k T R )½
(V / Hz½)
N  (1.656 *10 16 )1 / 2  13 *10 9 V / Hz 1 / 2
94
Motion Sensor
Component Selection
 Passive


Compatible with 9VDC outdoor power supply
voltage
Exceeds pool coverage performance
requirements (24 ft x 24 ft)
 10


IR Motion Sensor
kohm ¼ Watt Pull Up Resistor
Well within range of Rmin and Rmax
Readily available and inexpensive
95
Motion Sensor
Digital Block DFM - DC Drive
Analysis Table
DIG
Device
Outdoor
MPU
Output
Type
STD
Input
Type
STD
Tech
Type
CMOS
DC Drive Device Parameters
Vil
Max
Vih
Min
Iil (-)
Max
Iih
Max
Vol
Max
Voh
Min
Iol
Max
Ioh(-)
Min
Vhyst
Check
ed
0.8V
2.0V
5uA
5uA
0.5V
2.4V
24mA
24mA
N/A
X
96
Motion Sensor
Production BOM
Generic
QTY Name
1
1
1
2
1
4
4
4
16
Mfg 1
Mfg Part #
Place
ment
TH/
Auto/M Area
SMT Package an
mm 2 PCB Function or
Attributes
Description
Tol% $Cost/One
Passive IR Motion
Optex
SensorRX-40PI
SMT
10 kohm Resistor
Panasonic ERJ=8ENF1001V
SMT
0.1 uF Capacitor
Panasonic ECQ-V1H103JLTH
PCB Terminal Weidmuller1774460000
Connector
TH
Bracket U-shaped
Graybar 2598745
N/A
3/16 inch mounting
Graybar
screws
3697165
N/A
1/4 inch flat washers
Graybar 3697117
N/A
3/16 inch lock Graybar
washers 3697126
N/A
Passive IR Auto
5000 (CR) Auto
N/A
Auto
N/A
Auto
N/A
Man
NA
Man
N/A
Man
N/A
Man
6014
0.001
23.36
112.5
N/A
N/A
N/A
N/A
6149.861
$Cost Total
Passive IR Nominal
sensor 9 VDC
N/A
$26.50
10 kohm 1/4
1%
WTolerance, Chip
1
Resistor
$0.01
0.1 uF Cap, 5%
25 VDC
Tolerance 5
$0.10
PCB Terminal
Connections
ConnectorN/A
for Input/Output
$0.39
Mount IR Sensor
Adj Bracket N/A
$2.29
Mount sensor
stainless
to bracket
steel
N/A
$0.05
Mount sensor
stainless
to bracket
steel
N/A
$0.02
Mount sensor
stainless
to bracket
steel
N/A
$0.02
$26.50
$0.02
$0.10
$0.78
$2.29
$0.20
$0.08
$0.08
$30.05
97
Motion Sensor
Manufacturing and Testing Processes
 Assembly

Procure components
 Test



Place in test apparatus and apply a supply
voltage of 9VDC
Verify that motion sensor works via LED and
triggering the sensor by placing human body
temperature object in its path
Verify that sensor is exerting the proper digital
signal
98
Motion Sensor
Parts Count Reliability Estimation
Compo
nent
Descrip
tion
Base l
FITs
Qty
Passive IR Motion Sensor
1
10 kohm Resistor 1
0.1 uF Capacitor
1
PCB Terminal Connector
2
Total
M ax R ated
T emp C o
( T r)
12
2.6
1.2
105
125
125
125
125
M a x O pe r
T emp C o
(T a)
55
55
55
55
M ax R ated
V o lt a ge
( V r)
18
400
400
50
M a x O pe r
V o lt a ge
(Va)
9.9
9.9
9.9
9.9
pT
pV
1.794
1.794
1.794
1.794
0.459
0.139
0.139
0.173
pE
pQ
3.000
3.000
3.000
3.000
l
37.0889
2.428026
1.120627
244.7358
T o tal
1.250
1.250
1.250
1.250
5
MTBF 
1*109
 399.8 years
285.37 * 8766
285.37
R(t )  e (1 / 399.8)  0.9975  99.75%
The most dominant part that impacts unreliability is the PCB Terminal
Blocks, however, this will not affect overall product reliability since the
product life is 4 years. Actual FITS is lower (285.37) than allocated
FITS (1400) so Reliability through warranty period is achieved.
99
Motion Sensor
Obsolescence Analysis
Primary Secondary Package
Manufacturer Attribute Attribute
Style
Panasonic
1 kohm Resistor
N/A
SMD
Panasonic
0.1 uF Capacitor
N/A
SMD
Weidmuller PCB Terminal
SMD
Connector
SOP
Panasonic
12 uF Capacitor
SMD
SMD
Dallas
Mono 2W Audio
SMD Amp QSOP
Dallas
Op-Amp SMD
SOT-23
Alnico
6W Nom 10W
N/AMax Spkr
N/A
u
1990
1985
2001.5
1985
2004.5
2004.5
2001
Sigma
8.5
10
7.8
10
8.3
8.3
6
Phase Out Obsolete
(years)
(years)
5.25
13.75
4
14
15
22.8
4
14
19.25
27.55
19.25
27.55
10
16
The capacitors will enter their phase out time frame in 2010
The resistor will enter its phase out time frame in 2011
100
Passive Component Specifications Motion Sensor
Nominal
Adjustment
Value or
Range,
Max Value
%/Turn
Tolerance
Around
Nominal
Derated
Pow er
Capacity
Maximum
Working
Voltage
0.50%
5%
.0125w
N/A
200V
N/A
Maximum
Constant
Current
Maximum
Surge
Current
Composition Q Factor or
Dielectric or Frequency
Form
Variation
Package
Component
10 kohm resistor
0.1 uF capacitor
200V
250V
N/A
N/A
.00125A .000625A RUO2
N/A
N/A
Dielectric
N/A
N/A
SMD
SMD
101
Indoor MPU and Display
Darren Pallesen
102
Poolside Alarm
Block Assignment
Outdoor
Indoor
Power Supply
Power Supply
Air / Water
Sensor
Wave
Sensor
Darren
Alarm
RF
Transceiver
Indoor MPU and Display
Motion
Sensor
Data Lines
Alarm
Power Lines
103
Indoor MPU and Display
Block Description





Receives signals from the transceiver (alarm
activated, alarm deactivated from outside,
outdoor unit power off, and low battery).
Transfers signals to alarm (activate/deactivate).
Sends signals to the display for user visibility
(power on, low battery, outdoor unit off, alarm
activated).
Pushbutton switch allows user to deactivate both
alarms from inside.
Sends signal to transceiver when alarm is
deactivated from inside.
104
Indoor MPU and Display
Performance Requirements
Operation Modes:

Power On/Off

Alarm On/Off
Effectiveness:

Speed: 5nsec, 2Mhz Clock

Memory: >24 macrocells

I/O Pins: >12 pins

Bounce Time for Switch Input: 20msec

Alarm Duration: 5 minutes
Digital Signal Interfaces:

Digital Signal Directions: Input & Output

Input Signals:

Vih min input high voltage: 2.0V

Iih max input high current: 5uA

Vil max input low voltage: 0.8V

Iil max input low current: -5uA

Output Signals:

Voh min output high voltage: 2.4V

Ioh max output high current: -25mA

Vol max output low voltage: 0.5V

Iol max output low current: 25mA
105
Indoor MPU and Display
Performance Requirements Cont.
Power Input Type and Attributes:

Power Consumption: 1 W

Power Signal: DC Power

Input Max Current: 1A

Input Nominal Voltage: 3.3 VDC
Range: 3.0 VDC – 3.3 VDC
Analog Output to Alarm:

Max Voltage Amplitude: 3.0VPP

Frequency Range: 2kHz - 3kHz @ 5Hz Sweeping

Impedance: 8 ohm
Mechanical Interfaces:

2.1mm Power Jack

LED Display

Pushbutton Switch
User Interface:

Display Parameters: Power On, Outdoor Unit Power Off, Low Battery, Alarm Activated.

