Download Power function rule:

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
QMM 250
FORMULA SHEET
EXAM III
DRAFT
n
Rules of summation: 1. For any constant c,
 c  nc
i 1
n
3.
 (x
i 1
n
n
i 1
i 1
x
i 1
Sample x 
N
2 
 (x
i 1
i
 x )2
N
Standard Deviation of x: Population   
Rules of Variance:
i 1
2
x
i 1
i
n
n
Sample s 2 
 (x
i 1
Sample s  s
i
 x)2
n 1
2
x
n
For constant c, E (c )  c .
For constant c and random variable X, E (cX )  cE ( X ) .
For constants a and b and random variable X, E (a  bX )  a  bE ( X ) .
For random variables X and Y, E ( X  Y )  E ( X )  E (Y ) .
Sample binomial proportion:
Rules of Expectation: 1.
2.
3.
4.
i 1
n
i
N
Variance of x: Population
n
 y i )   xi   y i
i
N
Mean of x: Population  x 
n
 cxi  c xi
2.
p
1. For constant c, Var (c)  0 .
2. For constant c and random variable X, Var(cX )  c 2Var( X ) .
3. For constants a and b and random variable X, Var (aX  b)  a 2Var ( X ) .
4. For independent random variables X and Y,
Var( X  Y )  Var( X )  Var(Y )   X2   Y2 .
Binomial Distribution Parameters:
Standard Normal Random Variable:
Standard Error of the Sample Mean:
E ( X )  n
z
Var ( X )  n (1   )
x  X
X
X 
X
n
X
Confidence Interval for  X , given known  X :
x  z / 2
Confidence Interval for  X , given unknown  X :
x  t / 2,n1
n
sX
n

 (1   ) 
Sampling Distribution for Sample Binomial Proportion: p ~ N   ,
 , (sample size
n


requirements of 𝑛𝜋 ≥ 10 𝑎𝑛𝑑 𝑛(1 − 𝜋) ≥ 10).
Confidence Interval for  :
p  z / 2
p(1  p)
n
2
Z 
Sample Size Necessary to Estimate 𝜋 to within 𝐸∗: n    / 2   .25
 E* 
X  0
, distributed N(0,1) if H0 is true.
/ n
X  0
Test Statistic for population mean,  unknown: T 
, distributed t n 1 if H0 is true.
s/ n
p 0
Test Statistic for binomial proportion (  ): Z 
, distributed N(0,1) if H0 is true.
 0 (1   0 )
n
Test Statistic for population mean,  known: Z 
p  Value  P(test statistic is at least as extreme as the observed value of the test statistic | H0 is true)
c
Sum of Squares Total:
nj
SST   ( yij  y ) 2
j 1 i 1
c
Sum of Squares for Factor A: SSA   n j ( y j  y ) 2
j 1
c
Sum of Squared Errors:
nj
SSE   ( yij  y j ) 2
j 1 i 1
Mean Square Factor A:
Mean Square Error:
ANOVA Test Statistic:
SSA
c 1
SSE
MSE 
nc
MSA
, distributed Fc1,nc if H0 is true.
F
MSE
MSA 
Equation of the Population Regression Model:
yˆ i  b0  b1 xi
Equation of the fitted regression line:
n
Sum of Cross-Products:
yi   0  1 xi   i
SS xy   ( xi  x )( yi  y )
i 1
n
SS xx   ( xi  x ) 2
Sum of Squared Deviations in x:
i 1
n
OLS Slope Coefficient:
b1 
 (x
i
i 1
 x )( yi  y )
n
 (x
i 1
i

 x)2
OLS Intercept Coefficient:
b0  y  b1 x
Total Sum of Squares:
SST   ( yi  y ) 2
SS xy
SS xx
n
i 1
Sum of Squared Residuals:
Mean Square Error:
n
n
i 1
i 1
SSE   ( yi  yˆ i ) 2   ( yi  b0  b1 xi ) 2
MSE 
SSE
n2
n
Regression Sum of Squares: SSR   ( yˆ i  y ) 2
i 1
R 2 (coefficient of determination):
R2 
Standard Error of the Regression:
s yx 
SSR
SSE
1
SST
SST
SSE
 MSE
n2
Standard Deviation of Sample Slope Coefficient:
sb1 
s yx
SS xx
Confidence Interval for Population Slope Coefficient, 1 : b1  t / 2,n2 sb1
Test Statistic for Regression Slope Coefficient: T 
b1
, distributed t n2 if H0 is true.
sb1
Related documents