Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
STEADY-STATE POWER ANALYSIS LEARNING GOALS Instantaneous Power For the special case of steady state sinusoidal signals Average Power Power absorbed or supplied during one cycle Maximum Average Power Transfer When the circuit is in sinusoidal steady state Effective or RMS Values For the case of sinusoidal signals Power Factor A measure of the angle between current and voltage phasors Complex Power Power Factor Correction Measure of power usingtransfer phasorsto a load by “aligning” phasors How to improve power Single Phase Three-Wire Circuits Typical distribution method for households and small loads INSTANTANEOUS POWER Instantaneous Power Supplied to Impedance p( t ) v ( t ) i ( t ) In steady State Assume : v (t ) 4 cos( t 60), Z 230 Find : i (t ), p(t ) V 460 I 230( A) Z 230 i (t ) 2 cos( t 30)( A) VM 4, v 60 I M 2, i 30 v (t ) VM cos( t v ) p(t ) 4 cos 30 4 cos(2 t 90) i (t ) I M cos( t i ) p(t ) VM I M cos( t v ) cos( t i ) 1 cos1 cos2 cos(1 2 ) cos(1 2 ) 2 V I p(t ) M M cos( v i ) cos(2 t v i ) 2 constant LEARNING EXAMPLE Twice the frequency AVERAGE POWER LEARNING EXAMPLE For sinusoidal (and other periodic signals) we compute averages over one period 1 P T t 0 T p(t )dt T VR 2 t0 Find the average power absorbed by impedance VM I M cos( v i ) cos(2 t v i ) 2 V I P M M cos( v i ) It does not matter who leads 2 p( t ) If voltage and current are in phase 1 2 v i P VM I M Purely resistive If voltage and current are in quadrature v i 90 P 0 Purely inductive or capacitive I 1060 1060 3.5315( A) 2 j 2 2 245 VM 10, I M 3.53, v 60, i 15 P 35.3 cos(45) 12.5W Since inductor does not absorb power one can use voltages and currents across the resistive part VR 2 1060 7.0615(V ) 2 j2 1 P 7.06 3.53W 2 LEARNING EXAMPLE Determine the average power absorbed by each resistor, the total average power absorbed and the average power supplied by the source Inductors and capacitors do not absorb power in the average Ptotal 18 28.7W Psupplied Pabsorbed Psupplied 46.7W Verification If voltage and current are in phase I I1 I 2 345 5.3671.57 I 8.1562.10( A) 2 1 2 1 1 V M v i P VM I M RI1M 2 2 2 R P VM I M cos( ) v i 1245 2 I1 345( A) 1 4 Psupplied 12 8.15 cos(45 62.10) 1 2 P4 12 3 18W 2 1245 1245 I2 5.3671.57( A) 2 j1 5 26.37 1 P2 2 5.362 (W ) 28.7W 2 LEARNING EXTENSION I I Find average power absorbed by each resistor I2 1260 Zi I 2 1.9041.6 I2 Z i 2 (4 || j 4) 4( j 4) 8 j8 j16 25.3 71.6 4 j4 4 j4 4 2 45 Zi 4.47 26.6 Zi 2 1260 2.6886.6( A) 4.47 26.6 1 2 1 P2 RI M 2 2.682 7.20W 2 2 I j4 4 90 I 2.6886.6 4 j4 4 2 45 1 P4 4 1.902 (W ) 2 LEARNING EXTENSION I1 Vs Find the AVERAGE power absorbed by each PASSIVE component and the total power supplied by the source I2 1 P4 4 4.122 (W ) 2 Pj 2 0(W ) I1 4 j2 1030 3 4 j2 4.4726.57 I1 1030 6.1440.62( A) 7.2815.95 1 2 1 P3 RI M 3 6.142 (W ) 2 2 I 2 1030 6.1440.62 3 3030 1030 3 4 j2 7.2815.95 4.1214.05( A) I2 Power supplied by source Method 1. Psupplied Pabsorbed Psupplied P3 P4 90.50W Method 2: P 1 V I cos( ) M M v i 2 Vs 3I1 18.4240.62 1 P 18.42 10 cos(40.62 30) 2 LEARNING EXAMPLE Determine average power absorbed or supplied by each element 1230 60 10.39 j 6 6 6 j 4.39 j1 j 7.43 36.19( A) 1 P60 6 7.43 cos(0 36.19) 18W 2 I3 Passive sign convention I2 1230 630( A) 2 I1 I 2 I 3 5.20 j 3 6 j 4.39 11.2 j1.39( A) 11.28 7.07 1 2 1 P2 RI M 2 62 36(W ) 2 2 Pj1 0 To determine power absorbed/supplied by sources we need the currents I1, I2 Average Power For resistors 2 1 P VM I M cos( v i ) P 1 RI 2 1 VM M 2 2 2 R 1 P1230 