* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download comp426-f14-18-Databases
Microsoft SQL Server wikipedia , lookup
Oracle Database wikipedia , lookup
Extensible Storage Engine wikipedia , lookup
Ingres (database) wikipedia , lookup
Microsoft Jet Database Engine wikipedia , lookup
Open Database Connectivity wikipedia , lookup
Concurrency control wikipedia , lookup
Functional Database Model wikipedia , lookup
Entity–attribute–value model wikipedia , lookup
Relational algebra wikipedia , lookup
Clusterpoint wikipedia , lookup
ContactPoint wikipedia , lookup
Relational Databases COMP 426 Fall 2014 Lecture 18 What’s a database? • A collection of data • Examples of collections of data? – – – – Library Web Stacks of papers on your desk Set of baseball cards. • Are all of these things databases? Web vs. Library • What’s the big difference? – Organization – In what ways is the library organized? • Databases have organization. Library vs Baseball Cards • What’s the primary object in these two collections? – Libraries: books – Baseball card collections: baseball cards • How alike are books? – Somewhat, but large variatations • How alike are baseball cards? – Very alike. • Things in databases are highly structured. One library vs another • What’s the difference between the Wilson Library and the House Library? • Different purposes leads to different priorities (in organization and content). • Databases are built for a purpose. – The more specific the purpose, the more specific its structure and organization. So, what’s a database • A database is an collection of structured information organized for a specific purpose. Relational Databases • Relational databases are the most prevalent type of database used. • Information is organized into related tables. • Each table captures information about a different entity. – Columns are different fields of information (attributes of the entity). – Each row represents one instance (a specific example of the entity). Design Goals • What kinds of information do we want to keep track of? • What do we want to do with that information? Entities • First step in database design is to identify entities. – Think of entities as “things” that you want to know information about. – What do we care about for our bookstore? • Books (duh?) Attributes • Next step is to identify attributes of those entities. • An attribute is labeled piece of information (i.e., a name/value pair) • In general, we expect every instance of a particular entity to have specific values for a set of common attributes. Book Entity Book Author(s) Title Publisher Genre Price Normalization • Not all database designs are equal. • Experience and research has shown that certain structures and relationships are easier to maintain and process than others. • Normalization: a process through which a database design is “cleaned up” • Well-defined set of “normal forms” which are the incremental result of this process. 1NF • First Normal Form – All attributes are single-valued. – All instances have a unique identifier. Book Entity Revisited • Is our book entity in 1NF? Book Author(s) Title Publisher Genre Price Bookstore Entities (1NF) • Multi-valued attributes generally indicate the need for a new entity. Book Author Title First Publisher Last Genre Birthday Price Unique Identifiers • What in our book and author entities can act as a unique identifier? • Often (almost always) the best way to create a unique identifier is to create an artificial one. – Book ID, Author ID. – Assigned by the database itself. – No inherent semantics. Book Entities (1NF) v2 Book Author ID Title ID Publisher Last Genre Birthday Price First Modeling Relationships • Two relationship types. – One-to-Many – Many-to-Many • For now, we’ll just model this pictorially like this: Book Author ID Title ID Publisher Last Genre Birthday Price First 2NF • Second Normal Form – Already in 1NF – Non-identifying attributes are dependent on the entity’s unique identifier. • Rule of thumb: if the same value appears multiple times for a particular attribute, think hard if what you really need is another entity. • In particular, if the same value for the same attribute for two different instances of an entity meaningfully relates those entities to each other. Bookstore Entities • What might we pull out into an entity? Book Author ID Title ID Publisher Last Genre Birthday Price First Bookstore Entities (2NF) Publisher ID Name Address Book ID Title Price State Author ID First Last Birthday State Abbrev. Genre ID Genre Name 3NF • Third Normal Form – In 2NF – No attributes dependent on each other without being uniquely dependent on the id. • What part of our data model violates this? • To fix, generally want to pull the dependent attributes out into their own entity. Bookstore Entities (3NF) Publisher ID Name Address Book ID Title Price Author ID First Last Birthday State ID Long Name Abbrev. Genre ID Genre Name Logical vs Physical Design • Result so far is “logical” database design. • Still need to implement this design as a specific database. • Relational databases: – – – – – Each entity associated with a table. Attributes are columns of the table. Each attribute is given a data type. Unique identifiers are “primary keys” Relationships are embodied as “foreign keys” • An attribute whose value is the unique identifier in another table. Implementing 1-to-many • To implement a 1-to-many relationship, add an attribute on the “many” side which is the unique identifier of the “one” side. Implementing 1-to-many Publisher ID Name Address StateID State ID Long Name Abbrev. Book ID Title Price PubID GenreID Genre ID Genre Name Author ID First Last Birthday Resolving M-to-M • Many-to-many relationships are hard to implement in a database. • Why is this? – Foreign key attribute which is supposed to implement the relationship requires multiple values. – This breaks 1NF structure. • How might we fix it? Junction Entities • A junction entity is an abstract entity provides a level of indirection for a manyto-many relationship. Adding BookAuthor Junction Publisher ID Name Address StateID State ID Long Name Abbrev. Book ID Title Price PubID GenreID Genre BookAuthor ID BookID AuthorID Author ID ID Genre Name First Last Birthday SQL • Structured Query Language (SQL) – The language in which we express actions to be performed on a relational database. – Standardized to allow portability across different products. • SQL92 (aka SQL2) is the latest standard. – Product specific differences and extensions still exist, but much better than before. MySQL • MySQL – – – – Open-source Great for small to mid-sized organizations. Fast, efficient, cheap Doesn’t support full SQL but a good portion of it. Web App Model Browser HTTP Requests DB On Disk Web Server HTTP Responses JavaScript Programmable, dynamic interface to the document and client-side controller logic. PHP Server-side controller logic behind RESTful interface SQL Database Structured, table-based, information storage