Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Understanding, Predicting and Preventing Oilfield Scale This may be the only time you get to review this part of oilfield chemistry, so we will go deeper than the numbers * The thermodynamic basis and the models currently in use (sorry, but you can no longer hide from thermo!) Names used for S Oilfield names o o Scale Tendency (ST), Scale Ratio (SR) Scale Index (SI) is log10 value of S Scientific names o Saturation Ratio (SR, ), Supersaturation (S) S is the thermodynamic driving force for solids to precipitate or dissolve Supersaturated (S>1 or SI>0): precipitates spontaneously Subsaturated (S<1 or SI<0): dissolves spontaneously Saturated (S=1 or SI=0): neither dissolves nor precipitates * Definition: Scale tendency is the ratio of ion activity product (IAP) to the solubility product constant (Ksp) 𝐶 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑆𝑐𝑎𝑙𝑒 𝑇𝑒𝑛𝑑𝑒𝑛𝑐𝑦 = 𝑆 ∝ = 𝐶0 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑎𝑡 𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚 Used in lab and field Used in thermodynamic software 𝐶 𝑰𝑨𝑷 𝐼𝑜𝑛 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑃𝑟𝑜𝑑𝑢𝑐𝑡 ∝𝑆= = 𝐶0 𝑲𝒔𝒑 𝑆𝑜𝑙𝑢𝑏𝑖𝑙𝑖𝑡𝑦 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 need to define these terms further * * 1) Precipitation reaction 𝑁𝑎𝐶𝑙 