Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Complex Numbers Complex Numbers • Complex number is a number in the form z = a+bi, where a and b are real numbers and i is imaginary. Here a is the real part and b is the imaginary part of z. • Where r i r If r is a positive real number, then • Examples: 4 i 4 2i 3 i 3 i 2 1 i 3 i 2 i i i 4 i 2 i 2 1 1 1 i5 i 4 i 1 i i ... Geometry Plot the points 3 + 4i and –2 – 2i in the complex plane. Imaginary axis 4 (3, 4) or 3 + 4i 2 Real axis –2 (– 2, – 2) or – 2 – 2i 2 –2 Operations on Complex Numbers (2 3i )( 6 2i ) 12 4i 18i 6i 2 2. Solve 3x 10 26 2 3 x 2 36 x 12 2 x 12 2 3i 5 2i 3i 5 2i 5 2i 5 2i 15i 6i 2 25 4i 2 6 15i 6 15 i 29 29 29 x i 12 x 2i 3 i (3 i ) 3i i 2 3i (1) 1 3i Which one is true? 16 49 16 49 4 7 28 or 12 22i 6(1) 12 22i 6 6 22i Absolute Value The absolute value of the complex number z = a + bi is the distance between the origin (0, 0) and the point (a, b). | a bi | a b 2 2 Example: Plot z = 3 + 6i and find its absolute value. Imaginary axis z 3 6 2 8 z = 3 + 6i 9 36 6 4 –4 2 3 5 units –2 4 2 Real axis 45 3 5 Trigonometric Representation of Complex Number To write a complex number z = x + yi in trigonometric form, let be the angle from the positive real axis (measured counter clockwise) to the line segment connecting the origin to the point (x, y). Imaginary axis x = r cos y = r sin z = (x, y) y r x Let z1 r1 cos1 i sin 1 Real axis r= tan = 𝑦𝑥 𝑥2 + 𝑦2 z = x + yi = r (cos + i sin ) The number r is the modulus of z, and is the argument of z. Example: z 12 cos 3 i sin 3 modulus and z2 r2 cos2 i sin 2 z1 z2 r1 cos 1 i sin 1 r2 cos 2 i sin 2 r1r2 cos1 2 i sin 1 2 argument If z2 0, then z1 r1 cos1 2 i sin1 2 z2 r2 Example Write the complex number z = –7 + 4i in trigonometric form. 2 2 z r 7 4i (7) 4 65 Imaginary axis tan = 𝑦𝑥 𝐼𝑚𝑝𝑙𝑖𝑒𝑠 𝑦 = arctan (𝑥 ) tan 1 4 29.74 7 z = –7 + 4i 180 29.74 150.26 z 65 150.2 6° Real axis z r cos θ i sin θ 65(cos150.26 i sin150.26) Example: Write the complex number 3.75 cos 3 i sin 3 4 4 in standard form a + bi. cos 3 2 4 2 sin 3 2 4 2 2 2 z 3.75 i 2 2 15 2 15 2 i Standard form 8 8 De Moivre’s Theorem Expanding a power of a complex number in rectangular form is tedious. a bi a bi a bi a bi ... a bi n The best way to expand one of these is using Pascal’s triangle and binomial expansion. It’s much nicer in trig form. We just raise the r to the power and multiply theta by the exponent. z r cos i sin z n r n cos n i sin n Example z 5 cos 20 i sin 20 z 3 53 cos 3 20 i sin 3 20 z 3 125 cos 60 i sin 60 Nth Root of a Complex Number z r cos i sin n 360k 360k z n r cos i sin or n n n 2 k 2 k r cos i sin ; k =0,1,…,n-1 n n Find the 4th root of z 81cos80 i sin80 𝑟 = 81 𝑠𝑜, 4 𝑟 = 3 and θ = 80 n=4 Put K=0,1,2,3 into the above equation we get 4 roots as follows: z1 3 cos 20 i sin 20 z2 3 cos 20 90 i sin 20 90 3 cos110 i sin110 z3 3 cos 110 90 i sin 110 90 3 cos 200 i sin 200 z4 3 cos 200 90 i sin 200 90 3 cos 290 i sin 290 Assignment: Find the 6th root of unity. That is, solve z 6 = 1 Hint: 1=1+i.0=1(cos0+isin0)