Download Frequent Itemset

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Data Mining
Association Analysis: Basic Concepts
and Algorithms
Lecture Notes for Chapter 6
Introduction to Data Mining
by
Tan, Steinbach, Kumar
© Tan,Steinbach, Kumar
Introduction to Data Mining
4/18/2004
1
Association Rule Mining

Given a set of transactions, find rules that will predict the
occurrence of an item based on the occurrences of other
items in the transaction
Market-Basket transactions
TID
Items
1
Bread, Milk
2
3
4
5
Bread, Diaper, Beer, Eggs
Milk, Diaper, Beer, Coke
Bread, Milk, Diaper, Beer
Bread, Milk, Diaper, Coke
© Tan,Steinbach, Kumar
Introduction to Data Mining
Example of Association Rules
{Diaper}  {Beer},
{Milk, Bread}  {Eggs,Coke},
{Beer, Bread}  {Milk},
Implication means co-occurrence,
not causality!
4/18/2004
‹#›
Definition: Frequent Itemset

Itemset
– A collection of one or more items

Example: {Milk, Bread, Diaper}
– k-itemset


An itemset that contains k items
Support count ()
– Frequency of occurrence of an itemset
– E.g. ({Milk, Bread,Diaper}) = 2

Support
TID
Items
1
Bread, Milk
2
3
4
5
Bread, Diaper, Beer, Eggs
Milk, Diaper, Beer, Coke
Bread, Milk, Diaper, Beer
Bread, Milk, Diaper, Coke
– Fraction of transactions that contain an
itemset
– E.g. s({Milk, Bread, Diaper}) = 2/5

Frequent Itemset
– An itemset whose support is greater
than or equal to a minsup threshold
© Tan,Steinbach, Kumar
Introduction to Data Mining
4/18/2004
‹#›
Definition: Association Rule

Association Rule
– An implication expression of the form
X  Y, where X and Y are itemsets
– Example:
{Milk, Diaper}  {Beer}

Rule Evaluation Metrics
TID
Items
1
Bread, Milk
2
3
4
5
Bread, Diaper, Beer, Eggs
Milk, Diaper, Beer, Coke
Bread, Milk, Diaper, Beer
Bread, Milk, Diaper, Coke
– Support (s)

Example:
Fraction of transactions that contain
both X and Y
{Milk , Diaper }  Beer
– Confidence (c)

Measures how often items in Y
appear in transactions that
contain X
© Tan,Steinbach, Kumar
s
 (Milk, Diaper, Beer )
|T|

2
 0.4
5
 (Milk, Diaper, Beer ) 2
c
  0.67
 (Milk, Diaper )
3
Introduction to Data Mining
4/18/2004
‹#›
Association Rule Mining Task

Given a set of transactions T, the goal of
association rule mining is to find all rules having
– support ≥ minsup threshold
– confidence ≥ minconf threshold

Brute-force approach:
– List all possible association rules
– Compute the support and confidence for each rule
– Prune rules that fail the minsup and minconf
thresholds
 Computationally prohibitive!
© Tan,Steinbach, Kumar
Introduction to Data Mining
4/18/2004
‹#›
Mining Association Rules
Example of Rules:
TID
Items
1
Bread, Milk
2
3
4
5
Bread, Diaper, Beer, Eggs
Milk, Diaper, Beer, Coke
Bread, Milk, Diaper, Beer
Bread, Milk, Diaper, Coke
{Milk,Diaper}  {Beer} (s=0.4, c=0.67)
{Milk,Beer}  {Diaper} (s=0.4, c=1.0)
{Diaper,Beer}  {Milk} (s=0.4, c=0.67)
{Beer}  {Milk,Diaper} (s=0.4, c=0.67)
{Diaper}  {Milk,Beer} (s=0.4, c=0.5)
{Milk}  {Diaper,Beer} (s=0.4, c=0.5)
Observations:
• All the above rules are binary partitions of the same itemset:
{Milk, Diaper, Beer}
• Rules originating from the same itemset have identical support but
can have different confidence
• Thus, we may decouple the support and confidence requirements
© Tan,Steinbach, Kumar
Introduction to Data Mining
4/18/2004
‹#›
Mining Association Rules

Two-step approach:
1. Frequent Itemset Generation
–
Generate all itemsets whose support  minsup
2. Rule Generation
–

Generate high confidence rules from each frequent itemset,
where each rule is a binary partitioning of a frequent itemset
Frequent itemset generation is still
computationally expensive
© Tan,Steinbach, Kumar
Introduction to Data Mining
4/18/2004
‹#›
Frequent Itemset Generation
null
A
B
C
D
E
AB
AC
AD
AE
BC
BD
BE
CD
CE
DE
ABC
ABD
ABE
ACD
ACE
ADE
BCD
BCE
BDE
CDE
ABCD
ABCE
ABDE
ACDE
ABCDE
© Tan,Steinbach, Kumar
Introduction to Data Mining
BCDE
Given d items, there
are 2d possible
candidate itemsets
4/18/2004
‹#›
Frequent Itemset Generation

