Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Meta-Analysis and MetaRegression Airport Noise and Home Values J.P. Nelson (2004). “Meta-Analysis of Airport Noise and Hedonic Property Values: Problems and Prospects,” Journal of Transport Economics and Policy, Vol. 38, Part 1, pp. 1-28. Data Description • Results from 20 Studies (containing 33 separate estimates), relating home prices to airport noise. All studies in US and Canada, from 1967 to present • Regressions control for other factors including: structural variables (e.g. size), locational variables, local taxes, government services, and environmental quality. • Primary Variable: Noise Depreciation Index (NDI) and its Regression coefficient (effect of increasing airport noise by 1 decibel on house cost). Positive coefficient implies that as noise increases, home value decreases. The units are percent depreciation. Study Specific Variables / Models • For each study (with several exceptions), there are: Noise Depreciation Index (NDI) and its estimated standard error Mean Real Property Value (Year 2000, US $1000s) An indicator of whether accessibility (to airport) adjustment was made (1 if No Adjustment, 0 if Adjustment was made) Sample Size (log scale) Indicator of whether the response (price) scale was linear (1 if Linear, 0 if Log) Indicator of whether airport was in Canada (1 if Canada, 0 if US) • Models Considered Fixed and Random Effects Meta-Analyses with no covariates Meta-Regressions with predictors: Ordinary Least Squares with robust standard errors and Weighted Least squares Data Study City NDI_PCT NDI_SE MPV2000 NoAccAdj ln(SmpSz) Linear 1 Baltimore 1.07 0.823 170.703 0 3.401197 2 Los Angeles 1.26 0.788 449.359 0 3.178054 3 NYC 1.2 523.9 0 3.401197 4 NYC 0.67 275.942 0 3.401197 5 Dallas 0.99 0.33 136.25 0 8.357963 6 Dallas 0.8 0.267 119.9 0 7.146772 7 San Francisco 0.5 0.25 150.42 0 4.406719 8 San Jose 0.7 0.422 114.45 0 4.584967 9 Minneapolis 0.58 0.366 132.27 0 5.402677 10 DC 1.49 0.753 163.871 0 3.332205 11 Reno 0.28 0.183 137.603 0 7.375256 12 Winnipeg 1.3 0.342 70.104 1 7.399398 13 St. Louis 0.56 0.24 81.832 1 8.787678 14 Rochester 0.86 0.319 99.893 1 5.986452 15 Rochester 0.68 0.279 114.014 1 6.897705 16 Edmonton 0.51 0.224 108.73 1 5.863631 17 Toronto 0.87 0.212 89.982 0 6.232448 18 Toronto 0.95 0.187 108.063 0 6.415097 19 Reno 0.37 0.111 178.2 1 8.373785 20 DC 1.06 0.714 149.63 0 3.951244 21 Buffalo 0.52 0.2 112.575 0 4.836282 22 Cleveland 0.29 0.128 113.894 0 5.220356 23 New Orleans 0.4 0.195 119.763 0 4.962845 24 St. Louis 0.51 0.267 89.44 0 4.727388 25 San Diego 0.74 0.233 175.713 0 4.828314 26 San Francisco 0.58 0.184 161.789 0 5.030438 27 Multiple 0.55 0.2 129.236 0 6.739337 28 Atlanta 0.64 0.2 103.354 1 5.513429 29 Atlanta 0.67 0.3 81.178 0 4.564348 30 Boston 0.81 0.238 1 5.598422 31 Montreal 0.65 0.325 118.985 1 6.056784 32 Vancouver 0.65 0.164 124.076 0 6.46925 33 Vancouver 0.9 0.323 0 6.810142 Canada 