Download Chapter 1 Linear Equations and Graphs

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Chapter 9
Trigonometric
Functions
Section 2
Derivatives of
Trigonometric
Functions
Part 1
Learning Objectives for Section 9.2
Derivatives of Trig Functions
β–  The student will be able to
use and apply the formulas
for derivatives of the
trigonometric functions.
Barnett/Ziegler/Byleen Business Calculus 12e
2
Review of Derivatives
ο‚§ Power Rule w/ Chain Rule:
β€’ 𝑦 = 𝑓(π‘₯) 𝑛
𝑦 β€² = 𝑛 𝑓(π‘₯)
ο‚§ Natural Log w/ Chain Rule:
β€’ 𝑦 = ln 𝑓(π‘₯)
𝑦′
=
π‘›βˆ’1 𝑓′(π‘₯)
1
𝑓′(π‘₯)
𝑓(π‘₯)
ο‚§ Exponential w/ Chain Rule:
β€’ 𝑦 = 𝑒 𝑓(π‘₯)
𝑦 β€² = 𝑒 𝑓(π‘₯) 𝑓′(π‘₯)
ο‚§ Product Rule:
β€’ 𝑦 = 𝐿 π‘₯ 𝑅(π‘₯) 𝑦 β€² = 𝐿 π‘₯ 𝑅′ π‘₯ + 𝑅 π‘₯ 𝐿′(π‘₯)
ο‚§ Quotient Rule:
β€’ 𝑦=
𝐻(π‘₯)
𝐿(π‘₯)
𝑦′
=
𝐿 π‘₯ 𝐻 β€² π‘₯ βˆ’π» π‘₯ 𝐿′ π‘₯
𝐿(π‘₯) 2
Barnett/Ziegler/Byleen Business Calculus 12e
3
Derivative Formulas
For Sine and Cosine
Basic Form:
𝑦 = sin π‘₯
𝑦 β€² = cos π‘₯
𝑦 = cos π‘₯
𝑦 β€² = βˆ’ sin π‘₯
Chain Rule:
𝑦 = sin 𝑓(π‘₯)
𝑦 β€² = cos 𝑓(π‘₯) βˆ™ 𝑓′(π‘₯)
Barnett/Ziegler/Byleen Business Calculus 12e
𝑦 = cos 𝑓(π‘₯)
𝑦 β€² = βˆ’ sin 𝑓(π‘₯) βˆ™ 𝑓′(π‘₯)
4
Example 1
Find the derivative of each function given.
𝑦 = 2 sin π‘₯
𝑦 = sin(3π‘₯)
𝑦 = sin(π‘₯ 2 )
𝑦′ = 2 cos π‘₯
𝑦′ = cos(3π‘₯) βˆ™ 3
𝑦′ = π‘π‘œπ‘ (π‘₯ 2 ) βˆ™ 2π‘₯
𝑦′ = 3 cos(3π‘₯)
𝑦′ = 2x π‘π‘œπ‘ (π‘₯ 2 )
𝑦 = sin π‘₯
3
𝑦′ = 3 sin π‘₯
𝑦 = sin 4π‘₯
2
βˆ™ cos π‘₯
𝑦′ = 3 cos π‘₯ 𝑠𝑖𝑛2 π‘₯
3
𝑦′ = 3 sin 4π‘₯ 2 βˆ™ (cos 4π‘₯) βˆ™ 4
𝑦′ = 12 sin 4π‘₯ 2 βˆ™ (cos 4π‘₯)
𝑦′ = 12 𝑠𝑖𝑛2 4π‘₯ βˆ™ (cos 4π‘₯)
Barnett/Ziegler/Byleen Business Calculus 12e
5
Example 2
Find the derivative of each function given.