Brute-force approach:
– Each itemset in the lattice is a candidate frequent itemset
– Count the support of each candidate by scanning the
database
Transactions
N
TID
1
2
3
4
5
Items
Bread, Milk
Bread, Diaper, Beer, Eggs
Milk, Diaper, Beer, Coke
Bread, Milk, Diaper, Beer
Bread, Milk, Diaper, Coke
List of
Candidates
M
w
– Match each transaction against every candidate
– Complexity ~ O(NMw) => Expensive since M = 2d !!!
© Tan,Steinbach, Kumar
Introduction to Data Mining
4/18/2004
‹#›
Computational Complexity

Given d unique items:
– Total number of itemsets = 2d
– Total number of possible association rules:
 d   d  k 
R       

 k   j 
 3  2 1
d 1
d k
k 1
j 1
d
d 1
If d=6, R = 602 rules
© Tan,Steinbach, Kumar
Introduction to Data Mining
4/18/2004
‹#›
Frequent Itemset Generation Strategies

Reduce the number of candidates (M)
– Complete search: M=2d
– Use pruning techniques to reduce M

Reduce the number of transactions (N)
– Reduce size of N as the size of itemset increases
– Used by DHP and vertical-based mining algorithms

Reduce the number of comparisons (NM)
– Use efficient data structures to store the candidates or
transactions
– No need to match every candidate against every
transaction
© Tan,Steinbach, Kumar
Introduction to Data Mining
4/18/2004
‹#›
Reducing Number of Candidates

Apriori principle:
– If an itemset is frequent, then all of its subsets must also
be frequent

Apriori principle holds due to the following property
of the support measure:
X , Y : ( X  Y )  s( X )  s(Y )
– Support of an itemset never exceeds the support of its
subsets
– This is known as the anti-monotone property of support
© Tan,Steinbach, Kumar
Introduction to Data Mining
4/18/2004
‹#›
Illustrating Apriori Principle
null
A
B
C
D
E
AB
AC
AD
AE
BC
BD
BE
CD
CE
DE
ABC
ABD
ABE
ACD
ACE
ADE
BCD
BCE
BDE
CDE
Found to be
Infrequent
ABCD
ABCE
Pruned
supersets
© Tan,Steinbach, Kumar
Introduction to Data Mining
ABDE
ACDE
BCDE
ABCDE
4/18/2004
‹#›
Illustrating Apriori Principle
Item
Bread
Coke
Milk
Beer
Diaper
Eggs
Count
4
2
4
3
4
1
Items (1-itemsets)
Itemset
{Bread,Milk}
{Bread,Beer}
{Bread,Diaper}
{Milk,Beer}
{Milk,Diaper}
{Beer,Diaper}
Minimum Support = 3
Pairs (2-itemsets)
(No need to generate
candidates involving Coke
or Eggs)
Triplets (3-itemsets)
If every subset is considered,
6C + 6C + 6C = 41
1
2
3
With support-based pruning,
6 + 6 + 1 = 13
© Tan,Steinbach, Kumar
Count
3
2
3
2
3
3
Introduction to Data Mining
Itemset
{Bread,Milk,Diaper}
Count
3
4/18/2004
‹#›
Apriori Algorithm

Method:
– Let k=1
– Generate frequent itemsets of length 1
– Repeat until no new frequent itemsets are identified
 Generate
length (k+1) candidate itemsets from length k
frequent itemsets
 Prune candidate itemsets containing subsets of length k that
are infrequent
 Count the support of each candidate by scanning the DB
 Eliminate candidates that are infrequent, leaving only those
that are frequent
© Tan,Steinbach, Kumar
Introduction to Data Mining
4/18/2004
‹#›
Reducing Number of Comparisons

Candidate counting:
– Scan the database of transactions to determine the
support of each candidate itemset
– To reduce the number of comparisons, store the
candidates in a hash structure
Instead of matching each transaction against every candidate,
match it against candidates contained in the hashed buckets

Transactions
N
TID
1
2
3
4
5
Hash Structure
Items
Bread, Milk
Bread, Diaper, Beer, Eggs
Milk, Diaper, Beer, Coke
Bread, Milk, Diaper, Beer
Bread, Milk, Diaper, Coke
k
Buckets
© Tan,Steinbach, Kumar
Introduction to Data Mining
4/18/2004
‹#›
Introduction to Hash Functions

A Hash Function h is a mapping from a set X to a
range of integers [0..k-1].