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 Note: Due to missing data, analyses will be based on only 31 or 29 airports. Meta-Analysis with No Covariates • Fixed Effects Model – Assumes that each airport has the same true NDI, and that all variation is due to sampling error • Random Effects Model – Allows true NDIs to vary among airports along some assumed Normal Distribution. • Test for Homogeneity (Fixed Effects) can be conducted after estimating the mean (Hedges and Olkin, 1985, pp.122-123). "Data": d1 ,..., d k NDI Estimates for each airport, with standard errors: s di Estimates and Tests k Fixed Effects Estimator: d F wd i i 1 k i wi w 1 s d i s2 d F 2 i i 1 1 k w i 1 i 95% Confidence Interval for True Effect: d F t ; k 1 s d F 2 Test for Homogeneity: H 0 : 1 ... k k Test Statistic: Q wi di d F i 1 Where i true effect for airport i Reject H 0 2 , k 1 2 k w d * Random Effects Estimator: d R i 1 k i w * i 1 i i w*i 1 s 2 di 2R Q k 1 2 R max 0, k 2 wi k i 1 wi k i 1 wi i 1 Estimates and Tests - Results Study 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 Sum Weight Wt*NDI Q W* (W*)*NDI 1.476387 1.579735 0.353841 1.469219 1.572064 1.610451 2.029168 0.743704 1.601926 2.018426 0 0 0 0 0 0 0 0 9.182736 9.090909 1.54029 8.912281 8.823158 14.02741 11.22193 0.6762 13.40595 10.72476 16 8 0.103535 15.19648 7.598239 5.615328 3.930729 0.080266 5.513022 3.859115 7.465138 4.32978 1.46E-06 7.285406 4.225535 1.76364 2.627824 1.459051 1.753421 2.612597 29.86055 8.360954 2.695379 27.17855 7.609995 8.549639 11.11453 4.42669 8.314714 10.80913 17.36111 9.722222 0.007255 16.41909 9.19469 9.826947 8.451175 0.768001 9.517852 8.185353 12.8467 8.735756 0.127333 12.32351 8.379986 19.92985 10.16422 0.098894 18.69833 9.536147 22.24991 19.35742 1.865514 20.72594 18.03157 28.59676 27.16692 3.905543 26.12759 24.82121 81.16224 30.03003 3.594347 63.99706 23.67891 1.961569 2.079263 0.451113 1.948935 2.065871 25 13 0.091332 23.09217 12.00793 61.03516 17.7002 5.148725 50.79051 14.72925 26.29849 10.5194 0.856263 24.19566 9.678266 14.02741 7.153979 0.069606 13.40595 6.837037 18.41994 13.63075 0.468947 17.363 12.84862 29.53686 17.13138 5.78E-06 26.91014 15.60788 25 13.75 0.023168 23.09217 12.70069 25 16 0.088678 23.09217 14.77899 11.11111 7.444444 0.089118 10.71757 7.180773 17.65412 14.29984 0.930315 16.68092 13.51155 9.467456 6.153846 0.045806 9.180231 5.96715 37.18025 24.16716 0.179888 33.1118 21.52267 9.585063 8.626556 0.978799 9.290769 8.361692 598.8022 347.5701 31.86761 541.3124 319.4793 dF 347.5701 0.5804 598.8022 d_F 0.5804 Q 31.8676 s{d_F} 0.0409 s dF 1 0.0409 598.8022 Lower 0.4970 Upper 0.6639 X2(.05,30) 43.7730 P-value 0.3737 31.6876 (31 1) 0.003305 20160.58 598.8022 598.9022 2 R dR 319.4793 0.5902 541.3124 d_R 0.5902 s{d_R} 0.0430 s dR Lower 0.5024 k w i 1 2 i 20160.58 1 0.0430 541.3124 Upper 0.6780 Meta-Regressions • Regressions to determine which (if any) factors are associated with NDI • Three Models Fit: Ordinary Least Squares