Display Indicator Color and Type: Red LEDs, Green LEDs.

Indicator Viewing Environment: Indoor Lighting, Complete Darkness.

LED Visibility Distance: 10m
EMC Standard:

61000-4-2 EMC Part 4: Test/measurement techniques - Section 2: ESD immunity tests
106
Indoor MPU and Display
Standard Requirements
Mechanical:

Block Cost

Block Cost % Allocation

Parts Count

Parts Count % Allocation

Unique Parts Count

PCB Area

PCB Area
< $25
10% of Total
< 50
10% of Total
<5
40 cm2
10% of Total
Environmental:

Operating temperature range

Storage temperature range

Operating humidity
5 to 55 C
-20C to 65C
0 to 100%
Life Cycle:

MTBF(years)

R(t)

R(t) % Allocation

Disposal
50 years
95%
10% of Total
Throw away
107
Indoor MPU and Display
Block Detail
Alarm Turn-Off
De-bounce
User
Power Supply
Power On / Off
Control
3.3V
Alarm Activated
Alarm Turn-Off
RF
Transceiver
Alarm On / Off
Low Battery
Alarm
MPU
Outdoor Unit Power Off
Alarm Turn-Off
Outdoor
Power On
Unit
Low
Alarm
Battery
Activated
Off
Digital Signals
Analog Signals
Display (LED Indicators)
108
Indoor MPU and Display
Electrical Interfaces
Power Signals
Power Supply
Analog Signals
MPU to Alarm
Digital
Signals
Type
Type
Direction
DC Power
Type
Analog
Dir
Input
Direction
Voltage
Nominal
Min
Max
3.3V
3.0V
3.6V
Coupling
Output
Voltage Range
Input
Str.
Str.
Std
Tech
Nominal
Voltage Max
Freq Range
% V-Reg
V-Ripple
Current
Min
Max
Max
Max
Max
N/A
N/A
+/-9%
0.1V
260mA
Impedance
Freq Range
Leakage
Amplitude
Min
Max
Min
Max
Max
3.0V
800 ohm
1.2Kohm
200Hz
5Khz
N/A
Capacitive
Output
Freq
Freq
Logic
Input Characteristics
Output Characteristics
Nom.
Voltage
Vih
Min
Iih
Max
ViL
Max
IiL
Max
Voh
Min
Ioh Max
VoL
Max
IoL Max
CMOS
2.0Mhz
3V
2.0V
5uA
0.8V
-5uA
2.4V
-3.2mA
0.5V
24.0mA
Signals
from RF
(4)
Digital
Input
Tri
MPU to
RF
Digital
Output
Tri
CMOS
2.0Mhz
3V
N/A
N/A
N/A
N/A
2.4V
-3.2mA
0.5V
24.0mA
MPU to
Display
Digital
Output
Tri
CMOS
2.0Mhz
3V
N/A
N/A
N/A
N/A
2.4V
-3.2mA
0.5V
24.0mA
MPU to
Alarm
Digital
Output
Tri
CMOS
2.0Mhz
3V
N/A
N/A
N/A
N/A
2.4V
-3.2mA
0.5V
24.0mA
User
Control
Digital
Input
CMOS
2.0Mhz
3V
N/A
N/A
N/A
N/A
2.4V
-3.2mA
0.8V
24.0mA
Std
109
Indoor MPU and Display
Block Schematic
110
Indoor MPU and Display
Detailed Design Calculations
-
Calculation of current limiting resistances
for LEDs:
R = (VCC – VL) / I
Where:
VCC
= Supply Voltage
VL
= LED Voltage
I
= LED Current
I < Max Rated / 2
= 25mA / 2 = 12.5mA
Use 10mA
R = (3.3V – 2.1V) / 10 mA
R = 120 ohms
111
Indoor MPU and Display
Detailed Design Calculations
-
De-bounce circuit design and calculations
• When a switch is pressed, it makes and
breaks contacts many times before settling
in its final position.
• Switch open: Capacitor charges
• Switch closed: Capacitor discharges
through R2.
• The values for RC must be chosen such
that the RC time constant is greater than
the bounce time.
112
Indoor MPU and Display
Detailed Design Calculations
-
De-bounce circuit design and calculations
-
The hysteresis gate has a threshold voltage of 0.55
times VCC.
• TB = 20msec
TB
RC  
VTh
ln
VCC
• RC
• VTH = 0.55VCC
• VCC = 3.3V
• RC = 33.45 x 10-3
= 100k x 0.47uF
• C = 0.47uF
= 47msec > 20msec
• R = 71.18kohms
* Will use the standard value of 100kohms for R to satisfy
worst case conditions
113
Indoor MPU and Display
Component Selection
-
LED Selection (Red and Green)
-
-
1/4 W Resistors
-
-
-
-
Chose Lattice Semiconductor’s Mach4A3-64/32 PLD chip.
Easily programmed as a state machine using VHDL.
More than enough memory and I/O pins, low cost.
Clock Selection
-
-
Capacitors for ICs to counteract momentary voltage drops. 0.1uF typical.
5% tolerance.
CPLD Selection
-
-
5% tolerance
¼ W resistors used because it has a high enough max current rating and low cost.
Ceramic Capacitors
-
-
Single colored for low cost.
Current rating of 25-30mA (Chose 10mA operating current).
Chose Dallas Semiconductor’s DS1094L EconOscillator.
Output frequencies programmable from 2Mhz to 31.25kHz.
No external timing components required.
Speed of 2Mhz will be used for quick resetting of the signals.
22 AWG Wire
-
Perfectly capable of supplying the maximum operating current of 1A.
Standard size for low power devices.
114
Indoor MPU and Display
Programming Design Description
-
LED Driver (LED’s are active low)
-
-
Output Signal to RF
-
-
PowerLED <= '0' when Power = '1' else '1' when Power = '0';
LowBatteryLED <= '0' when LowBattery = '1' else '1' when LowBattery = '0';
OutdoorOffLED <= OutdoorOff;
AlarmOnLED <= ‘0’ when Siren = ‘1’ else ‘1’ when Siren = ‘0’;
AlarmOffRF <= '1' when AlarmOff = '0' else '1' when AlarmOff2 = '1' else '0';
State diagram of Siren Mode
AlarmOff2 = ‘0’
Siren
Off
-
AlarmOff = ‘0’
AlarmOn = ‘1’
AlarmOn = ‘0’
Siren
AlarmOff + AlarmOff2 + CLR
Programming performed using VHDL
CLR = ‘0’
On
115
Indoor MPU and Display
Worst Case DFM Analysis
-
Worst case calculations for current limiting resistors of
the LED display.
-
-
-
With a 5% tolerance, R = 114 ohms under worst case conditions.
R = (VCC – VL) / I
114 = (3.3 – 2.1) / I
I = 10.5mA
Under these conditions, the LED is still well below its maximum
current rating and should not burn out.
Worst case calculations for de-bounce switch circuit.
-
-
-
With a 5% tolerance of R and 20% for C, worst case conditions
are when R = -5% and C = -20%, R = 95kohms, C = 0.376uF.
Plugging in values into the de-bounce equation and solving for
TB = 21.35msec.
This bounce time still satisfies the original requirement of
20msec.
116
Indoor MPU and Display
Digital Block DFM – DC Drive Analysis Table
Dig
Device
Output
Type
Input
Type
Tech
Type
DC Drive Device Parameters
Vil
max
Vih
min
Iil (-)
Max
Iih
max
Vol
max
Voh
min
Iol
max
Ioh (-)
Min
Vhyst
iM4A3-64/32
STD
STD
CMOS
0.8V
2.0V
-5uA
5uA
0.5V
2.4V
24.0mA
-3.2mA
N/A
RF Transceiver
STD
STD
CMOS
0.0
2.2V
N/A
N/A
0.25V
2.75V
5.1mA
-1.8mA
N/A
STD
CMOS
N/A
N/A
N/A
N/A
0.6V
2.925V
5uA
-5uA
N/A
User Interface
Checked
117
Indoor MPU and Display
Digital Block DFM - Signal Compatibility
MPU Parameters:
Vil max = 0.8V
Vih min = 2.0V
Iil max = -5uA
Iih max = 5uA
Vol max = 0.5V
Voh min = 2.4V
Iol max = 24mA
Ioh min = -3.2mA
RF Parameters:
Vil max = 0.8V
Vih min = 3.0V
Iil max = N/A
Iih max = N/A
Vol max = 0.25V
Voh min = 2.75V
Iol max = 5.1mA
Ioh min = -1.8mA
Interface (UI) Parameters:
Vol max = 0.6V
Voh min = 2.925V
Iol max = 5uA
Ioh min= -5uA
0.25V Max
Low
0.8V Max
RF
MPU
5.1mA
2.75V Min
< 24mA
High
2.0V Min
RF
MPU
1.8mA
0.8V Max
< 24mA
Low
0.5V Max
RF
MPU
2.2V Min
High
2.4V Min
RF
MPU
0.6V Max
Low
0.8V Max
UI
MPU
2.925V Min
UI
High
2.0V Min
MPU
118
Indoor MPU and Display
Digital Block DFM – Timing Analysis Table
Dig
Signal
Output
Type
From RF (4)
Input
Type
STD
Other
Timing Parameters
Tsu
Setup
Th
Thold
Tsu
Margin
Th
Margin
Fmax
F
Margin
Tpulse
Min
Tpulse
Margin
Checked
30ns
30ns
70ns
70ns
16.666
MHz
14.666
MHz
N/A
N/A
X
MPU to RF
STD
4.0ns
4.0ns
96ns
96ns
125
MHz
123
MHz
N/A
N/A
X
MPU to
Display
STD
4.0ns
4.0ns
96ns
96ns
125
MHz
123
MHz
N/A
N/A
X
MPU to Alarm
STD
4.0ns
4.0ns
96ns
96ns
125
MHz
123
MHz
N/A
N/A
X
4.0ns
4.0ns
96ns
96ns
125
MHz
123
MHz
N/A
N/A
X
User Control
STD
119
Indoor MPU and Display
Passive Component Table
Passive Discrete Specifications
Nominal
Adjustment
Value or
Range,
Max Value
%/Turn
Tolerance
Around
Nominal
Derated
Pow er
Capacity
Maximum
Working
Voltage
Maximum
Constant
Current
Maximum
Surge
Current
Composition Q Factor or
Dielectric or Frequency
Form
Variation
Package
Component
Resistor
Resistor
Resistor
Fixed Capacitor
Fixed Capacitor
120ohms
10kohms
100kohms
0.47uF
0.1uF
5% 0.25W
5% 0.25W
5% 0.25W
20%
20%
250V
250V
250V
100V
100V
Dielectric
Dielectric
Dielectric
Ceramic
Ceramic
N/A
N/A
N/A
120Hz
120Hz
1206
1206
1206
Radial
Radial
120
Indoor MPU and Display
Manufacture BOM
QTY
1
1
1
2
2
21
4
2
4
1
1
1
Generic Name
iM4A3-64/32 CPLD
PLL Clock Driver
Pushbutton Switch
Red LED
Green LED
Resistor
Resistor
Resistor
Capacitor
2.1mm Female Conn.
Capacitor
Diode
TH/S
MT
Mfg 1
Mfg 1 Part #
Package
Lattice Semi IM4A3-64/32-10VC-12I SMT TQFP
Dallas Semi DS1094L
SMT CT
Omron Elec. A22-CR-11M
TH
Radial
Phillips
P308-ND
TH
Radial
Phillips
P309-ND
TH
Radial
Phoenix
5033ED10.0KF12AF5 SMT 1206
Phoenix
5033ED120F12AF5
SMT 1206
Phoenix
5033ED100KF12AF5 SMT 1206
TDK
FK20X7R2E104K
SMT Radial
CUI Inc
CP-006A-ND
TH
Radial
TDK
FK20X7R2E104K
SMT Radial
Major Brands MMBD4148
SMT Radial
Placement Area mm 2 Function or
Auto/Man
PCB
Description
Auto
Auto
Man
Man
Man
Auto
Auto
Auto
Auto
Auto
Auto
Auto
20
15
25
5
5
5
5
5
5
15
2
2
114
Main Processor
2Mhz Clock
Alarm Disable
Display
Display
Terminating
For LEDs
For De-bounce
IC bias capacitors
Power Jack
For De-bouce
For De-bouce
Attr.
10 k
60 ohm
100k
0.1 uF
Male
0.47uF
D4148
Totals
$Cost/ $Cost
Total
Tol% One
$6.00 $6.00
$3.40 $3.40
$1.29 $1.29
$0.17 $0.17
$0.22 $0.44
5% $0.01 $0.21
5% $0.01 $0.04
5% $0.01 $0.02
20% $0.10 $0.40
$1.09 $1.09
20% $0.10 $0.20
$0.04 $0.04
$13.30
121
Indoor MPU and Display
Manufacturing Processes
- Machine Placement:
- Manual Placement:
- iM4A3-64/32 CPLD
- PCB into enclosure
- DS1094L Clock
- LEDs
- Resistors
- Pushbutton switch
-Capacitors
- Connecting wires between
PCB, LEDs, and pushbutton
switch
- 2.1mm Connector
- Machine Solder:
- iM4A3-64/32 CPLD
- DS1094L Clock
- Resistors
- Manual Solder:
- LEDs
- Pushbutton switch
- Lead wires to PCB
- Capacitors
122
Indoor MPU and Display
Manufacturing Test Process