Thus each element of the set is mapped into one
of k buckets.

Each of the buckets will contain all the elements
that are mapped by h into that bucket.
© Tan,Steinbach, Kumar
Introduction to Data Mining
4/18/2004
‹#›
Example

A mod function is a good example of a hash
function.

For example suppose we use h(x) = xmod7.
Then 0 to 6 gets mapped to 0 to 6 but 7 gets
mapped to 0 and 8 to 1. Thus the range of mod7
is [0..6]. These are the buckets of mod7.
© Tan,Steinbach, Kumar
Introduction to Data Mining
4/18/2004
‹#›
Example

Suppose X is the set of integers 1..100
0
0,7,14,21….
1
1,8,15,22….
2
3
4
5
6
© Tan,Steinbach, Kumar
6,13,20,27….
Introduction to Data Mining
4/18/2004
‹#›
Factors Affecting Complexity

Choice of minimum support threshold
–
–

Dimensionality (number of items) of the data set
–
–

more space is needed to store support count of each item
if number of frequent items also increases, both computation and
I/O costs may also increase
Size of database
–

lowering support threshold results in more frequent itemsets
this may increase number of candidates and max length of
frequent itemsets
since Apriori makes multiple passes, run time of algorithm may
increase with number of transactions
Average transaction width
– transaction width increases with denser data sets
– This may increase max length of frequent itemsets and traversals
of hash tree (number of subsets in a transaction increases with its
width)
© Tan,Steinbach, Kumar
Introduction to Data Mining
4/18/2004
‹#›
Compact Representation of Frequent Itemsets

Some itemsets are redundant because they have
identical support as their supersets
TID A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
3
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
5
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
6
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
7
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
8
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
9
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
10
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
11
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
12
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
13
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
14
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
15
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1

10 
Number of frequent itemsets  3    
k

Need a compact representation
10
k 1
© Tan,Steinbach, Kumar
Introduction to Data Mining
4/18/2004
‹#›
Maximal Frequent Itemset
An itemset is maximal frequent if none of its immediate supersets
is frequent
null
Maximal
Itemsets
A
B
C
D
E
AB
AC
AD
AE
BC
BD
BE
CD
CE
DE
ABC
ABD
ABE
ACD
ACE
ADE
BCD
BCE
BDE
CDE
ABCD
ABCE
ABDE
Infrequent
Itemsets
ABCD
E
© Tan,Steinbach, Kumar
Introduction to Data Mining
ACDE
BCDE
Border
4/18/2004
‹#›
Closed Itemset

An itemset is closed if none of its immediate supersets
has the same support as the itemset
TID
1
2
3
4
5
Items
{A,B}
{B,C,D}
{A,B,C,D}
{A,B,D}
{A,B,C,D}
© Tan,Steinbach, Kumar
Itemset
{A}
{B}
{C}
{D}
{A,B}
{A,C}
{A,D}
{B,C}
{B,D}
{C,D}
Introduction to Data Mining
Support
4
5
3
4
4
2
3
3
4
3
Itemset Support
{A,B,C}
2
{A,B,D}
3
{A,C,D}
2
{B,C,D}
3
{A,B,C,D}
2
4/18/2004
‹#›
Maximal vs Closed Itemsets
TID
Items
1
ABC
2
ABCD
3
BCE
4
ACDE
5
DE
124
123
A
12
124
AB
12
24
AC
ABE
2
245
C
123
4
AE
24
ABD
1234
B
AD
2
ABC
2
3
BD
4
ACD
345
D
BC
BE
2
4
ACE
ADE
E
24
CD
34
CE
3
BCD
45
ABCE
ABDE
ACDE
BDE
CDE
BCDE
ABCDE
Introduction to Data Mining
DE
4
BCE
4
ABCD
Not supported by
any transactions
© Tan,Steinbach, Kumar
Transaction Ids
null
4/18/2004
‹#›
Maximal vs Closed Frequent Itemsets
Minimum support = 2
124
123
A
12
124
AB
12
ABC
24
AC
AD
ABD
ABE
1234
B
AE
345
D
2
3
BC
BD
4
ACD
245
C
123
4
24
2
Closed but
not maximal
null
24
BE
2
4
ACE
E
ADE
CD
Closed and
maximal
34
CE
3
BCD
45
DE
4
BCE
BDE
CDE
4
2
ABCD
ABCE
ABDE
ACDE
BCDE
# Closed = 9
# Maximal = 4
ABCDE
© Tan,Steinbach, Kumar
Introduction to Data Mining
4/18/2004
‹#›
Maximal vs Closed Itemsets
Frequent
Itemsets
Closed
Frequent
Itemsets
Maximal
Frequent
Itemsets
© Tan,Steinbach, Kumar
Introduction to Data Mining
4/18/2004
‹#›
Rule Generation

