Download Slides - Agenda INFN

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Progress report on the detector optimization
& Progress report on observation strategies
and estimation techniques (part B)
Apostolos Tsirigotis, Antonis Leisos, Spyros Tzamarias
Physics Laboratory H.O.U
Outline
• Discovery Potential using the Un-Bin method in extended sources
• Comparison of different detector layouts
• Stack of galactive sources
• Analysis strategy taking into account the source structure
KM3NeT General Meeting
20-23 February 2012
LNS Catania
Reminder of the Un-bin method
angle
energy
Psignal  x , y , Em , m ;    Psignal
( x , y )  Psignal
( Em , m ;  )
energy
Pbck  Pbckangle ( x , y )  Pbck
( Em , m )
Pi  x , y , Em , m ;  , N s  

Ns
N 
 Psignal  x , y , Em , m ;    1  s  Pbck  x , y , Em , m 
Ntotal
 Ntotal 
N  N   m N
mB 
e

L  , N s  

Ntotal  N s ! i 1
total
s
  2  ln
B
total

Pi  x , y , Em , m ;  , N s

L0 N s  0 
L   2, N s 

Extended Source
1
angle
Psignal
(θx , φy ) 
Point source 
1 e

R max
s2x s2y

Psignal ( x ,  y ) 
angle
1
1 e

1
d
sx2  s y2
2 x y

e
1
e
2πσ x σ y

1  x t
 
2 
s x2

  
2

y
t
sy2
 
2
1  θx2 φy 


 
2  s2x s2y 


2


1
d d
d2 t t
d
Rm
R 2

angle
angle
m
Psig n a l ( x ,  y ) Psig n a l   ,cos  t 
 d 


cos θ=0 -0.05
Comparison of the Discovery Potentials
Number of events (N) – Angular profile (S) – Energy (E)
5.00
Discovery Potential in units of the
reference flux
RXJ1713
T180 NES
T180 NS
T180 N
T180(A)
0.50
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
years
Energy distribution of signal (RXJ1713) and
background (atmospheric)
cos θ=0 - -0.05
Signal
Background
Signal
Background
(R/d)2
cos θ=-0.95 - -1.
logE, E in GeV
(R/d)2
Comparison of the Discovery Potentials
Number of events (N) – Angular profile (S) – Energy (E)
Number of sets
Background samples
15 y 12 y 8 y 10y
S100
Only the Poisson term (total number of events)
Total number of events + Angular profile + Energy
21 signal
events on top
of bck
Cumulative
Probability
distribution of the test statistic λ
S100
Only Background
  2  ln
L0  N s  0 
L Nˆ
 
s
  2  ln
L0  N s  0 
L Nˆ
 
s
Comparison of the Discovery Potentials
Cumulative
Probability
Number of events (N) – Angular profile (S) – Energy (E)
S100
21 signal
events on top
of background
  2  ln
L0  N s  0 
L Nˆ
 