𝑠, ℎ𝑎𝑙𝑖𝑡𝑒 = 𝑁𝑎+ 𝑎𝑞 + 𝐶𝑙 − (𝑎𝑞) 2) Equilibrium equation (solid phase exists) 𝐾𝑠𝑝 𝑎𝑁𝑎+ ∗ 𝑎𝐶𝑙− 𝑦𝑁𝑎+ ∗ 𝑚𝑁𝑎+ ∗ 𝛾𝐶𝑙− ∗ 𝑚𝐶𝑙− 𝐼𝐴𝑃 𝑁𝑎𝐶𝑙, ℎ𝑎𝑙𝑖𝑡𝑒 = = = 𝑁𝑎𝐶𝑙 (𝑠) 𝑁𝑎𝐶𝑙 (𝑠) 1 =1.0 by definition 3) Rearrange. If system is at equilibrium then 𝑦𝑁𝑎+ ∗ 𝑚𝑁𝑎+ ∗ 𝛾𝐶𝑙− ∗ 𝑚𝐶𝑙− =1 𝐾𝑠𝑝 𝑁𝑎𝐶𝑙, ℎ𝑎𝑙𝑖𝑡𝑒 If the system is not known to be at equilibrium, then 𝑦𝑁𝑎+ ∗ 𝑚𝑁𝑎+ ∗ 𝛾𝐶𝑙− ∗ 𝑚𝐶𝑙− =𝑆 𝐾𝑠𝑝 𝑁𝑎𝐶𝑙, ℎ𝑎𝑙𝑖𝑡𝑒 * This is the equation that gets solved for all scales 𝛾𝑁𝑎+1 ∗ 𝑚𝑁𝑎+1 ∗ 𝛾𝐶𝑙−1 ∗ 𝑚𝐶𝑙−1 𝑆= 𝐾𝑠𝑝,𝑁𝑎𝐶𝑙,(𝑇,𝑃) 𝒎𝑵𝒂+𝟏 & 𝒎𝑪𝒍−𝟏 are measured in the lab 𝜸𝑵𝒂+𝟏 & 𝜸𝑪𝒍−𝟏 are calculated using scale prediction software 𝑲𝒔𝒑,𝑵𝒂𝑪𝒍,(𝑻,𝑷) is calculated using scale prediction software * For CaCO3, the chemical reaction is: 𝐶𝑎𝐶𝑂3 = 𝐶𝑎+2 + 𝐶𝑂3 −2 And scale tendency equation is: 𝑎𝐶𝑎+2 ∗ 𝑎𝐶𝑂3−2 𝛾𝐶𝑎+2 ∗ 𝑚𝐶𝑎+2 ∗ 𝛾𝐶𝑂3−2 ∗ 𝑚𝐶𝑂3−2 𝐶 𝑆 = = 𝐶0 𝐾𝑠𝑝,𝐶𝑎𝐶𝑂3 (𝑐𝑎𝑙𝑐𝑖𝑡𝑒),(𝑇,𝑃) 𝐾𝑠𝑝,𝐶𝑎𝐶𝑂3 (𝑐𝑎𝑙𝑐𝑖𝑡𝑒),(𝑇,𝑃) * 𝐾𝑠𝑝,𝐶𝑎𝐶𝑂3 (𝑐𝑎𝑙𝑐𝑖𝑡𝑒),(𝑇,𝑃) = 2.44𝑥10−9 (25𝐶, 1𝑎𝑡𝑚) For BaSO4, the chemical reaction is: 𝐵𝑎𝑆𝑂4 = 𝐵𝑎+2 + 𝑆𝑂4 −2 And scale tendency equation is: 𝑆= 𝑎𝐵𝑎+2 ∗ 𝑎𝑆𝑂4−2 𝐾𝑠𝑝,𝐵𝑎𝑆𝑂4 (𝑏𝑎𝑟𝑖𝑡𝑒),(𝑇,𝑃) = 𝛾𝐵𝑎+2 ∗ 𝑚𝐵𝑎+2 ∗ 𝛾𝑆𝑂4−2 ∗ 𝑚𝑆𝑂4−2 𝐾𝑠𝑝,𝐵𝑎𝑆𝑂4 (𝑏𝑎𝑟𝑖𝑡𝑒),(𝑇,𝑃) * 𝐾𝑠𝑝,𝐵𝑎𝑆𝑂4 (𝑏𝑎𝑟𝑖𝑡𝑒),(𝑇,𝑃) = 1.06𝑥10−10 (25𝐶, 1𝑎𝑡𝑚) 𝐶𝑎𝑆𝑂4 . 