Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
By: Susana Cardona & Demetri Cheatham © Cardona & Cheatham 2011 Slope Six of a tangent line different techniques: Chain rule, product rule, Quotient rule, E.T.A, Implicit differentiation and Logs. Chain Rule Bring exponent down in front of the variable, if it’s a coefficient multiply exponent. Then subtract one from the exponent and go back in and take a derivative. f ( x) ax n f ( x) anx n1 Example f ( x) 6 x 4 x 3 4 2 3 f ( x) 18 x 16 x f ( x) (5 x 1)3 f ( x) 3(5 x 1)2 (5) Try Me f ( x) ( x 7 x) 3 9 Solution f ( x) 9( x 7 x) (3x 7) 3 8 2 Product Rule First write the problem times derivative of the second problem plus write the second problem times the derivative of the first problem. FDS+SDF Example f ( x) ( x 3) (3x 1) 2 4 2 3 4 f ( x) ( x 3) (4)(3x 1) (3) (3x 1) (2)( x 3)(1) 2 3 3 7 (5 x 1) (2 x 4) f ( x) 2 3 3 6 2 3 7 2 4 f ( x) (5x 1) (7)(2 x 4) (6 x ) (2 x 4) (3)(5x 1) (10 x) Try Me f ( x) (3x 1) (1 2 x) 4 3 Solution f ( x) 4 3 (3x 1) (3)(1 2 x) (2) (1 2 x) (4)(3x 1) (3) 4 3 Write the bottom times the derivative of the top minus write the top times the derivative of the bottom over the bottom squared BDT TBD 2 B Quotient Rule f ( x) (5 x 1) 4 (2 x 1) 3 f ( x) (2x 1) (3)(5x 1) (5) (5x 1) (4)(2 x 1) (2) 4 2 3 (2 x 1) 8 Example 3 (3 x 5 x ) ◦ f ( x) 2 4 (6 x 2 x ) 2 Try Me 2 f ( x) (6 x2 2 x 4 )(2)(3x 2 5x)(6 x 5) (3x 2 5x)2 (6 x2 2 x 4 )(12 x 8x3 ) (6 x2 2 x4 )2 Solution Bring down exponent, multiply coefficient if there’s one, and write the trig and the angle times the derivative of the trig times the derivative of the angle 1. d (sin 2 3 x) dx 2sin 3x cos 3 x 3 E T A 2. d (cos3 (sin x)) dx 2 3cos (sin x) ( sin(sin x)) (cos x) d 3x e dx 3x e (3) NATURAL LOG 1 over the angle times the derivative of the angle ya x dy x a ln a dx EXAMPLE y2 x ln y x ln 2 1 dy x(0) ln 2(1) y dx 1 dy ln 2 y dx dy 2 x ln 2 dx TRY ME yx ln x SOLUTION ln y ln x ln x 1 dy 1 1 ln x( ) ln x( ) y dx x x dy ln x 2 ln x x ( ) dx x Implicit • Is almost the same as a chain rule but it includes x and y and the x’s and y’s can be separated • x2 y 2 1 dy 2x 2 y 0 dx dy 2 x dx 2 y dy x dx y Example • 3x3 4 y 2 5 dy 9x 8 y 0 dx dy 8y 9 x 2 dx dy 9 x 2 dx 8y 2 Try Me 3x 2 xy 5 y 1 2 2 Solution 6 x 2 x(1) dy dy 2 y (1) 10 y 0 dx dx dy (2 x 10 y ) 2 y 6 x dx dy 2 y 6x dx 2 x 10 y dy y 3x dx x 5 y d 4 2 (tan ( x 2 x 1)) dx 4 tan ( x 2 x 1) sec ( x 2 x 1) (2 x 2) 3 2 2 2 y 2x x 1 2 OR y (2 x)( x 1) 2 1 2 1 2 1 2 1 2 2 y ' (2 x)( )( x 1) (2 x) ( x 1) (2) 2 2 y 3 (5 x 1) 4 y ' 6(5 x 1) (5)