𝑦 = 5 π‘π‘œπ‘  π‘₯
𝑦 β€² = βˆ’5 𝑠𝑖𝑛 π‘₯
𝑦 = π‘π‘œπ‘  π‘₯
𝑦 = cos(8π‘₯)
𝑦 = π‘π‘œπ‘ (π‘₯ 3 )
𝑦′ = βˆ’π‘ π‘–π‘›(8π‘₯) βˆ™ 8
𝑦′ = βˆ’π‘ π‘–π‘›(π‘₯ 3 ) βˆ™ 3π‘₯ 2
𝑦 β€² = βˆ’8 𝑠𝑖𝑛(8π‘₯)
𝑦′ = βˆ’3π‘₯ 2 𝑠𝑖𝑛 (π‘₯ 3 )
4
𝑦′ = 4 π‘π‘œπ‘  π‘₯
3 (βˆ’π‘ π‘–π‘› π‘₯)
𝑦 β€² = βˆ’4 π‘π‘œπ‘  π‘₯
3 (𝑠𝑖𝑛 π‘₯)
𝑦 β€² = βˆ’4(π‘π‘œπ‘  3 π‘₯) (𝑠𝑖𝑛 π‘₯)
Barnett/Ziegler/Byleen Business Calculus 12e
6
Example 3
Find the derivative of tan x:
sin π‘₯
𝑦 = tan π‘₯ =
cos π‘₯
β€²
𝐿𝐻
βˆ’ 𝐻𝐿′
β€²
𝑦 =
𝐿2
cos π‘₯ cos π‘₯ βˆ’ sin π‘₯ (βˆ’ sin π‘₯)
β€²
𝑦 =
cos π‘₯ 2
2 π‘₯ + 𝑠𝑖𝑛2 π‘₯
π‘π‘œπ‘ 
𝑦′ =
π‘π‘œπ‘  2 π‘₯
1
=
π‘π‘œπ‘  2 π‘₯
Barnett/Ziegler/Byleen Business Calculus 12e
𝐼𝑑𝑒𝑛𝑑𝑖𝑑𝑦:
𝑠𝑖𝑛2 π‘₯ + π‘π‘œπ‘  2 π‘₯ = 1
= 𝑠𝑒𝑐 2 π‘₯
7
Example 4
Find the derivative of the function given.
1
𝑦 = 𝑠𝑒𝑐 π‘₯ =
cos π‘₯
𝑦 β€² = cos π‘₯
βˆ’1
𝑦 β€² = βˆ’1 cos π‘₯ βˆ’2 βˆ™ (βˆ’ sin π‘₯)
sin π‘₯
1
sin π‘₯
sin π‘₯
β€²
= tan π‘₯ sec π‘₯
=
βˆ™
𝑦 =
=
cos π‘₯ cos π‘₯
cos π‘₯ 2
cos π‘₯ cos π‘₯
Barnett/Ziegler/Byleen Business Calculus 12e
8
Example 5
Find the derivative of the function given.
𝑦 = sin(π‘₯𝑒 π‘₯ )
𝑦 β€² = cos(π‘₯𝑒 π‘₯ ) βˆ™ (𝐿𝑅′ + 𝑅𝐿′ )
𝑦 β€² = cos(π‘₯𝑒 π‘₯ ) βˆ™ (π‘₯𝑒 π‘₯ + 𝑒 π‘₯ βˆ™ 1)
𝑦 β€² = cos(π‘₯𝑒 π‘₯ )𝑒 π‘₯ π‘₯ + 1
Barnett/Ziegler/Byleen Business Calculus 12e
9
Example 6
Find the derivative of each function given.
𝑦 = ln(cos π‘₯)
1
β€²
𝑦 =
βˆ™ (βˆ’ sin π‘₯)
cos π‘₯
𝑦 = 𝑒 sin π‘₯
𝑦 β€² = 𝑒 sin π‘₯ βˆ™ cos π‘₯
𝑦 β€² = βˆ’ tan π‘₯
Barnett/Ziegler/Byleen Business Calculus 12e
10
Homework
Barnett/Ziegler/Byleen Business Calculus 12e
11
Homework
Barnett/Ziegler/Byleen Business Calculus 12e
12
Chapter 9
Trigonometric
Functions
Section 2
Derivatives of
Trigonometric
Functions
Part 2
Learning Objectives for Section 9.2
Derivatives of Trig Functions
β–  The student will be able to
solve applications of
derivatives of trigonometric
functions.
Barnett/Ziegler/Byleen Business Calculus 12e
14
The Meaning of Derivatives
ο‚§ Recall the geometric interpretation of a derivative:
β€’ The derivative of a function is a β€œslope machine”.
