Survey							
                            
		                
		                * Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
By: Susana Cardona & Demetri Cheatham © Cardona & Cheatham 2011  Slope  Six of a tangent line different techniques: Chain rule, product rule, Quotient rule, E.T.A, Implicit differentiation and Logs. Chain Rule  Bring exponent down in front of the variable, if it’s a coefficient multiply exponent. Then subtract one from the exponent and go back in and take a derivative.  f ( x)  ax n f ( x)  anx n1 Example  f ( x)  6 x  4 x 3 4 2 3  f ( x)  18 x  16 x  f ( x)  (5 x  1)3 f ( x)  3(5 x  1)2 (5) Try Me  f ( x)  ( x  7 x) 3 9 Solution  f ( x)  9( x  7 x) (3x  7) 3 8 2 Product Rule  First write the problem times derivative of the second problem plus write the second problem times the derivative of the first problem.  FDS+SDF Example  f ( x)  ( x  3) (3x  1) 2 4 2 3 4  f ( x)  ( x  3) (4)(3x  1) (3)  (3x  1) (2)( x  3)(1) 2 3 3 7 (5 x  1) (2 x  4)  f ( x)  2 3 3 6 2 3 7 2 4  f ( x) (5x 1) (7)(2 x  4) (6 x )  (2 x  4) (3)(5x 1) (10 x) Try Me f ( x)  (3x  1) (1  2 x) 4 3 Solution  f ( x)  4 3 (3x  1) (3)(1  2 x) (2)  (1  2 x) (4)(3x  1) (3) 4 3  Write the bottom times the derivative of the top minus write the top times the derivative of the bottom over the bottom squared BDT  TBD 2 B Quotient Rule f ( x)  (5 x  1) 4 (2 x  1) 3 f ( x)  (2x 1) (3)(5x 1) (5)  (5x 1) (4)(2 x 1) (2) 4 2 3 (2 x  1) 8 Example 3 (3 x  5 x ) ◦ f ( x)  2 4 (6 x  2 x ) 2 Try Me 2  f ( x)  (6 x2  2 x 4 )(2)(3x 2  5x)(6 x  5)  (3x 2  5x)2 (6 x2  2 x 4 )(12 x  8x3 ) (6 x2  2 x4 )2 Solution  Bring down exponent, multiply coefficient if there’s one, and write the trig and the angle times the derivative of the trig times the derivative of the angle 1. d (sin 2 3 x) dx 2sin 3x cos 3 x 3   E T A 2. d (cos3 (sin x)) dx 2 3cos (sin x)  ( sin(sin x))  (cos x)  d 3x e dx  3x e (3) NATURAL LOG   1 over the angle times the derivative of the angle ya x dy x  a ln a dx EXAMPLE y2 x ln y  x ln 2 1 dy  x(0)  ln 2(1) y dx 1 dy  ln 2 y dx dy  2 x ln 2 dx TRY ME yx ln x SOLUTION ln y  ln x ln x 1 dy 1 1  ln x( )  ln x( ) y dx x x dy ln x 2 ln x x ( ) dx x Implicit • Is almost the same as a chain rule but it includes x and y and the x’s and y’s can be separated • x2  y 2  1 dy 2x  2 y 0 dx dy 2 x  dx 2 y dy  x  dx y Example • 3x3  4 y 2  5 dy 9x  8 y 0 dx dy 8y  9 x 2 dx dy 9 x 2  dx 8y 2 Try Me 3x  2 xy  5 y  1 2 2 Solution 6 x  2 x(1) dy dy  2 y (1)  10 y 0 dx dx dy (2 x  10 y )  2 y  6 x dx dy 2 y  6x  dx 2 x  10 y dy y  3x  dx  x  5 y d 4 2  (tan ( x  2 x  1)) dx 4 tan ( x  2 x  1)  sec ( x  2 x  1)  (2 x  2) 3 2 2 2 y  2x x 1 2 OR y  (2 x)( x  1) 2 1 2 1  2 1 2 1 2 2 y '  (2 x)( )( x  1) (2 x)  ( x  1) (2) 2 2 y 3 (5 x  1) 4 y '  6(5 x  1) (5)