Given a frequent itemset L, find all non-empty
subsets f  L such that f  L – f satisfies the
minimum confidence requirement
– If {A,B,C,D} is a frequent itemset, candidate rules:
ABC D,
A BCD,
AB CD,
BD AC,

ABD C,
B ACD,
AC  BD,
CD AB,
ACD B,
C ABD,
AD  BC,
BCD A,
D ABC
BC AD,
If |L| = k, then there are 2k – 2 candidate
association rules (ignoring L   and   L)
© Tan,Steinbach, Kumar
Introduction to Data Mining
4/18/2004
‹#›
Rule Generation

How to efficiently generate rules from frequent
itemsets?
– In general, confidence does not have an antimonotone property
c(ABC D) can be larger or smaller than c(AB D)
– But confidence of rules generated from the same
itemset has an anti-monotone property
– e.g., L = {A,B,C,D}:
c(ABC  D)  c(AB  CD)  c(A  BCD)
Confidence is anti-monotone w.r.t. number of items on the
RHS of the rule

© Tan,Steinbach, Kumar
Introduction to Data Mining
4/18/2004
‹#›
Rule Generation for Apriori Algorithm
Lattice of rules
Low
Confidence
Rule
CD=>AB
ABCD=>{ }
BCD=>A
ACD=>B
BD=>AC
D=>ABC
BC=>AD
C=>ABD
ABD=>C
AD=>BC
B=>ACD
ABC=>D
AC=>BD
AB=>CD
A=>BCD
Pruned
Rules
© Tan,Steinbach, Kumar
Introduction to Data Mining
4/18/2004
‹#›
Computing Interestingness Measure

Given a rule X  Y, information needed to compute rule
interestingness can be obtained from a contingency table
Contingency table for X  Y
Y
Y
X
f11
f10
f1+
X
f01
f00
fo+
f+1
f+0
|T|
f11: support of X and Y
f10: support of X and Y
f01: support of X and Y
f00: support of X and Y
Used to define various measures

© Tan,Steinbach, Kumar
support, confidence, lift, Gini,
J-measure, etc.
Introduction to Data Mining
4/18/2004
‹#›
Drawback of Confidence
Coffee
Coffee
Tea
15
5
20
Tea
75
5
80
90
10
100
Association Rule: Tea  Coffee
Confidence= P(Coffee|Tea) = 0.75
but P(Coffee) = 0.9
 Although confidence is high, rule is misleading
 P(Coffee|Tea) = 0.9375
© Tan,Steinbach, Kumar
Introduction to Data Mining
4/18/2004
‹#›
Statistical Independence

Population of 1000 students
– 600 students know how to swim (S)
– 700 students know how to bike (B)
– 420 students know how to swim and bike (S,B)
– P(SB) = 420/1000 = 0.42
– P(S)  P(B) = 0.6  0.7 = 0.42
– P(SB) = P(S)  P(B) => Statistical independence
– P(SB) > P(S)  P(B) => Positively correlated
– P(SB) < P(S)  P(B) => Negatively correlated
© Tan,Steinbach, Kumar
Introduction to Data Mining
4/18/2004
‹#›
Statistical-based Measures

Measures that take into account statistical
dependence
P(Y | X )
Lift 
P(Y )
P( X , Y )
Interest 
P( X ) P(Y )
PS  P( X , Y )  P( X ) P(Y )
P( X , Y )  P( X ) P(Y )
  coefficient 
P( X )[1  P( X )] P(Y )[1  P(Y )]
© Tan,Steinbach, Kumar
Introduction to Data Mining
4/18/2004
‹#›
Example: Lift/Interest
Coffee
Coffee
Tea
15
5
20
Tea
75
5
80
90
10
100
Association Rule: Tea  Coffee
Confidence= P(Coffee|Tea) = 0.75
but P(Coffee) = 0.9
 Lift = 0.75/0.9= 0.8333 (< 1, therefore is negatively associated)
© Tan,Steinbach, Kumar
Introduction to Data Mining
4/18/2004
‹#›
Drawback of Lift & Interest
Y
Y
X
10
0
10
X
0
90
90
10
90
100
0.1
Lift 
 10
(0.1)(0.1)
Y
Y
X
90
0
90
X
0
10
10
90
10
100
0.9
Lift 
 1.11
(0.9)(0.9)
Statistical independence:
If P(X,Y)=P(X)P(Y) => Lift = 1
© Tan,Steinbach, Kumar
Introduction to Data Mining
4/18/2004
‹#›
There are lots of
measures proposed
in the literature
Some measures are
good for certain
applications, but not
for others
What criteria should
we use to determine
whether a measure
is good or bad?
What about Aprioristyle support based
pruning? How does
it affect these
measures?