with robust standard errors (White’s heteroscedastic-consistent standard errors) Weighted Least Squares with weights equal to the inverse variance of the NDI: wi = 1/s2{di} Weighted Least Squares with weights equal to the inverse standard error of the NDI: wi = 1/s{di} • Model 1 based on k = 31 airports (2 have no Mean property values) • Models 2 and 3 based on k = 29 airports (2 have no weights) Specification Tests Conducted on Models - I • Ramsey’s RESET Test – Used to test whether the model is correctly specified and does not involve any nonlinearities among the regressors. Step 1: Fit the Original Regression with all Predictors Step 2: Fit Regression with same predictors and squared (and possibly higher order) fitted values from first model. Conduct F-test or t-test on polynomial fitted value(s) H 0 : Model is correctly specifed (no excess interactions or polynomial terms needed) ^ ^ ^ ^ Model 1: Y i1 0 1 X i1 ... p X ip ^ SSE1 Yi Y i1 i 1 n 2 2 ^ ^ ^ Model 2: Y i 2 0 1 X i1 ... p X ip 1 Y i1 ... q 1 Y i1 ^ ^ Test Statistic: Fobs ^ ^ ^ SSE1 SSE2 SSE1 SSE2 df df q 1 1 2 SSE2 SSE2 df 2 n p q q df1 n p 1 ^ SSE2 Yi Y i 2 i 1 n P-value Pr Fq 1, N p q Fobs 2 df 2 n p q Specification Tests Conducted on Models - II • White’s Test for Heteroscedasticity Step 1: Fit the Original Regression with all Predictors Step 2: Fit Regression relating squared residuals from step 1 to the same predictors and squared values for all numeric predictors (other version includes interactions for general specification test) Compare nR2 with Chi-Square(df = # Predictors in Step 2) H 0 : Errors have constant variance (Homoscedastic) H A : Error variance is related to levels of predictors (Heteroscedastic) ^ ^ ^ ^ ^ ^ Model 1: Y i 0 1 X i1 ... p X ip ^ 2 i ^ ^ ei Yi Y i ^ ^ Model 2: e 0 1 X i1 ... p X ip 11 X ... qq X iq2 2 i1 Test Statistic: nR22 P -Value: Pr p2 q nR22 Note: This assumes the first q predictors are quantitative, remaining p q are dummy variables Specification Tests Conducted on Models - III Jarque-Bera Test (n = # of Observations) H 0 : Errors are normally distributed 1 n e ei which will not be 0 under Weighted Least Squares n i 1 ^ ei Yi Y i S 1 n ei e n i 1 3 1 e e n i i 1 n 2 3/2 K 1 n ei e n i 1 4 1 e e n i i 1 n 2 n 2 1 2 JB S K 3 6 4 approx For Large Samples, under normality: JB ~ 22 2 Ordinary Least Squares with Robust Standard Errors Yi 0 1 X i1 ... p X ip i i 1,..., n i ~ N 0, i2 COV i , j 0 i j Matrix Form: Y1 Y Y 2 Yn Y Xβ ε X1 p 1 X 11 1 X X 21 2 p X X np 1 X n1 Y ~ N Xβ, V 0 1 β p 1 ε 2 n 12 0 2 0 2 V V ε 0 0 Ordinary Least Squares Estimator: ^ β X'X X'Y 1 ^ ^ Y Xβ ^ ^ E β X'X X'Xβ β V β X'X X'VX X'X 1 ^ e YY ^ White's Heteroscedastic-Consistent Estimator of V β : ^ ^ V β X'X X'S 0 X X'X 1 1 e12 0 S0 0 0 e22 0 0 0 en2 1 1 0 0 n2 Model 1 – OLS with Robust Standard Errors - I X'X NDI_PCT Y-hat e 1.07 0.951627 0.118373 1.26 1.134955 0.125045 1.2 1.16973 0.03027 0.67 1.016613 -0.34661 0.99 0.68034 0.30966 