β€’ When you β€œplug” an x value into 𝑓 β€² π‘₯ , it gives you a
slope.
β€’ It is the slope of the line tangent to the graph of f(x) at
the point (x, f(x)).
Barnett/Ziegler/Byleen Business Calculus 12e
15
Example 1: Slope
A) Find the slope of the graph of f (x) = sin x at π‘₯ =
πœ‹
.
2
πœ‹
2
B) Write the equation of the line tangent to f(x) at π‘₯ = .
𝑓 β€² π‘₯ = cos π‘₯
πœ‹
β€²
𝑓
= cos πœ‹2
2
=0
π‘†π‘™π‘œπ‘π‘’ = 0
𝑓 π‘₯ = sin π‘₯
πœ‹
𝑓
=1
2
πœ‹
π‘‡π‘Žπ‘›π‘”π‘’π‘›π‘‘ 𝑙𝑖𝑛𝑒 π‘π‘Žπ‘ π‘ π‘’π‘  π‘‘β„Žπ‘Ÿπ‘œπ‘’π‘”β„Ž
,1
2
𝑦 βˆ’ 𝑦1 = π‘š(π‘₯ βˆ’ π‘₯1 )
πΈπ‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘› π‘œπ‘“ π‘‘π‘Žπ‘›π‘”π‘’π‘›π‘‘ 𝑙𝑖𝑛𝑒: 𝑦 βˆ’ 1 = 0 π‘₯ βˆ’ πœ‹2
𝑦=1
Barnett/Ziegler/Byleen Business Calculus 12e
16
Example 2: Slope
A) Find the slope of the graph of 𝑓 π‘₯ = cos 2π‘₯ π‘Žπ‘‘ π‘₯ =
B) Write the equation of the tangent line in point-slope
form.
𝑓 π‘₯ = cos(2π‘₯)
𝑓 β€² π‘₯ = βˆ’2sin(2π‘₯)
𝑓 πœ‹6 = π‘π‘œπ‘  πœ‹3
𝑓 β€² πœ‹6 = βˆ’2sin πœ‹3
= 12
= βˆ’2
3
2
π‘†π‘™π‘œπ‘π‘’ = βˆ’ 3
πœ‹
6
π‘‡π‘Žπ‘›π‘”π‘’π‘›π‘‘ 𝑙𝑖𝑛𝑒 π‘π‘Žπ‘ π‘ π‘’π‘ 
π‘‘β„Žπ‘Ÿπ‘œπ‘’π‘”β„Ž πœ‹6, 12
πΈπ‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘› π‘œπ‘“ π‘‘π‘Žπ‘›π‘”π‘’π‘›π‘‘ 𝑙𝑖𝑛𝑒: 𝑦 βˆ’ 12 = βˆ’ 3 π‘₯ βˆ’ πœ‹6
Barnett/Ziegler/Byleen Business Calculus 12e
17
Example 3: Slope
A) Find the slope of the graph of 𝑓 π‘₯ = sin π‘₯ 2 π‘Žπ‘‘ π‘₯ =
B) Write the equation of the tangent line in point-slope
form.
𝑓 π‘₯ = sin π‘₯ 2
𝑓 β€² π‘₯ = 2(sin π‘₯)(cos π‘₯)
2
πœ‹
2
𝑓 4 = 2
πœ‹
2
2
β€²
𝑓 4 =2 2
2
= 12
=1
π‘‡π‘Žπ‘›π‘”π‘’π‘›π‘‘ 𝑙𝑖𝑛𝑒 π‘π‘Žπ‘ π‘ π‘’π‘ 
πœ‹ 1
π‘‘β„Žπ‘Ÿπ‘œπ‘’π‘”β„Ž
π‘†π‘™π‘œπ‘π‘’ = 1
4, 2
πœ‹
4
πΈπ‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘› π‘œπ‘“ π‘‘π‘Žπ‘›π‘”π‘’π‘›π‘‘ 𝑙𝑖𝑛𝑒: 𝑦 βˆ’ 12 = π‘₯ βˆ’ πœ‹4
Barnett/Ziegler/Byleen Business Calculus 12e
18
More Derivative Applications
ο‚§ The derivative also represents the rate of change of f(x)
with respect to x.