Test 1: Connector Verification



Test 2: LED Visibility Verification





Action: Make sure power supply is plugged in.
Verify: LED glows red and is visible at 10m.
Action: Apply 3.3V to lead wires for all LEDs
Verify: All LEDs glow their corresponding colors and are visible at 10m.
Test 3: Switch Verification




Action: Plug in 2.1mm male end from power source into female connector.
Verify: Plug slides in smoothly without force and is a snug fit.
Action: Apply 3.3V to I/0 pin 5 to activate alarm.
Action: While alarm is sounding, press pushbutton switch.
Verify: Alarm turns off upon pressing the switch.
Test 4: Output Verification


Action: Apply 3.3V to corresponding input pins.
Verify: Output signals respond properly.
123
Indoor MPU and Display
Parts Count Reliability Estimation
Component Description
M4A3 64/32-10 JC CPLD
TTL Clock
Capacitors (0.47uF and 0.1uF)
LED
Resistors (120 and 100k)
Diode (D4148)
Qty
1
1
5
4
27
1
Base l
FITs
31
13.3
1.2
1
10
2.4
M ax R ated
M ax Oper
T emp C o (T r) T emp C o (T a)
150
90
125
125
125
125
70
70
85
65
70
65
M ax R ated
Vo ltage (Vr)
4.5
15
100
4
250
100
M ax Oper
Vo ltage (Va)
pT
3.6 1.999
3.6 32.715
3.6 7.973
2.1 2.555
3.6 3.171
3.6 2.555
pV
pE
7.389
0.186
0.140
0.409
0.137
0.140
3.000
3.000
3.000
3.000
3.000
3.000
pQ
l
1716.989
302.8255
25.20161
15.66101
440.8488
3.229832
2504.8
T o tal
1.250
1.250
1.250
1.250
1.250
1.250
Total
• MTBF(years) = 45.54
• R(t) = e^-(1 / 45.54) = 0.9782 = 97.82%
• The dominant part for unreliability is the CPLD chip. None of these parts pose
any serious reliability issues for this product however.
• Comparison to requirement allocation:
Block MTBF / Total MTBF
= 2504.8 / 25838 = 0.096 = 9.69%
• This satisfies the requirement allocation of 10%
124
Indoor MPU and Display
Product Sustainability
Primary Attribute
Secondary Attribute
Secondary Attribute
Secondary Attribute
Primary Attribute
Secondary Attribute
Secondary Attribute
Primary Attribute
Primary Attribute
Device Type
Technology
Package
Voltage
Device Type
Package
Voltage
Device Type
Device Type
Mach4A3 PLD
CMOS
TQFP
3.0V
2MHz Clock
SOP
3.0V
Thick Film Resistor
Ceramic Capacitor
μ
σ
μ + 2.5σ - p
μ + 3.5σ - p
2010
2010
1998.5
1998.5
2001.5
1995
1998.5
1985
1980
6
12.5
4.2
4.5
7.8
6.5
4.5
10
14
19
35.25
3
3.75
15
5.25
3.75
4
9
25
47.75
7.2
8.25
22.8
11.75
8.25
14
23
• A few devices fall in the phase out period that is within our product life of 5
years (PLD, Clock, and Resistors). However, it doesn’t warrant replacing these
parts.
• The worst device for obsolescence was the PLD at 7.2 years, however this device
still outlasts our estimated product life.
125
Water Temp Sensor
Peter Brunner
126
Poolside Alarm
Block Assignment
Outdoor
Indoor
Power Supply
Power Supply
Water Temp
Display
Wave
Sensor
Peter
Alarm
RF
Transceiver
Indoor MPU and Display
Motion
Sensor
Data Lines
Alarm
Power Lines
127
Water Temp Display
Block Description
 To
measure the current pool water and outdoor
air temperature
 To
display the Temperature in Fahrenheit on an
outdoor 3-digit seven segment display
128
Water Temp Display
Performance Requirements
Electrical Interfaces:

VSUPPLY = 3.3V +/-10%
 Current Max: 250mA
 Signal Type 1: 12-Byte Serial Digital

Voh (min) = 2.2 v

Ioh (max) = -1.6 mA

VoL (max) = 0.4 v

IoL (max) = 1.6 mA

Signal Type 2: Hexadecimal

Vil (max) = 0.5 v

Iil (max) = 3 uA

Vih (min) = 2.0 v

Iih (max) = -3 uA

Power Consumption:
<3Wmax


Range:
Error Max:
41 - 131ºF
1.8 ºF
129
Water Temp Display
Performance Requirements
Analog Interface




Signal 1: Min (41°F) > 0.2 mV
Max (131°F) < 2.4 mV
Thermocouple Input Impedance: 60kΩ
Input Capacitance: 5 pF
Resolution: 23.3 uV / °F
Mechanical interfaces



Thermocouple sensor
7-segment LED display
• Visual Distance:
Pushbutton switch
5m – day, 10m – night
• N.O. – push to display temperature
130
Water Temp Display
Standard Requirements
Mechanical








Block cost
Block Allocation
Parts count
Part Allocation
Unique parts count
Unique Part Allocation
PCB Area
PCB allocation
<$20
10%
<20
10%
<15
10%
50 cm2
9%
Environment:






Operating temperature range
Operating humidity
Operating Pressure Range
Storage temperature range
Storage Ambient Humidity Range
Storage / Shipping Altitude Range
5 to 55 C
0 to 100%
-500m to 5000m
-20C to 65C
0%RH to 100%RH
-1000m to 5000m
131
Water Temp Display
Standard Requirements

Life Cycle




Reliability MTBF
Reliability %
R(1-warranty)
Disposal
50 years
5%
98%
Throw away
132
Water Temp Display
Standards
ASTM Test Standard:


E 220-02: Test Method for Calibration of Thermocouples by
comparison techniques
E 207-00: Test Method for Thermal EMF Test of Single Thermo element
Materials By Comparison with a Reference Thermo element of Similar EMFTemperature Properties
EMC Standard:

61000-4-2 EMC Part 4: Test/measurement techniques for ESD immunity
tests
Safety requirements:


Thermocouple must be isolated from human contact
IC’s must be enclosed in watertight areas to reduce shorting by water
133
Water Temp Display
Block Diagram
Water
3.3 V
Power Supply
Thermocouple
VANALOG
Thermocouple to
Digital Converter
LED
Driver
VDIG (12-Bit)
VDECIMAL
7 segment
Display
VHEX
Outdoor CPU
Data Lines
Power Lines
134
Water Temp Display
Electrical Interfaces
Power Signals
Type
Power1 VCC +3.3
DC Power Input
Digital Signals
Type
Digital Water Temp
Type
Digital
Direction
Digital
Dir
Input
Dir
Output
Structure
Output N/A
Output
Structure
N/A
Input
Tech
Structure
Standard CMOS
Voltage
Nominal
Voltage Range
Freq
Freq Range
Min
Max Nominal Min
Max
3
3.6
DC
0
N/A
3.3
Input
Tech
Structure
Standard CMOS
% V-Reg
Max
10.00%
Freq
Logic
Output Characteristics
Nominal Voltage Voh Min Ioh Max VoL Max IoL Max
400 kHz 3.3V
2.2V
-1.6 mA
0.4V
1.6 mA
Freq
Logic
Nominal Voltage
2 MHz
3.3V
Input Characteristics
Vih Min Iih Max
ViL Max IiL Max
2V
-3uA
0.5V
3uA
135
Water Temp Display
Schematic
133
133
133
136
Water Temp Display
Calculations

Thermocouple to digital converter





Range: VOUT = (23.3µV / °F) . (TR - TAMB), TAMB = 32 °F
• VOUT,MIN TR = 41 °F: 209.7uV
• VOUT,MAX TR = 131 °F: 2.307mV
• Range meets requirement
Max Power Dissipation:
• PD = VS * IS
• PD = 2.31mW
Accuracy: 90ºF / 4096 bits = 0.0219 ºF / bit
Max input current = 1.5mA
Display Driver


Max Power Dissipation:
• PD = (VS . IS) + (VS - VLED) (DUTY . ISEG . NSEG)
• PD = 0.161W
Max input current = 7.5mA
137
Water Temp Display
Calculations

7-Segment Display




Total max current: 219mA


VF = 2.0V, IF = 10mA
• RLED = (3.3 V – 2.0 V) / 10mA = 133Ω
Max input current = 10mA * 21 segments = 210 mA
Max Power Dissipation:
• PD = 21 * VF * IF
• PD = 420 mW
• PR = 21* I2R = 279.3mW
*Meets requirement of <500mA
Total max power: 862.6mWMAX

*Meets requirement of <3W
138
Water Temp Display
Component Selection

Chosen components

MAX6675
• Simple conversion of k-type thermocouple to digital

MAX6959
• 3-digit, 7-segment driver – serial interface
• Drive Common Cathode 7-segment display
• Interface able with 3.3V supply

All wires are 22 AWG.
• Sufficient current and voltage ratings for all connections
139
Water Temp Display
Worst-Case (DFM) analysis
Passive Discrete Specifications
Nominal Value
or Max Value
Tolerance
Around
Nominal
Derated
Pow er
Capacity
Maximum
Working
Voltage
133.0
1%
1/8 W
200V
Nominal Value
or Max Value
Tolerance
Around
Nominal
Derated
Pow er
Capacity
Maximum
Working
Voltage
.1uF
5%
Maximum
Constant
Current
Maximum
Surge
Current
Composition
Dielectric or
Form
Q Factor or
Frequency
Variation
Package
Component
Resistor
Fixed Capacitor
Thick Film
Maximum
Constant
Current
Maximum
Surge
Current
Composition
Dielectric or
Form
25
1206
Q Factor or
Frequency
Variation
Package
Ceramic
805
Analysis Type
V or I Transfer
Function
DC Gain vs
Max Offset Component
Voltage
Variations
Gain vs
Freq vs
Comp Var
Pulse Response
& Delay(Min)
Input
Impedance
Over
Current
Protect
Noise
and/or
Ripple
Semicond
Pow er &
Junct Temps
N/A
Pulse = 100nS
60 kΩ
N/A
100 mV
150°C
Analog Circuit Type
Sensor
Dig
Device
12-bit
LED driver
10.25 uV / LSB
Output
Type
Input
Type
STD
HEX
164uV
Av = 1
Tech
Type
DC Drive Device Parameters
Vil
max
Vih
min
CMOS
N/A
N/A
CMOS
0.5
2.0
Iil (-)
Max
(uA)
N/A
Iih
Max
(uA)
N/A
3
-3
Vol
max
Voh
min
Iol
max
Ioh (-)
Min
Vhyst
0.4
2.2
1.6 mA
-1.6 mA
50mV
N/A
N/A
N/A
N/A
N/A
Checked
140
Water Temp Display
Worst-Case (DFM) analysis