0.8 0.731334 0.068666 0.5 0.702232 -0.20223 0.7 0.67103 0.02897 0.58 0.64079 -0.06079 1.49 0.764735 0.725265 0.28 0.544589 -0.26459 1.3 0.714737 0.585263 0.56 0.428329 0.131671 0.86 0.766925 0.093075 0.68 0.729682 -0.04968 0.51 0.816051 -0.30605 0.87 0.796452 0.073548 0.95 0.798404 0.151596 0.37 0.508714 -0.13871 1.06 0.724718 0.335282 0.52 0.657196 -0.1372 0.29 0.638639 -0.34864 0.4 0.655251 -0.25525 0.51 0.648403 -0.1384 0.74 0.696586 0.043414 0.58 0.677793 -0.09779 0.55 0.571497 -0.0215 0.64 0.606768 0.033232 0.67 0.651524 0.018476 0.65 0.998794 -0.34879 0.65 0.805561 -0.15556 31 4705.119 8 172.84441 9 6 X'Y 4705.119 8 172.8444 9 6 1002521.277 875.112 23938.34 2008.946 619.94 875.112 8 54.87886 3 3 23938.3417 54.878862 1037.79 47.82732 38.43661 2008.946 3 47.82732 9 1 619.94 3 38.43661 1 6 INV(X'X) 1.0063712 -0.00164751 0.0969673 -0.001648 6.17173E-06 0.0001405 0.0969673 0.000140504 0.2420189 -0.136707 0.00014764 -0.028023 0.0575894 -0.000571429 -0.055222 -0.018469 8.90125E-05 -0.043773 X'S0X 1.9013654 264.26707 0.6066714 10.009632 0.3840985 0.6104469 -0.136707 0.000148 -0.028023 0.022246 -0.004426 -0.00631 0.057589 -0.000571 -0.055222 -0.004426 0.22071 0.020633 -0.01847 8.9E-05 -0.04377 -0.00631 0.020633 0.234809 264.2670727 43058.45797 54.78124434 1264.663947 72.30259062 54.64545305 0.6066714 54.781244 0.6066714 4.209069 0.1327887 0.557857 10.00963 1264.664 4.209069 58.83819 2.149966 4.158308 0.384099 72.30259 0.132789 2.149966 0.384099 0.121657 0.610447 54.64545 0.557857 4.158308 0.121657 0.610447 Robust V(b1) 0.0756089 -5.04034E-05 -5.04E-05 9.6628E-08 0.0101028 3.25981E-06 -0.011169 6.19844E-06 -0.007485 -1.20455E-05 -0.00171 2.53499E-06 0.0101028 3.26E-06 0.0117445 -0.002238 -0.004483 0.0074229 -0.011169 6.2E-06 -0.002238 0.001772 0.001137 -0.000374 -0.007485 -1.2E-05 -0.004483 0.001137 0.011225 0.000843 -0.00171 2.53E-06 0.007423 -0.00037 0.000843 0.01479 22.9 3827.847 5.57 123.0956 8.18 4.93 b1_OLS 0.831615 0.000618 -0.01058 -0.05044 0.186153 0.223628 B1_OLS Robust_SE 0.831615 0.306195 0.000618 0.000346 -0.01058 0.120678 -0.05044 0.046869 0.186153 0.117979 0.223628 0.135423 Model 1 – OLS with Robust Standard Errors - I Y'Y 19.6666 ^ ^ CM SSTO SSE1 SSR1 R^2 F* P 16.91645161 2.7501484 1.901365 0.848783 0.308632 2.232035 0.08259 ^ ^ Model 1: Y i1 0 1 X i1 ... 5 X i 5 SSE1 1.901365 df1 31 6 25 ^ Model 2: Y i 2 0 1 X i1 ... 5 X i 5 Y i1 ^ ^ ^ ^ H 0 : 0 H A : 0 TS : Fobs ^ ^ ^ ^ 2 SSE2 1.82363 df 2 31 7 24 SSE1 SSE2 1.901365 1.82363 df df 25 24 1 2 1.023042 SSE2 1.82363 df 24 2 ^ ^ ^ Model 3: Y i 3 0 1 X i1 ... 