2𝐻2 𝑂(𝑔𝑦𝑝𝑠𝑢𝑚) = 𝐶𝑎+2 + 𝑆𝑂4 −2 + 2𝐻2 𝑂 And scale tendency equation is: 𝑆= 𝑎𝐶𝑎+2 ∗ 𝑎𝑆𝑂4−2 ∗ 𝑎𝐻2 𝑂 2 𝐾𝑠𝑝,𝐶𝑎𝑆𝑂4.2𝐻2𝑂 (𝑔𝑦𝑝𝑠𝑢𝑚),(𝑇,𝑃) = 𝛾𝐶𝑎+2 ∗ 𝑚𝐶𝑎+2 ∗ 𝛾𝑆𝑂4−2 ∗ 𝑚𝑆𝑂4−2 ∗ 𝑎𝐻2𝑂 2 𝐾𝑠𝑝,𝐶𝑎𝑆𝑂4.2𝐻2𝑂 (𝑔𝑦𝑝𝑠𝑢𝑚),(𝑇,𝑃) 𝒂𝑯𝟐𝑶 is activity of the water molecule * 𝐾𝑠𝑝,𝐶𝑎𝑆𝑂4 .2𝐻2𝑂 (𝑔𝑦𝑝𝑠𝑢𝑚),(𝑇,𝑃) = 3.20𝑥10−5 (25𝐶, 1𝑎𝑡𝑚) 𝐶𝑎𝐹2 , 𝑠 𝐹𝑙𝑢𝑜𝑟𝑖𝑡𝑒 = 𝐶𝑎+2 + 2 ∗ 𝐹 −1 The scale tendency equation is Where… 𝑎𝐶𝑎+2 1 ∗ 𝑎𝐹−1 2 𝑆= 𝐾𝑠𝑝 (𝐶𝑎𝐹2 𝐹𝑙𝑢𝑜𝑟𝑖𝑡𝑒 ) 𝑎𝐶𝑎+2 = the activity of the Ca+2 ion in water 𝑎𝐹−1 2 = activity of dissolved F-1, squared because there are two F- in the reaction 𝐾𝑠𝑝 (𝐶𝑎𝐹2 𝐹𝑙𝑢𝑜𝑟𝑖𝑡𝑒 ) = T & P dependent solubility constant for fluorite Therefore… 𝛾𝐶𝑎+2 1 ∗ 𝑚𝐶𝑎+2 1 ∗ 𝛾𝐹−1 2 ∗ 𝑚𝐹−1 2 𝑆, 𝑓𝑙𝑢𝑜𝑟𝑖𝑡𝑒 = 𝐾𝑠𝑝 (𝐶𝑎𝐹2 𝐹𝑙𝑢𝑜𝑟𝑖𝑡𝑒 ) * We will discuss the details of each variable and the significance of this equation in these slides 𝐼𝐴𝑃 = 𝑎𝑐𝑎𝑡𝑖𝑜𝑛 𝛼 ∗ 𝑎𝑎𝑛𝑖𝑜𝑛 𝛽 = 𝑚𝑐𝑎𝑡𝑖𝑜𝑛 𝛼 ∗ 𝛾𝑐𝑎𝑡𝑖𝑜𝑛 𝛼 ∗ 𝑚𝑎𝑛𝑖𝑜𝑛 𝛽 𝛾𝑎𝑛𝑖𝑜𝑛 𝛽 for calcite, CaCO3, IAP looks like this: 𝐼𝐴𝑃𝐶𝑎∗𝐶𝑂3 = 𝑚𝐶𝑎+2 ∗ 𝛾𝐶𝑎+2 ∗ 𝑚𝐶𝑂3 −2 ∗ 𝛾𝐶𝑂3 −2 where 𝑚𝐶𝑎+2 𝑎𝑛𝑑 𝑚𝐶𝑂3−2 𝑎𝑟𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑎𝑛𝑑 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝛾𝐶𝑎+2 𝑎𝑛𝑑 𝛾𝐶𝑂3−2 𝑎𝑟𝑒 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 * The general equation for Ksp 𝑲𝒔𝒑 = ∆𝑮𝒓𝒆𝒂𝒄𝒕𝒊𝒐𝒏 𝒂𝒕 𝒆𝒒𝒖𝒊𝒍𝒊𝒃𝒓𝒊𝒖𝒎 𝑹𝑻 𝒆− when calcite is the solid ∆𝑮 𝑲𝒔𝒑,𝒄𝒂𝒍𝒄𝒊𝒕𝒆 = 𝒆− 𝑪𝒂+𝟐 +𝑪𝑶𝟑 −𝟐 =𝑪𝒂𝑪𝑶𝟑 (𝑪𝒂𝒍𝒄𝒊𝒕𝒆) 𝑹𝑻 𝒂𝒕 𝒆𝒒𝒖𝒊𝒍𝒊𝒃𝒓𝒊𝒖𝒎 Defining S in a simulation tool 𝑆= 𝑚𝑐𝑎𝑡𝑖𝑜𝑛 𝛼 ∗ 𝛾𝑐𝑎𝑡𝑖𝑜𝑛 𝛼 ∗ 𝑚𝑎𝑛𝑖𝑜𝑛 𝛽 𝛾𝑎𝑛𝑖𝑜𝑛 𝛽 𝒆 ∆𝑮𝑻,𝑷 − 𝒓𝒆𝒂𝒄𝒕𝒊𝒐𝒏 𝑹𝑻 for calcite 𝑆= 𝑚𝐶𝑎+2 ∗ 𝛾𝐶𝑎+2 ∗ 𝑚𝐶𝑂3 −2 ∗ 𝛾𝐶𝑂3 −2 𝒆− * ∆𝑮𝑻,𝑷+𝟐 𝑪𝒂 +𝑪𝑶𝟑 −𝟐 =𝑪𝒂𝒍𝒄𝒊𝒕𝒆 𝑹𝑻 • The