ο‚§ For example:
β€’ 𝑅(π‘₯) = the total revenue generated at a production level
of x products
β€’ 𝑅′(π‘₯) = the rate at which the revenue is
increasing/decreasing at a production level of x
products. (also known as marginal revenue)
Barnett/Ziegler/Byleen Business Calculus 12e
19
Example 4: Application
A soft-drink company has revenues from sales over a 2-year period
as given approximately by
R(t) = 4 βˆ’ 3π‘π‘œπ‘  πœ‹π‘‘
0 ο‚£ t ο‚£ 24
6
where R(t) is revenue (in millions of dollars) for a month of sales t
months after February 1.
a. What is the total revenue 6 months after February 1?
b. What is the rate of change of revenue t months after February 1?
c. What is the rate of change of revenue 6 months after February 1?
d. What is the rate of change of revenue 8 months after February 1?
Barnett/Ziegler/Byleen Business Calculus 12e
20
Example 4: Application
A soft-drink company has revenues from sales over a 2-year period
as given approximately by
R(t) = 4 βˆ’ 3π‘π‘œπ‘  πœ‹π‘‘
0 ο‚£ t ο‚£ 24
6
where R(t) is revenue (in millions of dollars) for a month of sales t
months after February 1.
a. What is the total revenue 6 months after February 1?
𝑅 6 = 4 βˆ’ 3π‘π‘œπ‘  πœ‹
= 4 βˆ’ 3(βˆ’1)
=7
The total revenue is $7 million for a month of sales
6 months after Feb. 1.
Barnett/Ziegler/Byleen Business Calculus 12e
21
Example 4: Application
A soft-drink company has revenues from sales over a 2-year period
as given approximately by
R(t) = 4 βˆ’ 3π‘π‘œπ‘  πœ‹π‘‘
0 ο‚£ t ο‚£ 24
6
where R(t) is revenue (in millions of dollars) for a month of sales t
months after February 1.
b. What is the rate of change of revenue t months after February 1?
𝑅′ 𝑑 = βˆ’3 βˆ’ sin πœ‹π‘‘
6 βˆ™
𝑅′ 𝑑 = πœ‹2 sin
πœ‹
6
πœ‹π‘‘
6
Barnett/Ziegler/Byleen Business Calculus 12e
22
Example 4: Application
A soft-drink company has revenues from sales over a 2-year period
as given approximately by
R(t) = 4 βˆ’ 3π‘π‘œπ‘  πœ‹π‘‘
0 ο‚£ t ο‚£ 24
6
where R(t) is revenue (in millions of dollars) for a month of sales t
months after February 1.
c. What is the rate of change of revenue 6 months after February 1?
𝑅′ 𝑑 = πœ‹2 sin
πœ‹π‘‘
6
𝑅′ 6 = πœ‹2 sin
πœ‹
=0
The revenue isn’t increasing or decreasing 6
months after Feb. 1.
Barnett/Ziegler/Byleen Business Calculus 12e
23
Example 4: Application
A soft-drink company has revenues from sales over a 2-year period
as given approximately by
R(t) = 4 βˆ’ 3π‘π‘œπ‘  πœ‹π‘‘
0 ο‚£ t ο‚£ 24
6
where R(t) is revenue (in millions of dollars) for a month of sales t
months after February 1.
d. What is the rate of change of revenue 8 months after February 1?
𝑅′ 𝑑 = πœ‹2 sin
𝑅′ 8 = πœ‹2 sin
πœ‹π‘‘
6
4πœ‹
3
= πœ‹2
βˆ’ 3
2
β‰ˆ βˆ’1.4
The revenue is decreasing at a rate of $1.4 million
per month 8 months after Feb. 1.
Barnett/Ziegler/Byleen Business Calculus 12e
24
Example 4: Application
To verify the correctness of our results, let’s look at the
graph of R(x).
When t=6, the slope is 0.
Revenue is not increasing
or decreasing.
Barnett/Ziegler/Byleen Business Calculus 12e
When t=8, the slope is -1.4.
Revenue is decreasing.
25
Homework
Barnett/Ziegler/Byleen Business Calculus 12e
26
Related documents