5 X i 5 11 X i21 33 X i23 H 0 : Homoscedastic Errors SSE2 RESET P 1.82363 1.023042 0.321888 Pr F1,24 1.023042 .321888 R32 0.3327723 # Predictors = 7 H 0 : Heteroscedastic Errors TS : Wobs nR32 31 0.3327723 10.31594 Pr 72 10.31594 .1714 SUMMARY OUTPUT White’s Test Regression Statistics Multiple R 0.5768642 R Square 0.3327723 Adjusted R Square0.1297029 Standard Error 0.1030444 Observations 31 nR^2 df 10.31594 sum sum/n P-value 7 0.171365 ANOVA df Regression Residual Total Intercept MPV20000 NoAccAdj ln(sampsz) linear Canada MPV^2 SS^2 SS MS F Significance F 7 0.121801 0.0174 1.638713 0.174628 23 0.244217 0.010618 30 0.366018 Coefficients Standard Error t Stat 1.048289 0.399649 2.623027 -2.23E-05 0.001145 -0.019462 0.0343538 0.051821 0.662937 -0.326956 0.116265 -2.812161 -0.02973 0.048756 -0.609777 0.105426 0.05381 1.959232 -7.99E-07 1.8E-06 -0.444742 0.0252295 0.009448 2.670349 P-value Lower 95% 0.015204 0.221553 0.98464 -0.00239 0.513961 -0.072845 0.00989 -0.567468 0.547987 -0.130588 0.062316 -0.005888 0.660663 -4.52E-06 0.013667 0.005685 Upper 95% Lower 95.0% Upper 95.0% 1.875024985 0.221553 1.875025 0.002345357 -0.00239 0.002345 0.141552908 -0.072845 0.141553 -0.086443432 -0.567468 -0.086443 0.071128473 -0.130588 0.071128 0.216740113 -0.005888 0.21674 2.9176E-06 -4.52E-06 2.92E-06 0.044774263 0.005685 0.044774 S K JB p-value e e^2 e^3 e^4 4.56302E-14 1.901365 0.448932 0.482637 1.47194E-15 0.061334 0.014482 0.015569 0.95337405 4.13857601 6.370556373 0.041366737 Jarque-Bera Test Weighted Least Squares – Models 2 and 3 • Clearly Model 1 provides a poor fit (non-significant FStatistic (p=.0826), R2=.3086) • Models 2 and 3 Use Weighted Least Squares with weights equal to the Variances and the Standard Errors, respectively, of the NDI estimates from each study w1 0 W 0 w2 0 βW X ' X ^ * ^ ^ Y X βW * * 0 0 wn 0 * 1 Y* WY X* WX X* ' Y* X ' WWX X ' WWY 1 ^ e Y Y* * * Apply the Specification Tests to e* Weighted Least Squares – Model 2 – wi = 1/s2{di} Weight WY WLS_X 1.476387 1.579735 1.476387 1.610451 2.029168 1.610451 9.182736 9.090909 9.182736 14.02741 11.22193 14.02741 16 8 16 5.615328 3.930729 5.615328 7.465138 4.32978 7.465138 1.76364 2.627824 1.76364 29.86055 8.360954 29.86055 8.549639 11.11453 8.549639 17.36111 9.722222 17.36111 9.826947 8.451175 9.826947 12.8467 8.735756 12.8467 19.92985 10.16422 19.92985 22.24991 19.35742 22.24991 28.59676 27.16692 28.59676 81.16224 30.03003 81.16224 1.961569 2.079263 1.961569 25 13 25 61.03516 17.7002 61.03516 26.29849 10.5194 26.29849 14.02741 7.153979 14.02741 18.41994 13.63075 18.41994 29.53686 17.13138 29.53686 25 13.75 25 25 16 25 11.11111 7.444444 11.11111 9.467456 6.153846 9.467456 37.18025 24.16716 37.18025 252.0238 723.6707 1251.148 1681.886 2406.72 642.6742 987.4138 289.0095 4108.901 599.3639 1420.694 981.6433 1464.704 2166.972 2002.091 3090.251 14463.11 293.5096 2814.375 6951.538 3149.586 1254.612 3236.623 4778.739 3230.9 2583.85 901.9778 1126.485 4613.177 0 0 0 0 0 0 0 0 0 8.549639 17.36111 9.826947 12.8467 19.92985 0 0 81.16224 0 0 0 0 0 0 0 0 25 0 9.467456 0 5.021485 5.118101 76.74897 100.2507 70.50751 25.74609 40.33173 5.876811 220.2292 63.26218 152.5639 58.82855 88.61275 116.8613 138.6714 183.451 679.6351 7.750637 120.907 318.6252 130.5153 66.31301 88.93724 148.5834 168.4834 137.8357 50.71498 57.34233 240.5283 1.476387 1.610451 9.182736 14.02741 