Download Complex Numbers

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Complex Numbers
Complex Numbers
• Complex number is a number in the form z = a+bi, where a and b are real
numbers and i is imaginary. Here a is the real part and b is the imaginary
part of z.
• Where
r  i r
If r is a positive real number, then
• Examples:
 4  i 4  2i
3  i 3
i 2  1
i 3  i 2  i  i
i 4  i 2  i 2  1   1  1
i5  i 4  i  1 i  i
...
Geometry
Plot the points 3 + 4i and –2 – 2i in the complex plane.
Imaginary axis
4
(3, 4)
or
3 + 4i
2
Real
axis
–2
(– 2, – 2)
or
– 2 – 2i
2
–2
Operations on Complex Numbers
(2  3i )( 6  2i )  12  4i  18i  6i 2
2. Solve 3x  10  26
2
3 x 2  36
x  12
2
x   12
2
3i
5  2i
3i


5  2i 5  2i 5  2i
15i  6i 2

25  4i 2
6  15i
6 15



i
29
29 29
x  i 12
x  2i 3
 i (3  i )  3i  i 2
 3i  (1)
 1 3i
Which one is true?
16  49  16  49  4  7  28
or
 12  22i  6(1)
 12  22i  6
 6  22i
Absolute Value
The absolute value of the complex number z = a + bi is
the distance between the origin (0, 0) and the point (a, b).
| a  bi |  a  b
2
2
Example:
Plot z = 3 + 6i and find its absolute value.
Imaginary axis
z  3 6
2
8
z = 3 + 6i
 9  36
6
4
–4
2
3 5 units
–2
4
2
Real
axis
 45
3 5
Trigonometric Representation of Complex Number
To write a complex number z = x + yi in trigonometric form, let  be the
angle from the positive real axis (measured counter clockwise) to the line
segment connecting the origin to the point (x, y).
Imaginary axis
x = r cos 
y = r sin 
z = (x, y)
y
r

x
Let z1  r1 cos1  i sin 1 
Real axis
r=
tan = 𝑦𝑥
𝑥2 + 𝑦2
z = x + yi = r (cos  + i sin  )
The number r is the modulus of z, and  is the
argument of z.
Example: z  12 cos 3  i sin 3

modulus
and
z2  r2 cos2  i sin 2 
z1 z2   r1  cos 1  i sin 1    r2  cos  2  i sin  2  
 r1r2 cos1  2   i sin 1  2 

argument
If z2  0, then
z1 r1
 cos1  2   i sin1  2 
z2 r2
Example
Write the complex number z = –7 + 4i in trigonometric form.
2
2
z  r  7  4i  (7)  4  65
Imaginary
axis
tan = 𝑦𝑥
𝐼𝑚𝑝𝑙𝑖𝑒𝑠
 
𝑦
 = arctan (𝑥 )
tan 1  4  29.74
7
z = –7 + 4i
  180  29.74  150.26
z  65
150.2
6° Real
axis
z  r  cos θ  i sin θ 
 65(cos150.26  i sin150.26)
Example:
Write the complex number 3.75 cos 3  i sin 3
4
4
in standard form a + bi.

cos 3   2
4
2
sin 3  2
4
2


2
2
z  3.75  

i
2 
 2
 15 2  15 2 i Standard form
8
8

De Moivre’s Theorem
Expanding a power of a complex
number in rectangular form is tedious.
 a  bi 
 a  bi  a  bi  a  bi  ...  a  bi 
n
The best way to expand one
of these is using Pascal’s
triangle and binomial
expansion.
It’s much nicer in trig form. We
just raise the r to the power and
multiply theta by the exponent.
z  r  cos   i sin  
z n  r n  cos n  i sin n 
Example
z  5  cos 20  i sin 20 
z 3  53  cos 3  20  i sin 3  20 
z 3  125  cos 60  i sin 60 
Nth Root of a Complex Number
z  r  cos   i sin  
n
  360k
  360k 

z  n r  cos
 i sin
 or
n
n


n
  2 k
  2 k 

r  cos
 i sin
 ; k =0,1,…,n-1
n
n


Find the 4th root of z  81cos80  i sin80
𝑟 = 81 𝑠𝑜,
4
𝑟 = 3 and θ = 80 n=4
Put K=0,1,2,3 into the above equation we get 4 roots as follows:
z1  3  cos 20  i sin 20 
z2  3  cos  20  90   i sin  20  90    3  cos110  i sin110 
z3  3  cos 110  90   i sin 110  90    3  cos 200  i sin 200 
z4  3  cos  200  90   i sin  200  90    3  cos 290  i sin 290 
Assignment: Find the 6th root of unity. That is, solve z 6 = 1
Hint: 1=1+i.0=1(cos0+isin0)
Related documents