Download PPT Review 4.6 - 4.7-0

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Solve each equation or inequality
1. b - 10 = -3
b
é 10
ù
êëb- = -3úû(b)
b
b -10 = -3b
2
b + 3b-10 = 0
2
(b+ 5)(b- 2) = 0
b = 2, -5
(12)
3y
+1
2
+
4
y
5
é 3y+1
ù
4y
5
2. ê
+
==-- ú
ë 4
33
66û
3(3y+1) + 4(2 + 4y) = 2(-5)
9y+ 3+ 8 +16y = -10
25y = -21
-21
y=
25
Solve each equation or inequality
3. 2 + 6 £ -5
w w -1
a
6
4.
+
=2
a - 2 a+ 2
é2
ù
6
êë w + w -1 £ -5úû(w)(w -1)
é a
ù
6
êë a - 2 + a+ 2 = 2 úû(a - 2)(a+ 2)
2(w -1) + 6(w) £ -5(w)(w -1)
a(a + 2) + 6(a - 2) = 2(a2 - 4)
2w - 2 + 6w + 5w - 5w £ 0
a2 + 2a + 6a -12 - 2a2 + 8 = 0
5w + 3w - 2 £ 0
-a2 + 8a - 4 = 0
2
2
USE QUADRATIC FORMULA
w = 2/5, -1
What values go
on your number
lines??
2/5, -1, 0, and 1
-1 £ w < 0
2 £ w <1
5
-8 ± 64 - 4(-1)(-4)
-2
-8 ± 48 -8 ± 4 3
=
-2
-2
4±2 3
Example: Solve.
3 1 12
 
x 2 x
2 x * 3 2 x 2 x *12


x
2
x
6  x  24
 x  18
x  18
LCM: 2x
Multiply each fraction
through by the LCM
3
1 12
 
 18 2  18
3  9  12
Check your
solution!
Solve.
5x
5
 4
x 1
x 1
LCM: ?
LCM: (x+1)
5 x( x  1)
5( x  1)
 4( x  1) 
( x  1)
( x  1)
5x  4 x  4  5
5x  4 x  1
x  1
5(1)
5
 4
1 1
1 1
5
5
 4
0
0
?
Check your
solution!
No Solution!
Solve.
3x  2
6
 2
1
x2 x 4
Factor 1st!
3x  2
6

1
x  2 ( x  2)( x  2)
LCM: (x+2)(x-2)
(3x  2)( x  2)( x  2) 6( x  2)( x  2)

 ( x  2)( x  2)
( x  2)
( x  2)( x  2)
3x 2  6 x  2 x  4  6  x 2  2 x  2 x  4
3x 2  4 x  4  x 2  2
2x  4x  6  0
2
x  2x  3  0
( x  3)( x  1)  0
x  3 or x  1
2
x  3  0 or x 1  0
Check your
solutions!
Decompose this into partial fractions
5. 4 p +13p -12
p3 - p2 - 2 p
2
é 44pp +13p-12
+13p-12 AA BB
CC ù
== ++
++
ê
ú
p(p-2)(p+1)
2)(p+1) pp pp-22 p+1
p+1û
ë p(p-
( p)( p-2)( p+1)
22
4(0)2
4p2 +13p-12 = A(p- 2)(p+1)+ B(p)(p+1)+C(p)(p- 2)
What values are excluded?
x≠0
x≠2
x ≠ -1
4(0)2 +13(0) -12 = A(0 - 2)(0 +1)+ B(0)(0 +1)+C(0)(0 - 2)
-12 = -2A
Then substitute other
6
5
7
+
excluded values to find
A= 6
p p - 2 p +1
B and C
Solve each equation or inequality
6.
(
x-3+4 =6
x- 3 = 2
2
2
x - 3 = ( 2)
)
x- 3 = 4
x=7
2x - 3 = 5x + 4
7.
(
) (
2
2x - 3 =
5x + 4
)
2x- 3 = 5x+ 4
-7 = 3x
-7
x=
3
No real solution
2
Solve each equation or inequality
8.
k - 7 + k - 3 = 2 9.
(
k- 7 = 2- k-3
) (
2
k- 7 = 2- k-3
)
2
k- 7 = 4- 4 k-3 +k-3
-8 = -4 k - 3
2 = k-3
4 = k-3
k=7
3
2m-1 + 6 = 3
3
(
3
2m-1 = -3
)
3
2m-1 = (-3)
2m-1= -27
m = -13
3
Solve each equation or inequality
10.
(
3t + 7 > 7
)
2
But remember that you can have a
negative value under a radical
3t + 7 = ( 7)
3t + 7 = 49
t =14
No
3t + 7 ³ 0
-7
t³
3
2
So now test around those
values on a number line
No
-7
3
Yes
t > 14
14
11.) Find the upper and lower
bound of the zeros of:
f (x) = x3 - 3x2 - 2x -1
Upper = 4
Lower = -1
Approximate the real zeros of each
functions to the nearest tenth.
4
3
f
(x)
=
x
3x
+ 2x -1
12. f (x) = -x - 2x + 4 13.
3
x = 1.2
x = -0.9, 2.8
Approximate the real zeros of each
functions
14.f (x) = x3 + 4x2 - 3x - 5 15. f (x) = -3x4 - 5x3 + x - 2
x = -4.4, -0.9, 1.3
No real zeros
16.) Find the number of positive,
negative, and imaginary:
f (x) = x3 - x2 + 6x +1
Pos. 2 or 0
Neg. 1
17.) Find the possible rational
roots: f (x) = 2x3 - 4x2 + 5x - 3
±1,±3,±1.5,±0.5
Find the remainder of each division.
Then state whether the binomial is a
factor?
3
18. (x -14 x) ¸ (x - 5)
3
Remainder = 55
Not a factor
19.
x - 6x + 9
x-3
Remainder = 18
Not a factor
20.) Use synthetic division to
3
2
x
5x
-17x - 6
divide:
x+2
x - 7x - 3
2
Graph each equation or inequality:
21. y < 4 - x - x2
2
y
=
x
+ 4x + 4
22.
Solve each equation or inequality
23. 2x2 - 5x + 2 = 0
x=2
x=1
2
24. 3x - x +10 = 0
2
1 ± i 119
x=
6
Solve each equation by completing
the square:
25. x2 - 5x - 84 = 0
x = 12
x = -7
7
1
26. x - x + = 0
12
12
2
1
x=
3
1
x=
4
27.) Find the discriminant of the
function given and describe the
nature of the roots. 2x2 - 8 + 3x = 0
Discriminant = 73
2 distinct real roots
Write the polynomial equation of
least degree have the roots:
28.) 1, -1, 0.5
2x3 - x2 - 2x +1 = 0
Find the roots of each equation:
29. x + 36 = 0
2
x = ±6i
30. 4x -10x - 24x = 0
3
2
x = 0,4,-1.5
Related documents