12 11.28 cos(30 7.07) 2 54(W ) 36 18 LEARNING EXTENSION Determine average power absorbed/supplied by each element V4 I2 I1 1 P120 19.92 12 cos(54.5 0) 69.4(W ) 2 1 P430 4 (9.97) cos(30 204) 19.8(W ) 2 Check: Power supplied =power absorbed Loop Equations I1 120 430 j 2 I 2 4( I 2 120) I2 44.58177.43 9.97204( A) 4.47 26.57 4( I1 I 2 ) 4(12 9.97204)(V ) I2 V4 430 480 3.46 j 2 48 4 j2 4.47 26.57 Alternative Procedure Node Equations V4 V4 430 0 4 j2 430 V4 I2 2j 120 4(12 9.108 j 4.055)(V ) 19.92 54.5(V ) For resistors Average Power 1 VM2 1 19.922 P4 49.6W 2 1 2 R 2 4 1 1 V 2 M P VM I M cos( v i ) P RI M 2 P2 j 0(W ) 2 2 R Determine average power absorbed/supplied by each element LEARNING EXTENSION V I1 240 V 24 14.77 j1.85 4.62 j 0.925 2 2 I1 4.71 11.32( A) I1 I2 I2 I2 120 V 12 14.77 j1.85 j j2 j2 j 1.85 j 2.77 0.925 j1.385( A) 1.67123.73( A) 2 1 P2 2 4.712 22.18(W ) For resistors 2 2 2 V 240 V 120 V 1 1 V 2 1 14 . 88 M 0 j4 P RI M P 27 . 67 ( W ) 4 2 j2 4 2 2 R 2 4 1 2 j (V 24) 2(V 12) jV 0 P120 12 1.67 cos(0 123.73) 5.565(W ) 2 (2 3 j )V 24 j 48 1 P240 24 4.71 cos(0 11.32) 55.42(W ) 24 j 48 2 j 3 192 j 24 2 V Check : 2 j3 2 j3 13 Average Power Pabsorbed 22.18 27.67 5.565(W ) 14.887.125(V ) 1 P VM I M cos( v i ) Psupplied 55.42(W ) 14.77 j1.85(V ) 2 Node Equation Sources of different frequencies • • If sources have different frequencies to find power, i.e. P=P1+P2 1 2 , must use superposition 1 2 If sources have same frequencies , cannot use superposition to find power, i.e. P‡P1+P2 (although you can still use superposition to find currents and voltages). , Find the average power absorbed by the resistor in the circuit shown P2 1 2 6 10 2 I1 460o I 3 4 30o I1 I 3 5.6615o 1 P13 5.66210 2 P P13 P2 340.2W MAXIMUM AVERAGE POWER TRANSFER ZTH RTH jXTH 1 | Z L || VOC |2 PL 2 | Z L ZTH |2 RL RL2 X L2 Z L ZTH ( RL RTH ) j ( X L X TH ) | Z L ZTH |2 ( RL RTH ) 2 ( X L X TH ) 2 Z L RL jX L 1 PL VLM I LM cos(VL I L ) 2 1 | VL || I L | cos(VL I L ) 2 ZL ZL VL VOC | VL | | VOC | Z L ZTH Z L ZTH VL I L VL Z L |V | | I L | L Z L V I Z L | ZL | L L Z L RL jX L tan(Z L ) X L RL IL cos 1 1 tan 2 cos(VL I L ) RL RL2 X L2 1 | VOC |2 RL PL 2 ( RL RTH )2 ( X L X TH )2 PL 0 X L X L X TH PL 0 RL RTH RL * Z Lopt ZTH PLmax 1 | VOC |2 2 4 RTH LEARNING EXAMPLE Find Z L for maximum average power transfer. Compute the maximum average power supplied to the load Z Lopt * ZTH PLmax 1 | VOC |2 2 4 RTH Remove the load and determine the Thevenin equivalent of remaining circuit 8 j 4 (8 j 4)(6 j1) 52 j16 6 j1 37 37 8 j 4 8.9426.57 1.4716.93 6 j1 6.089.64 ZTH 4 || (2 j1) Z L* 1.47 16.93 1.41 j 0.43 I1 VOC 4 2 320 40 5.26 9.64 6 j1 6.089.64 PLmax We are asked for the value of the power. We need the Thevenin voltage 1 5.262 2.45(W ) 2 4 1.41 LEARNING EXAMPLE Find Z L for maximum average power transfer. Compute the maximum average power supplied to the load Z Lopt PLmax * ZTH 1 | VOC |2 2 4 RTH Circuit with dependent sources! ZTH VOC I SC 40 Vx' (2 j 4) I1 KVL VX' 2 I1 40 (4 j 4) I1 (4 245) I1 I1 KVL 40 0.707 45( A) 4 245 VOC 2 I1 40 1 j1 4 3 j1 10 161.5 Next: the short circuit current ... LEARNING EXAMPLE (continued)... Original circuit Z Lopt * ZTH LOOP EQUATIONS FOR SHORT PLmax 1 | VOC |2 2 4 RTH CIRCUIT CURRENT V x" j 4 I 2( I I SC ) 4 0 40 2( I SC I ) j 2 I SC 0 CONTROLLING VARIABLE Vx" 2( I SC I ) Substitute and rearrange (4 j 4) I 4 I SC 4 2 I (2 j 2) I SC 4 I (1 j1) I SC 2 4(1 j )(1 j ) I SC 2 4 I SC 4 I SC 1 j 2( A) 5 116.57 VOC 2 I1 40 1 j1 4 3 j1 10 161.57 ZTH 2 45 1 j1 Z Lopt 1 j1 PLmax 1 ( 10 )2 1.25(W ) 2 4