Thermocouple to digital converter


Error (+/- 10LSB) = 20 * 12.2 mºC / bit = 0.25 ºC = 0.45 ºF
• *Meets requirement
Power

133Ω Resistors 1/8W
• Max I = 28mA, RMAX = 134.3 Ω
• Max PR = (28mA)2 * 134.33 = .1053W
• Does not exceed max resistor power

Battery life



TDC = 1.5mA, DD = 7.5mA, Display = 210mA
Total current: 219mA
2000mA-H / 219mA = 9.32hrs = 9 hr 20mins
141
Water Temp Display
Worst-Case (DFM) analysis

Thermocouple to digital





Voh (min) > Vih(min)
Ioh (max) > Iih(max)
VoL (max) < Vil(max)
IoL (max) > Iil(max)
CPU to Hexadecimal




Vil (max) > Vol max
Iil (max) < Iol max
Vih (min) < Voh min
Iih (max) < Ioh max
Conclusion: All signals interface
142
Water Temp Display
Worst-Case (DFM) analysis
Max Offset Voltage
VSUPPLY  3.3V, TA  25C
VOFFSET, MIN  - 8 LSB *10.25 uV/LSB  82uV
VOFFSET, MAX  8 LSB * 10.25 uV/LSB  82uV
VOFFSET, TOTAL  82uV - (-82uV)  164uV
Max Offset Temperatur e
C OFFSET, MIN  - 8 LSB * 12.21mC/LSB  97.7 mC
COFFSET, MAX  8 LSB * 10.25 uV/LSB  97.7 mC
COFFSET, TOTAL  97.7mC - (97.7 mC)  195.3mC
143
Water Temp Display
Bill of Materials
QTY
1
1
24
2
1
1
Generic Name
Mfg 1
Mfg 1 Part #
Thermo to Digital IC
Thermocouple - K
Metal Resistor - 133
Capacitor - 0.1µF
LED display driver
3-segment display
Maxim
Nanmac
Xicon
AVX
Maxim
Fairchild
Max6675
A8-21
290-133
SR225C104KAA
MAX6959
512-MST6941C
1 Thick Film Resistor - 196k
Xicon
1%
290-75k
1 Capacitor - 0.47µF
AVX
SR225C474KAA
1 Pushbutton Switch w/ Debounce
ITT/Cannon D6C50
TH/SM Package
T
SMT
N/A
SMT
SMT
SMT
N/A
SMT
SMT
TH
Placement Area mm2 Function or
Auto/Man PCB
Description
8-Pin SO
N/A
1206
805
16-pin QSOP
N/A
1206
805
Total Parts:
Total Cost:
Auto
Manual
Auto
Auto
Auto
Manual
Auto
Auto
Man
15.3
N/A
4.5
8
100
715
4.5
8
25
Attributes
Tol% $Cost/O $Cost
ne
Total
Gain
Temp Sensor
N/A
Grounded Junction N/A
1/8W
1
25V
Ceramic
10
7-segment driver
N/A
Display Temp If = 10mA Intensity N/A
= 2.2 mcd
1/8W
25V
Temp Display
Ceramic
1
10
Asm
PPM
$3.88
$14.58
$0.007
$0.08
$3.85
$2.32
$3.88
$14.58
$0.17
$0.16
$3.85
$2.32
100
200
50
50
100
N/A
$0.01
$0.08
$1.29
$0.01
$0.08
$1.29
100
50
33
$26.10
•Total Parts and Total Cost exceed standard requirement
•No real chance to downgrade cost, IC chips and display are
at their lowest cost.
144
Water Temp Display
Manufacturing Process
Manufacturing:
1) After machine placement of specified parts. X-ray solder joints of
SMD components. Inspection of defects such as gull wings, J-Lead
defects, or discrete chip resistors
2) Manual placement of specified components
- Machine Placement:
- SMD passives
- Manual Placement:
- 7-segment display
- Thermocouple
- SMD IC’s
- Machine Solder:
- SMD passives
- SMD IC’s
- Manual Solder:
- Thermocouple
- 7-segment display wires
145
Water Temp Display
Test 1:
Test Process
- Action: Power the board and use oscilloscope to take readings of digital
output and input signals
- Verify: Determine proper communications between this block and CPLD
Test 2:
- Action: Place thermocouple in environmental chamber. Change temperature
from 5-55ºC
- Verify: Accurate readings of temperature change compared to another
standardized temperature reading
Test 3:
- Action: Mechanical vibration. Use machine to gently shake the circuit board
with thermocouple and 7-segment display attached
- Verify: Parts do not fall off
146
Water Temp Display
Block Part Reliability
Component
Description
Resistors (thick film)
Caps (ceramic)
Thermo to Digital IC
LED display driver
Type k thermocouple
3-digit 8-segment display
Pushbutton switch
Total
Qty
25
3
1
1
1
1
1
Base l
FITs
2.6
1.2
113.3
113.3
0.1
21
45
M ax R ated
T e m p C o ( T r)
125
125
125
125
1200
125
125
M a x O pe r
T emp C o (T a)
55
55
55
55
55
55
55
M ax R ated
V o lt a ge ( V r)
250
50
6
6
24
6
100
M a x O pe r
V o lt a ge ( V a )
3.6
3.6
3.6
3.6
5
2.8
3.3
pT
pV
pE
pQ
1.794
1.794
1.794
1.794
0.649
1.794
1.794
0.137
0.146
0.607
0.607
0.176
0.325
0.140
3.000
3.000
3.000
3.000
3.000
3.000
3.000
1.250
1.250
1.250
1.250
1.250
1.250
1.250
33
l
60.05054
3.542061
462.3065
462.3065
0.042866
45.86541
42.39276
T o tal
1076.5
- Total Fits = 1076.5, Total MTBF (yrs) = 105.97
- Reliability (1 warranty) = 99.8%
-The required reliability goal is 50 years and reliability after 1
warranty is 99.8%. This block exceeds the requirements
-Dominant Failure part are the IC’s. Although the least reliable,
they are not that bad as to cause worry.
147
Water Temp Display
Parts Sustainability
µ
σ
µ+2.5σ
(µ+2.5σ ) - 2006
µ+3.5σ
(µ+3.5σ ) - 2006
2010
2010
2011.25
2011.25
2041.25
2011.75
4
4
5.25
5.25
35.25
5.75
2020
2020
2017.75
2017.75
2053.75
2019.25
14
14
11.75
11.75
47.75
13.25
Block Parts Count Reliability
Primary Attribute
Primary Attribute
Primary Attribute
Secondary Attribute
Secondary Attribute
Primary Attribute
Thick Film Resistor
Ceramic Capacitor
1985
1985
A/D Converter
SOP - Small Outline Package
CMOS
1995
1995
2010
3-segment display
1993
10
10
6.5
6.5
12.5
7.5
Life Cycle: 5 years
Major Problem Part: The A/D converter and the SOP package will be going obsolete in
September 2017. But since our life cycle is only 5 years, this part will not be a problem
for this product.
Near obsolete parts: The thick film resistors, ceramic capacitors, SOP package and the
A/D converter are the most dangerous parts to use since they will be phasing out near
the end of our product life. However, they will not be completely obsolete by the end of
the product life so there is not a need to change them
148
Wave Sensor
Jay Bombien
149
Poolside Alarm
Block Assignment
Outdoor
Indoor
Power Supply
Power Supply
Air / Water
Sensor
Wave
Sensor
Jay
Alarm
RF
Transceiver
Indoor MPU and Display
Motion
Sensor
Data Lines
Alarm
Power Lines
150
Wave Sensor
Block Description and Purpose:
 Sensing
unit that will detect the presence
of wave motion in the pool.
151
Wave Sensor
Performance Requirements
Electrical Interface:

Signal Type:

Signal Direction:

Input Nominal Voltage:

V-Ripple max. :

Input Current max:

Battery Type:

Battery Capacity:
Data Interface:

Signal Type:

Signal Direction:

VOH(MIN)

VOL(MAX)

IOL(MAX) = IOH(MAX)
 Nominal Operating Frequency:
 Nominal Operating Voltage (P-P):
 Min. Operating Voltage (P-P):
 Max. Operating Voltage (P-P):
Power
Input
9 VDC (Range: 8.1-9.9 VDC)
100 mV
40 mA
Lithium Ion
2000 mAh
Digital
Output
2.0V
0.8V
5uA
1.3 KHz (Range: 300Hz–3KHz)
9.0 VDC
5.0 VDC
24.0 VDC
152
Wave Sensor
Standard Requirements
Mechanical:
 Block cost
 Cost percentage allocation
 Parts count
 Unique parts count
 Parts percentage allocation
 PCB Area
 PCB percentage allocation
Environmental:
 Operating temperature range
 Operating humidity
 Operating Altitude Range
 Storage temperature range
 Storage Ambient Humidity Range
Life Cycle:
 Reliability MTBF
 Disposal
<$23
10%
<28
<18
5%
15 cm2
10%
5 to 55 C
0 to 100%
-1000m to 20000m
-20C to 65C
0%RH to 100%RH
40 years
Throw away
153
Wave Sensor
Outdoor
Power Supply
9 Volts DC
Charge Pump
9 Volts DC
-9 Volts DC
Oscillator Circuit
-9 to +9
Volts DC
Voltage Comparator
Wave Sensing Unit
1 bit Digital
Signal
RF
Transceiver
-9 to +9
Volts DC
Data Lines
Power Lines
154
Wave Sensor
Signal Input/Output Summary
Power Signals
9 Volts DC
Digital Signals
Type
Voltage Voltage Range Freq Freq Range % V-Reg V-Ripple Current
Nominal Min Max Nominal Min Max Max
Max
Max
DC Power Output
9
8.1
9.9
DC
0 N/A 10.00%
0.1V
40mA
Type
Dir
Dir
Output
Structure
1 Bit Digital Signal Digital Output
N/A
Input
Tech
Freq
Structure
Nominal
Standard CMOS 2.0Mhz
Logic
Voltage
3.3V
Output Characteristics
Voh Min Ioh Max VoL Max IoL Max
2.0 V
5 uA
0.8V
5 uA
155
Wave Sensor
156
Wave Sensor
SQ. Wave Gen. Calculations
Desired f  1kHz
VCC  9V
1
f 
2 * R * C * ln
1 l
1 l
R3
l
R2  R3
With R  1K, C  1uF 
λ  0.21 
R3  1KΩ
R2  3.8 KΩ 
f  1.182kHz
157
Wave Sensor
Comparator Calculations
R456  R4 || R5 || R6
VREF 
R456
R
Vcc  456 C
R4
R5
Vcc  VREF VOUT  VREF VREF


R4
R5
R6
VCC  9V
VIN range  0 to -9V  Choose VREF  4.5V 
R4  11K
R5  500 K,
R6  10 K
158
Wave Sensor
Voltage Clamp Calculations
Values from Comparator :
I OUT ( MAX )  2.5 mA
VOUT ( H )  9V,
Choose VH  3.0V 
ROUT(MIN) 
VH – VOUT ( H )
I OUT ( MAX )
 2.4 K 
Choose ROUT  10 K
Voltage Divider for Voltage Clamp :
R8
1K
VREF  VSUPPLY
 9V
 1.5V
R8  R 7
1K  5 K
Voltage Clamp :
Diode forward voltage  V f  0.7V 
VH  VREF  2 *V f  1.5V  1.4V  2.9V
VL  VREF  2 *V f  1.5V  1.4V  0.1V
159
Wave Sensor
Sensor Resistor Calculations
VTH  1.85V 
V DRY  1.85V
VW ET  1.85V
RSENSOR( DRY )  815 K
RSENSOR(W ET)  29.4 K
C  RSENSOR( DRY ) || 1M  448k
RTOTAL (W ET)  RSENSOR(W ET) || 1M  28.57 k 
V DRY / W ET 
RTOTAL
* VSQW AVE
RTOTAL  RSENSONR
VSQW AVE  7V 
V DRY
 3.5V  RSENSOR  500 K
2
RTOTAL (W ET)

* VSQW AVE  0.38V  VTH
RTOTAL (W ET)  RSENSONR
Choose :
VW ET
160
Wave Sensor
Component Selection

All wires are 22AWG and can easily handle circuitry current

High precision Op Amp



Create fast and accurate comparator
Create square wave signal with accurate frequency
Charge pump

Wide input voltage range

Low power consumption
161
Wave Sensor
Passive Discrete Specifications
Q Factor
Nominal Tolerance Derated Maximum Maximum Maximum
Composition
or
Value or
Around
Power
Working Constant
Surge
Package
Dielectric or Form Frequency
Max Value Nominal Capacity Voltage
Current
Current
Variation
Component
Resistor
Resistor
Resistor
Resistor
Resistor
Resistor
Resistor
Fixed Capacitor
Fixed Capacitor
1k
3.8k
5k
10k
11k
499k
1M
0.1uF
1uF
1%
1%
1%
1%
1%
1%
1%
20%
20%
0.125W
0.125W
0.125W
0.125W
0.125W
0.125W
0.125W
200V
200V
200V
200V
200V
200V
200V
50V
50V
Film
Film
Film
Film
Film
Film
Film
Aluminum
Aluminum
1206
1206
1206
1206
1206
1206
1206
Radial
Radial
162
Wave Sensor
Worst Case Calculations
Comparator :
ROUT (W C)  10 K  1%  9.9 K 
ROUT (W C)  ROUT(MIN)  2.4 K
Voltage Clamp :
VH   VREF (W C)  2 *V f  1.53V  1.4V  2.93V
VH   VREF (W C)  2 *V f  1.47V  1.4V  2.87V
VL   VREF (W C)  2 *V f  1.53V  1.4V  0.13V
Voltage Divider for Voltage Clamp :
VL   VREF (W C)  2 *V f  1.47V  1.4V  0.07V
R8
1K
VREF  VSUPPLY
 9V
 1.5V
R8  R 7
1K  5 K
VREF (W C)  1.47V  1.53V
VOH ( MIN )  2.0V  VH 
VOL( MAX )  0.8V  VL 
163
Wave Sensor
Bill of Materials
QTY Generic Name
1
1
3
5
2
2
6
3
1
1
2
1
2
1
31
Mfg 1
Water Sensor
GR Industries Inc.
Charge pump
Maxim IC
Operational Amplifier
Linear Technology
Diode (Vf=0.7)
Diodes Inc
10uF (25V)
United Chemi-Con
1uF (50V)
United Chemi-Con
0.1uF (50V)
United Chemi-Con
1k Resistor 1% 0.125W XICON
3.8k Resistor 1% 0.125WXICON
5k Resistor 1% 0.125W XICON
10k Resistor 1% 0.125W XICON
11k Resistor 1% 0.125W XICON
499k Resistor 1% 0.125WXICON
1M Resistor 1% 0.125W XICON
Mfg 1 Part #
2800
MAX1044CSA
LT1001CS8
1N4448HWT
PXA25VC10RMF60TP
UWP1H010MCR1GB
UWX1H0R1MCL2GB
290-1.0K
290-3.8K
290-5.0K
290-10K
290-11K
290-499K
290-1.0M
TH/
Placement
SMT Package Auto/Man
NA
SM
SM
SM
SM
SM
SM
SM
SM
SM
SM
SM
SM
SM
SOP-8
SOP-8
SOD-523
Radial
Radial
Radial
1206
1206
1206
1206
1206
1206
1206
Man
Auto
Auto
Auto
Auto
Auto
Auto
Auto
Auto
Auto
Auto
Auto
Auto
Auto
PCB
Area
mm2
500
10
10
5
17
36
36
5
5
5
5
5
5
5
649
Function / Description
Att.
detects presence of water
creates negative voltage
Sq. Wave Gen, Comp., buffer
Voltage Clamp
Vf=0.7,
Tol%
20
20
20
20
1
1
1
1
1
1
1
$Cost
(One)
$8.00
$1.19
$2.05
$0.14
$0.55
$0.19
$0.06
$0.01
$0.01
$0.01
$0.01
$0.01
$0.01
$0.01
Totals
164
$Cost
Total
$8.00
$1.19
$6.15
$0.70
$1.10
$0.38
$0.36
$0.02
$0.01
$0.01
$0.01
$0.01
$0.01
$0.01
$17.96
Wave Sensor
Manufacturing Processes & Testing
Manufacturing:

Hand solder wave (water) sensing unit to square wave
generator output.
Testing:




Verify comparator generates correct output with the presence of
water
ICT – Sq wave Gen and Comparator
Hi Pot Leakage
X-ray solder joints of SMD
165
Wave Sensor
Block Parts Count Reliability
Component
Description
Max
Max
Max Max
Base Rated Oper Rated Oper
Qty
pT
l FITs Temp Temp Volt. Volt.
Co (Tr) Co (Ta) (Vr)
(Va)
Sensor
Op Amp - LT1001CS8
Charge Pump - MAX1044
Diode
Electrolytic Cap
Electrolytic Cap
Metal Film Resistor
1
3
1
5
8
2
11
Total
31




30
13.3
13.3
2.4
120
120
0.2
125
85
85
125
125
125
125
55
55
55
55
55
55
55
25
25
11.5
80
50
25
200
9
9
9
9
9
9
9
1.794
5.855
5.855
1.794
1.794
1.794
1.794
pV
0.238
0.238
4.953
0.154
0.169
0.238
0.142
pE pQ Total l
3.000
3.000
3.000
3.000
3.000
3.000
3.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
38.350
166.456
1157.041
9.922
870.868
306.796
1.680
2551.11
Total FITs: 2551.11 Total MTBF (years): 44.7
R = 99.998%
The required reliability (MTBF) goal is 4 years and reliability after 1 warranty is
99.981%. This block exceed those requirements.
The charge pump is the most unreliable because of the max operating voltage
166
Wave Sensor
Obsolescence Analysis
Component
Comparator
Voltage Regulator
Metal Film resistor
Ceramic Capacitor
SOP Packages
3.3V Logic
μ
σ
2.5σ 3.5σ μ + 2.5σ
2003 11.1 27.75 38.85 2030.75
2004 6.5 16.25 22.75 2020.25
1990
12
30
42
2020
1980
14
35
49
2015
1995 6.5 16.25 22.75 2011.25
1998.5 4.5 11.25 15.75 2009.75
μ + 3.5σ
2041.85
2026.75
2032
2029
2017.75
2014.25
Phase out in (yrs)
24.75
14.25
14
9
5.25
3.75
Obsolete in (yrs)
35.85
20.75
26
23
11.75
8.25
The product life is 4 years. Within this time, only the 3.3V logic of the
wave sensor will be in the phase out section of the Sustainability Life
Cycle Curve.
167
Alarms
Louis Chatfield
168
Poolside Alarm
Block Assignment
Outdoor
Indoor
Power Supply
Power Supply
Air / Water
Sensor
Wave
Sensor
Louis
Alarm
RF
Transceiver
Indoor MPU and Display
Motion
Sensor
Data Lines
Alarm
Power Lines
169
Alarms
Functionality

Purpose: To produce an audible sound that can
be heard, regardless of surrounding
environment.


Will be able to be heard outdoors and indoors.
Description:


Siren/horn produces a high decibel audible sound
approximately 90 dB/meter.
Siren/horn needs to notify the surrounding area there
is a possibility of a child jumping into an unsupervised
pool.
170
Alarms
Performance Requirements

Power Inputs Audio Amplifier

Supply Voltage VCC = 3 VDC

Current Max = 1.0 A

Speaker Specifications

Bandwidth = 17KHz

Input/Output Requirements

Input: Input Impedance ~ 150 kohm

Typical Gain ~ 1 or 2

Output: 8 ohms loads (speakers)

Output Power (min) = 1.125 Watts

Speaker Ratings:
• Frequency 145 Hz – 17 Khz
• Power: 6 Watts Nominal, 10 Watts Max
• Decibels: ~ 93 dB
171
Alarms
Performance Requirements



Min Input Voltage
Max Input Voltage
Max Output Current
2.7 VDC
6 VDC
1.0 A

Analog Signal Interfaces (Indoor MPU)

Analog Signal: Square wave at 2kHz – 3kHz at 5Khz sweeping

Operation Modes

On/Off

Mechanical Interfaces

PCB DC Terminal Blocks

Female to Male Spade Connectors Mounted on Speakers
172
Alarms
Standard Requirements
Mechanical

Block cost

% Cost Allocation

Parts count

% Parts Allocation

Unique parts count







<$15
~7%
16
8%
3
% Unique Parts Allocation
PCB Area
3%
85 cm2
%
20%
PCB Allocation
Weight
% Weight Allocation
Volume
% Volume Allocation
~ 255 g
2%
308.352 cm^2
6%
173
Alarms
Standard Requirements
Environment:

Operating temperature range

Storage temperature range

Operating humidity
5 to 55 C
-20C to 65C
0 to 100%
Life Cycle

Reliability MTBF

Reliability

Disposal
27.16 years
99.97%
Throw away
Safety Standards:
 UL 464 - Audible Signal Appliances
 UL 1492 – Audio-Video Products and Accessories
 IEC 61000-4-2 Electro Static Discharge Immunity
174
Alarm Block Diagram
Power
Supply
3VDC
POWER
INDOOR
MPU
AUDIO
3.0 V ANALOG
SIGNAL
AMPLIFIER
AMPLIFIED
SIGNAL
SPEAKER
175
Alarms
Signal Input/Output Summary
Power
Power Signals
Alarms
Type
DC Power
Direction
Input
Voltage
Voltage Range
Nominal
Min
Max
3V
2.4V
3.3V
Freq
Nominal
Freq Range
% V-Reg
V-Ripple
Current
Min
Max
Max
Max
Max
N/A
N/A
.05
0.1V
1.0A
176
Alarms
Signal Input/Output Summary
Analog
Analog Signals
Type
Direction
Coupling
Voltage Max
Impedance
Freq Range
Leakage
Amplitude
Min
Max
Min
Max
Max
Audio Amp
Analog
Output
Capacitive
3.3V
7.6 ohm
8.4 ohm
20 Hz
20 Khz
N/A
Indoor MPU
Analog
Input
Direct
3.3V
120 K ohm
165 k ohm
1600Hz
2200Hz
N/A
178
Alarm Schematic
179
Alarm
Circuit Description

The audio power amplifier is 2 Watts.