s
22% improvement in DP
FOM 7.2y  5.6y
Comparison of the Discovery Potentials
For different detector layouts
308 Towers with vertical separation of 130 m (T130)
308 Towers with vertical separation of 150 m (T150)
308 Towers with vertical separation of 180 m (T180)
616 Strings with vertical separation of 100 m (S100)
616 Strings with vertical separation of 130 m (S130)
5-σ DISCOVERY POTENTIAL @ 50% C.L.
Discovery Potential in units of the
reference flux
5.00
T180
T150
T130
S130
S100
0.50
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16
years
FOM (years of observation time)
5-σ DISCOVERY @ 50% C.L.
0.70
3
3.5
4
4.5
5
5.5
6
6.5
7
7.5
8
8.5
9
9.5
10
T180
8.4y
T150
7.6y
T130
6.4y
S130
6.0y
S100
5.6y
Size (degrees) *
Source
Flux
RXJ1713.7-3496
Radius
0.65
1.68*10-11*(E-1.72)*exp(-sqrt(E/2.1))
RXJ0852.0-4622
Radius
1.00
1.676*10-11*(E-1.78)*exp(-sqrt(E/1.19))
HESSJ1616-508
Gaussian σ
0.16
0.42*10-11*(E-2.2)*exp(-sqrt(E/2,1)) **
HESSJ1614-518
Gaussian σ
0.25
0.46*10-11*(E-2,2)*exp(-sqrt(E/2.1)) **
dN/dE (TeV-1 cm-2 s-1 )
* ApJ 636 (2006) 777 , A&A 437-L7
HESSJ1616-508
HESSJ1614-518
Energy (TeV)
** approximation (red line) of the ApJ
656 (2007) fluxes (black line) in order to
incorporate the same energy cut-off as in
the RXJ1713.7 case.
Modeling the Spatial Distribution of the Sources
generated
neutrinos
φ
Reconstructed
neutrino
directions
generated
neutrinos
Reconstructed
neutrino
directions
θ
WPD Full Detector – 308 Towers – 180 m horizontal separation
Source
Wide Ring
Selection
Optimum Ring
Selection *
FoM (y)
bin
FoM (y)
un-bin**
Signal
per year
Backgr.
per year
Signal
per year
Backgr.
per year
RXJ1713.73496
3.3
5.9
2.9
3.7
11
8.4*** (3σ:
3.3)
RXJ0852.04622
2.6
12.4
2.1
7.4
41
33 (3σ: 11)
HESSJ1616-508
0.9
2.8
0.7
1.2
68
57 (3σ: 19)
HESSJ1614-518
0.82
6.26
0.6
2.7
-
-
* Optimum Sensitivity and cuts to reject all the atm. muon-background
** Tracking and Energy Information is used
*** Only with tracking information the FoM is 9.6 y
SOURCE STACKING
In case of: K sources, Ntotal observed tracks from all the sources and MB total expected
background
Psignal  x ,  y , Em ,  m ;     wn  Psignal  x ,  y , Em ,  m ;   and
n
Pbck    n Pback
 x , y , Em ,m 
K
K
n
n 1
where : wn 
exp. signal n
K
 exp. signal 
n
n 1
n 
exp. bck n
K
 exp . bck 
n 1
Pi  x ,  y , Em ,  m ;  , N s  
or 
n
or 
n 1
observation time n
K
 observation time 
1
K
n
n 1
observation time n
K
 observation time 
n 1
or 
or 
1
K
n
 N
N s total
 Psignal  x ,  y , Em ,  m ;    1  s total
N total
N total


 Pbck  x ,  y , Em ,  m 

WPD Full Detector – 308 Towers
Stacking Sources
Assuming 6 years of observation, the 50% discovery potential of
RXJ1713.7-3496 corresponds to 1.33* 1.68*10-11*(E-1.72)*exp(-sqrt(E/2.1))
RXJ0852.0-4622 corresponds to 2.55*1.676*10-11*(E-1.78)*exp(-sqrt(E/1.19))
HESSJ1616-508 corresponds to 3.3*0.42*10-11*(E-2.2)*exp(-sqrt(E/2,1))
HESSJ1614-518 corresponds to 5.3*0.46*10-11*(E-2,2)*exp(-sqrt(E/2.1))
STACKING TOGETHER 6 years simultaneous observations of the RXJ1713.7-3496 and the
RXJ0852.0-4622 , the 50 % discovery potential of observing neutrino from these sources
corresponds to:
1.22* [1.68*10-11*(E-1.72)*exp(-sqrt(E/2.1))+1.676*10-11*(E-1.78)*exp(-sqrt(E/1.19))] using as
weights the relative source strength
In this case the FoM is less than 7.5 years whilst for the RXJ1713.7-3496 alone is 8.4 y
Events/bin (a.u.)
Taking into account the source structure…
R
Decl.
R.A
Events/deg**2
fraction
R [Degrees]
R [Degrees]
Simulate the ν emission to follow the (raw) VHE gamma emission topology
(just a toy model)
3D angular distribution of the reconstructed (ν) signal induced muons
1
angle
Psignal
( x , y ) 
1e
1
angle
Pbck
( x , y ) 


1
R max
sx2 sy2

2 x y
e
2 
 2
1  x  y 
 

2
2 
2 
 sx sy 
101
angle
Psignal ( x ,  y , E)   E   wi  Psignalbini
( x ,  y )
i 1
Ptotal ( x ,  y , E) 
ns
n 

Psignal   1  s  Pback

N
N
Each bin of the source-model contributes as

Psignalbin ( x ,  y ) 
angle
1
1 e

1
2
Rmax
sx2  sy2
2 x y


e

1   x t

2 
sx2

  
2
y
t
sy2
 
2


1
d d
d2 x y
Back (15y)
166.4 μ
Back (8y)
88.7 μ
20 signal
events
Back (6 y)
66.6μ
Back (1y)
11.1 μ