0 0 0 0 0 0 0 9.826947 12.8467 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9.467456 0 Yhat_WLS e_WLS 0 1.161478 0.418256 0 1.233911 0.795258 0 6.403745 2.687164 0 10.11923 1.102695 0 7.004271 0.995729 0 2.457433 1.473296 0 3.141412 1.188367 0 0.805284 1.822541 0 11.45371 -3.09276 8.549639 6.391931 4.7226 0 6.627859 3.094363 0 7.511386 0.939789 0 9.58533 -0.84957 19.92985 15.40238 -5.23816 22.24991 16.64376 2.713658 28.59676 21.24831 5.918609 0 30.91846 -0.88843 0 0.8755 1.203763 0 10.82779 2.172212 0 25.99098 -8.29079 0 11.3114 -0.79201 0 6.132636 1.021343 0 7.877649 5.753105 0 12.55716 4.574217 0 9.904166 3.845834 0 11.02214 4.977864 0 4.899553 2.544891 9.467456 10.41716 -4.26331 37.18025 27.53588 -3.36872 Weighted Least Squares – Model 2 – wi = 1/s2{di} X*'X* 19757.038 2751519.9 8335.2524 131596.23 637.10346 3255.1319 2751519.887 403665907.3 1350559.565 18941975.6 75747.10628 363413.3061 8335.2524 1350559.6 8335.2524 66384.553 351.23932 559.92785 131596.2 18941976 66384.55 917542.1 4386.052 20687.22 637.1035 75747.11 351.2393 4386.052 637.1035 89.63272 INV(X*'X*) 0.0024467 -6.6269E-06 0.0007453 -0.000263 -0.000234 -6.63E-06 1.15101E-07 -7.94E-07 -1.45E-06 2.94E-06 0.0007453 -7.94178E-07 0.0005534 -0.000132 -5.79E-05 -0.000263 -1.45121E-06 -0.000132 7.99E-05 -3.28E-05 -0.000234 2.94087E-06 -5.79E-05 -3.28E-05 0.001701 -0.000154 3.05509E-06 9.058E-05 -5.85E-05 7.76E-05 3255.132 363413.3 559.9278 20687.22 89.63272 3255.132 X*'Y* 9316.5 1253143 3557.226 61158.77 500.0303 2461.986 -0.00015 3.06E-06 9.06E-05 -5.9E-05 7.76E-05 0.000475 b1_WLS SE 0.533219 0.189334468 -8.9E-05 0.0012986 0.019578 0.090044761 -0.01864 0.034210126 0.331991 0.157868989 0.338948 0.083420045 Y*'Y* CM Y*'P*Y* SSR_WLS SSE_WLS SSTO_WLSR^2_WLS F_WLS P_WLS 5123.9964 4393.227757 4787.0197 393.792 336.9767 730.7687 0.538874 5.375574 0.002038343 Note that CM (Correction for the Mean) is different in WLS than OLS OLS: CM OLS n Y 2 Y i n 2 Y ' X1 X1 ' X 1 X 1 ' Y 1 WLS: CM WLS Y* ' X*1 X*1 ' X*1 X*1 ' Y* 1 where X1 is the first column of X where X*1 is the first column of X* WX Model 2 – Specification Tests RESET Test: Based on the following models: ^* ^ ^ ^ Model 1: Y i1 0 X 1 X ... 5 X * i0 * i1 ^* Model 2: Y i 2 0 X 1 X ... 5 X Y i1 ^* ^ * i0 ^ ^ * i1 2 * ^* SSE1 Yi Y i1 336.9767 df1 29 6 23 i 1 29 * i5 * i5 ^ 2 2 * ^* SSE2 Yi Y i 2 302.7271 df 2 29 7 22 i 1 29 F 2.4890 Pr F1,22 2.4890 0.1289 White's Test based on regression: 2 ^ ^ ^ ^ ^ ^* 2 2 ei 0 1 X i1 ... 2 X i 5 11 X i1 33 X i 3 # of predictors = 7 nR 2 29 0.2189 6.3479 Pr 72 6.3479 .4998 Jarque-Bera Test: 1 29 * * ei e 29 i 1 2 10.7414 1 29 * * ei e 29 i 1 3 29.9407 1 29 * * ei e 29 i 1 4 S 0.8505 K 3.5859 JB 3.9110 Pr 22 3.9110 .1415 413.7327 Model 3 – WLS – wi = 1/s{d_i} • This is a more traditional weighting scheme than Model2 • The fit however, for this analysis is not as good: R2 = 0.4131 Fobs = 3.2380, P = .0234 • While for Model 2: R2 = 0.5389 Fobs = 5.3756, P = .0020