Bandwidth is 1.25 MhZ
The gain of the amplifier is determined externally by the value of Rf and
Rin
The unity gain amplifier is connected to a voltage divider which is used
to step down the signal from Indoor MPU in the event the gain is set
internally on an audio amplifier integrated circuit
Output filter

Used to block the DC signal and pass the AC component to the speaker
• AC Component is 2kHz squarewave from Indoor MPU
180
Alarm
Circuit Description

Pertinent Equations
Av  
C
Rf
1k
  1
Rin
1k
1
2 * PI * R * frequency
P
V 2 32
  1.125W
R
8
C
1
 12.4uF
2 * PI * 8 *1.6 Khz
I
P 1.125

 .375Watts
V
3
181
Alarms
Worse Case Calculations

Gain
Av  

Rf
1050

 1.10
Rin
950
Av  
Rf
950

 .90
Rin
1050
Output Filter
f 
1
2 * PI * R * C
1
 1870 Hz
2 * PI * 7.6 *11.2uF
f 
1
 1394 Hz
2 * PI * 8.4 *13.6uF
At f = 1.6kHz
1
f 
 2216 Hz
2 * PI * 7.6 * 9.45uF
f 
1
 1633Hz
2 * PI * 8.4 *11.6uF
At f = 1.9kHz
f 
182
Alarms
Noise Analysis

E = ( 4 k T R Δf )½

(V RMS)
E = the Root-Mean-Square or RMS voltage level
k = Boltzmans constant (1.38∙10-23)
T = temperature in Kelvin (Room temp = 27 °C = 300 K)
R = resistance
Δf = Circuit bandwidth in Hz
E  (4 *1.38 *1023 * 300 *1k * 20khz)1/ 2  .58uVRMS

Noise Power

P = E2 = 4 k T R Δf
(V2)
P  .582  3.312 *10 13V 2
183
Alarms
Noise Analysis

Power Spectral Density

S=4kTR
S  4 *1.38 *1023 * 300K *1000  1.656 *1017

So = S ∙ Gain
; Amplifier gain is 1;
V2
Hz
Two 1 kohm resistors
S o  1.656 *10 17 *1  1.656 *10 17V 2 / Hz
S1  1.656 *1017 *1  1.656 *1017V 2 / Hz
S Total  S o  S1  3.312 *10 17 V 2 / Hz

Total Voltage Spectral Density

NTOT = STOT ½
N Total  6 *10 9 V / Hz 1 / 2
184
Alarms
Component Selection

2 Watt Audio Amplifier IC





0.1 uF Ceramic Capacitor


Used on output end of audio amp ic to block dc amplitude and pass AC
component to speaker
1 kohm Resistors



Used on ICs to counteract momentary supply voltage drops
12 uF tantalum Capacitor


Compatible Indoor Supply Voltage of 3 VDC
Externally set gain given by Rf and Rin
Fairly inexpensive
Current Limit Protection and Thermal Overload
Used to externally set the gain on the audio amplifier to one
Inexpensive and readily available
8 ohm 6W nominal Speakers

Easily will handle power output of amplifier (2W) by factor of 3
185
Alarm
Production BOM
Generic
QTY Name
2
2
4
2
2
2
Mfg 1
Mfg 1
Part #
TH/SMT
Mono 2W Audio
DallasAmplifier
MAX4295 SMT
Speaker Alnico
Alnico
8ohm 6W
GA0071B N/A
1 kohm Resistor
Panasonic ERJ=8ENF1001V
SMT
0.1 uF Capacitor
Panasonic ECQ-V1H103JL
N/A
12 uF Capacitor
Cornell Dub.
MLP501M150EK0A
TH
Op-Amp Dallas
MAX4289 SMT
Area
Placement mm 2
Package Auto/Man PCB
QSOP
N/A
5000 (CR)
SMT
Radial
SOT-23
Auto
Man
Auto
Auto
Auto
Auto
Function
or
Descripti Attribute
on
s
Tol%
$Cost/One
$Cost
Total
20 Audio Amplifier
Click/Pop Supp.
N/A Thermal Overload
$1.50
N/A
6W Nom, 10W
145 -Max
17kHz, 92 dB Speaker $4.28
5.12 1kohm 1/4 1%
W Tolerance, Chip 1
Resistor $0.01
2.89 .01 uF Cap, 5%
50VDC
Tolerance
5
$0.10
15.08 12 uF Cap, 10%
75VDC
Tolerance
10
$0.95
7.38 Unity Gain Single
Qualities
Supply
N/A1-5.5VDC Op Amp
$0.56
50.47
186
$3.00
$8.56
$0.04
$0.20
$1.90
$1.12
$14.82
Alarms
Manufacturing Processes

Manufacturing

Component Procurement
• X-ray solder joints of SMD components. Inspection of defects such
as gull wings, J-Lead defects, or discrete chip resistors
• Manual placement of specified components

Machine Placement
• SMD passive components
• SMD IC’s

Machine Solder
• SMD passive components
• SMD IC’s

Manual Placement
• Speaker Mounting
• Wire harness from PCB to speakers
187
Alarms
Testing Processes

Test Apparatus


Apply supply voltage to audio amplifier
Use signal generator to simulate squarewave
• Verify correct gain, current, and power is received from audio
amplifier
• Verify that high pass filter is blocking DC component from
audio amplifier and only sending the AC component (2kHz
squarewave)


Introduce mechanical vibration to observe if any
components are jarred loose
Retest circuit using apparatus to ensure proper
operation
188
Alarms
Parts Count Reliability Estimation
Com ponent
Description
Base l
FITs
Qty
Mono 2W Audio Amplifier
2
Speaker Alnico 8ohm
2 6W
1 kohm Resistor 4
0.1 uF Capacitor 2
12 uF Capacitor 2
Op-Amp
2
Total
50
20
2.6
1.2
1.2
50
M ax R ated
T emp C o
( T r)
75
75
125
125
125
75
M a x O pe r
T emp C o
(T a)
55
55
55
55
55
55
M ax R ated
V o lt a ge
( V r)
6
26
200
50
50
15
M a x O pe r
V o lt a ge
(Va)
3.3
3.3
3.3
3.3
3.3
3.3
pT
15.243
15.243
1.794
1.794
1.794
15.243
pV
0.459
0.157
0.138
0.145
0.145
0.179
14
MTBF 
1 *10 9
 28.3 years
4023.9 * 8766
pE
3.000
3.000
3.000
3.000
3.000
3.000
pQ
l
2626.072
357.8472
9.628924
2.345084
2.345084
1025.641
T o tal
1.250
1.250
1.250
1.250
1.250
1.250
4023.9
R(t )  e (1 / 28.3)  0.9653  96.53%
The most dominant part that impacts unreliability is the 2 Watt audio amplifier,
however, this will not affect overall product reliability since the product life is 4 years.
Actual FITS is lower (4023.9) than allocated FITS (4200) so Reliability through
warranty period is achieved.
189
Alarms
Obsolescence Analysis
Primary
Secondary Package
Manufacturer Attribute
Attribute
Style
Alnico
Speaker Alnico 8ohm
None
6W
SOP
Panasonic
1 kohm Resistor N/A
SMD
Panasonic
0.1 uF Capacitor N/A
SMD
Cornell Dub. 12 uF Capacitor N/A
TH
National
Mono 2W Audio Amplifier
3V compatible
SOP
Dallas
Op-Amp
3V compatible
SOT-23
u
2001
1990
1985
1985
2005
2005
Phase
Out
Obsolete
Sigma (years)
(years)
6
10
16
12
14
26
10
4
14
10
4
14
8.3
19.25
27.55
8.3
19.25
27.55
The capacitors will enter their phase out time frame in 2010
190
Poolside Alarm
Similar Existing Product
193
Prototype
194
Blocks Prototyped
-
Outdoor power supply (exclude solar panel)
-
Indoor power supply
-
RF transceiver
-
Motion Sensor
-
Wave Sensor
-
Indoor CPU
- Alarms
195
Appendices
196
Gantt Chart
197
Power Supply - Outdoor
5V supply
9V supply
198
Battery Charger
Note: 1 battery used for demonstration
Before
After
Time – 90 min. Power supply = 17V, 700mA
199
Indoor Power Supply
Voltage output from AC to DC source
200
Indoor Power Supply
Voltage output from battery source
201
Indoor MPU and Display
Block Verification

Function Simulation Results
202
Indoor MPU and Display
Block Verification

Device Resource Summary for PLD:

All aspects of the PLD fit the initial requirements
• 11 I/O pins used < 12 minimum required
• 24 Macrocells used = 24 minimum required

Timing Simulation Results:


Longest delay: 20.5nsec
Worst Fmax delay: 48.8MHz
203
Indoor MPU and Display
Block Verification

Output signal to RF Transceiver
Alarm activated - Output signal low
0.137V < 0.8 Vil Max
Button pressed - Alarm deactivated,
Output signal high
3.753V > 2.4 Vih Min
204
Wave Sensor
Digital output for dry wave sensor High
205
Wave Sensor
Digital output for wet wave sensor Low
206
RF Transceiver Prototype
207
RF Transceiver Prototype
208
Related documents