equilibrium constant, Ksp is unitless 𝐾𝑠𝑝 = ∆𝐺𝑓 − 𝑒 𝑅𝑇 = 𝑒𝑛𝑒𝑟𝑔𝑦 𝑢𝑛𝑖𝑡𝑠 − 𝑒 𝑒𝑛𝑒𝑟𝑔𝑦 𝑢𝑛𝑖𝑡𝑠 • IAP is also unitless… 𝐼𝐴𝑃 = 𝑚𝑐𝑎𝑡 +𝑦 𝛼 ∗ 𝛾𝑐𝑎𝑡 +𝑦 𝛼 ∗ 𝑚𝑎𝑛−𝑧 𝛽 𝛾𝑎𝑛−𝑧 𝛽 • S is therefore unitless… 𝐼𝐴𝑃 𝑢𝑛𝑖𝑡𝑙𝑒𝑠𝑠 𝑆= = 𝐾𝑠𝑝 𝑢𝑛𝑖𝑡𝑙𝑒𝑠𝑠 * Scale Scale Tendency Equation Ksp FeCO3, siderite FeCO3 = Fe+2 + CO3-2 Ksp,siderite (25C,1atm)=3.9x10-11 FeS, mackinawite FeS = Fe+2 + S-2 Ksp,mackinawite(25C,1atm)=4.5x10-17 FeS, pyrrhotite FeS = Fe+2 + S-2 Ksp,pyrrhotite (25C,1atm)=7.6x10-19 Fe(OH)3, amorphous Fe(OH)3 = Fe+3 + 3(OH)- Ksp,Fe(OH)3,am (25C,1atm)=3.2x10-38 CaCO3, aragonite CaCO3 = Ca+2 + CO3-2 Ksp,aragonite (25C,1atm)=5.8x10-9 Ca0.5Mg0.5CO3,dolomite Ca0.5Mg0.5CO3 =0.5Ca+2 + 0.5Mg+2 + CO3-2 Ksp,dolomite (25C,1atm)=1.7x10-17 SiO2, amorphous SiO2 = SiO2 Ksp,SiO2,am (25C,1atm)=1.9x10-3 * Scale Scale Tendency Equation FeCO3, siderite 𝑆= 𝐾𝑠𝑝 (𝑠𝑖𝑑𝑒𝑟𝑖𝑡𝑒) 𝛾𝐹𝑒 +2 ∗ 𝑚𝐹𝑒 +2 ∗ 𝛾𝑆 −2 ∗ 𝑚𝑆 −2 𝑆= 𝐾𝑠𝑝 (𝑚𝑎𝑐𝑘𝑖𝑛𝑎𝑤𝑖𝑡𝑒) 𝛾𝐹𝑒 +2 ∗ 𝑚𝐹𝑒 +2 ∗ 𝛾𝑆 −2 ∗ 𝑚𝑆 −2 𝑆= 𝐾𝑠𝑝 (𝑝𝑦𝑟𝑟ℎ𝑜𝑡𝑖𝑡𝑒) FeS, mackinawite FeS, pyrrhotite Fe(OH)3, amorphous iron hydroxide, rust 𝛾𝐹𝑒 +3 ∗ 𝑚𝐹𝑒 +3 ∗ 𝛾𝑂𝐻 − 3 ∗ 𝑚𝑂𝐻− 3 𝑆= 𝐾𝑠𝑝 (𝑎𝑚 𝐹𝑒 𝑂𝐻 3) 𝛾𝐶𝑎+2 ∗ 𝑚𝐶𝑎+2 ∗ 𝛾𝐶𝑂3−2 ∗ 𝑚𝐶𝑂3−2 𝑆= 𝐾𝑠𝑝 (𝑎𝑟𝑎𝑔𝑜𝑛𝑖𝑡𝑒) CaCO3, aragonite Ca0.5Mg0.5CO3, dolomite SiO2, amorphous silica 𝛾𝐹𝑒 +2 ∗ 𝑚𝐹𝑒 +2 ∗ 𝛾𝐶𝑂3−2 ∗ 𝑚𝐶𝑂3−2 𝑆= 𝛾𝐶𝑎+2 0.5 ∗ 𝑚𝐶𝑎+2 0.5 ∗ 𝛾𝑀𝑔+2 0.5 ∗ 𝑚𝑀𝑔+2 0.5 ∗ 𝛾𝐶𝑂3−2 ∗ 𝑚𝐶𝑂3 −2 𝐾𝑠𝑝 (𝑑𝑜𝑙𝑜𝑚𝑖𝑡𝑒) 𝛾𝑆𝑖𝑂2 ∗ 𝑚𝑆𝑖𝑂2 𝑆= 𝐾𝑠𝑝 (𝑎𝑚 𝑠𝑖𝑙𝑖𝑐𝑎)