Download ENGR-43_Scope_Phase-Angle_Tutorial

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Engineering 43
Oscilloscope
Phase-Angle
Measurement
Bruce Mayer, PE
Licensed Electrical & Mechanical Engineer
[email protected]
Engineering-43: Engineering Circuit Analysis
1
Bruce Mayer, PE
[email protected] • ENGR-43_Scope_Phase-Angle_Tutorial.ppt
Oscope Summarized
 An Oscope does ONE thing:
Draws a PLOT
of VOLTAGE vs
TIME
 And That’s IT!
Engineering-43: Engineering Circuit Analysis
2
Bruce Mayer, PE
[email protected] • ENGR-43_Scope_Phase-Angle_Tutorial.ppt
Amplitude Measurements

These are Easy
1. Check the
VOLTS/DIV setting
on the Scope
•
FILL screen
vertically
5.1 Div
High
2. Count VERTICAL
Deflection Divisions
•
i.e; Count Squares
3. Multiply DIVs times
VOLTS/DIV
Engineering-43: Engineering Circuit Analysis
3
0.5V
V pp  5.1DIV 
 2.55V
DIV
VM  V pp 2  1.28V
Bruce Mayer, PE
[email protected] • ENGR-43_Scope_Phase-Angle_Tutorial.ppt
Vertical (V) Scale for Digital Scope
Engineering-43: Engineering Circuit Analysis
4
Bruce Mayer, PE
[email protected] • ENGR-43_Scope_Phase-Angle_Tutorial.ppt
Phase Angle, 
 The Equation for a Phase-SHIFTED
Sinusoidal Electrical-Potential Signal
vX t   VXM cos(t   )
 Where
• VXM  The AMPLITUDE (Max, or Peak
Value) of the Sinusoid in Volts
•   The PHASE Angle in DEGREES
– MAGNITUDE <180°
– SIGN can be POSITIVE or NEGATIVE
Engineering-43: Engineering Circuit Analysis
5
Bruce Mayer, PE
[email protected] • ENGR-43_Scope_Phase-Angle_Tutorial.ppt
Scope Phase-Angle


The Scope Trace Tells us
NOTHING about the MAGNITUDE
and SIGN of the Phase Angle
•
It Doesn’t Even give a Starting Point
•
All we get is TWO v(t) Traces
The Steps to Get to 
1. Define (pick) a BASELINE Signal
2. Get ±  from shifted-Signal LEAD or LAG
3. Get -Magnitude from TIME-SHIFT, td
Engineering-43: Engineering Circuit Analysis
6
Bruce Mayer, PE
[email protected] • ENGR-43_Scope_Phase-Angle_Tutorial.ppt
1. Define the BaseLine Signal
 For ANY Steady-State AC Signal
(SS-AC) We, as Ckt Analysts, get to
PICK ONE Node-Voltage exOR BranchCurrent as having a ZERO Phase Angle
• i.e., We can SET the point where  = 0°
• Analogous to Selecting a GND
 Since the Scope ONLY measures
Potential we can Pick any Node
VOLTAGE as the BaseLine Signal
which has ZERO Phase
Engineering-43: Engineering Circuit Analysis
7
Bruce Mayer, PE
[email protected] • ENGR-43_Scope_Phase-Angle_Tutorial.ppt
1. Define the BaseLine Signal
 The BaseLine Signal is USUALLY (not
Always) the +Side of the Supply
vS t   VSM cos(t  0)  VS  VSM 0
rads 

e.g. , 5V  cos 377
t   5V0  5V
sec 

 On the Scope The BaseLine Signal
is typically
• The “A” or CH1 Trace
• The Trigger Source
Engineering-43: Engineering Circuit Analysis
8
Bruce Mayer, PE
[email protected] • ENGR-43_Scope_Phase-Angle_Tutorial.ppt
2. Determine the Sign of 
 Looking at the Traces we can
OBSERVE whether the Unknown, or “X”
Signal LEADS or LAGS the BaseLine
• See Next Slide
 The Question Then becomes: Does
• LEAD Imply POSITIVE-?
– Then Lag implies NEGATIVE-
• LAG Imply POSITIVE-?
– Then Lead implies NEGATIVE-
Engineering-43: Engineering Circuit Analysis
9
Bruce Mayer, PE
[email protected] • ENGR-43_Scope_Phase-Angle_Tutorial.ppt
This is the BASELINE Signal
The X-Signal LAGS the BASELINE;
its PEAK occurs LATER in Time
vS(ωt)
Engineering-43: Engineering Circuit Analysis
10
vX(ωt±||)
Bruce Mayer, PE
[email protected] • ENGR-43_Scope_Phase-Angle_Tutorial.ppt
2. Lead or Lab = +/− by MATLAB
Vx LAGS by 53°
Vx LEADS by 53°
10
10
Vs(t)
Vx(t)
6
6
4
4
2
0
-2
-4
2
0
-2
-4
-6
-6
-8
-8
-10
0
1
2
3
4
time (mS)
5
6
7
8
vX t   VXM cos(t  53)
 LEADING →
POSITIVE 
Engineering-43: Engineering Circuit Analysis
11
Vs(t)
Vx(t)
8
Electrical Potenial (V)
Electrical Potenial (V)
8
-10
0
1
2
3
4
time (mS)
5
6
7
vX t   VXM cos(t  53)
 LAGGING →
NEGATIVE 
Bruce Mayer, PE
[email protected] • ENGR-43_Scope_Phase-Angle_Tutorial.ppt
8
3. -Magnitude
 Notice from the Scope Trace that ONE
Sinusoidal CYCLE-TIME-PERIOD, T,
corresponds to 360°: T↔ 360°
 Further Notice from the Dual-Trace
Display that the X-Signal will Lead or
Lag the BaseLine by the TIME-Shift, td
 Now Realize that td will be some
FRACTION of a Period; Thus
• Find td by SEC/DIV, Multiply by 360°/T
Engineering-43: Engineering Circuit Analysis
12
Bruce Mayer, PE
[email protected] • ENGR-43_Scope_Phase-Angle_Tutorial.ppt
td = 1.6DIV
vX Lagging
VXpp = 4.6DIV
T = 4.1DIV
T = 360°
Engineering-43: Engineering Circuit Analysis
13
Bruce Mayer, PE
[email protected] • ENGR-43_Scope_Phase-Angle_Tutorial.ppt
Horizontal (t) Scale for digital scope
Engineering-43: Engineering Circuit Analysis
14
Bruce Mayer, PE
[email protected] • ENGR-43_Scope_Phase-Angle_Tutorial.ppt
3. -Magnitude
 From The Scope Time-Measurements
on the on the Last Slide Find
• T = 4.1 DIV = 360°
• td = 1.6 DIV, Lagging
• SEC/DIV = 0.5 millisec/Div
 Calc T & 
0.5mS
T  4.1DIV 
 2.05mS
DIV
0.5mS
t d  1.6 DIV 
 0.8mS
DIV
Engineering-43: Engineering Circuit Analysis
15
f
 488 Hz 
Bruce Mayer, PE
[email protected] • ENGR-43_Scope_Phase-Angle_Tutorial.ppt
3. -Magnitude
 Now since td/T is a Fraction of a Period
td
Multiply td/T by 360° to Find 
   360
T
 In this Case
1Period
360
1.6 DIV
  0.8mS 


 360  140.5
2.05mS Period 4.1DIV
 Use the LAGGING observation to
apply the sign of  as NEGATIVE
td - Lagging    140.5  2.452rads
Engineering-43: Engineering Circuit Analysis
16
Bruce Mayer, PE
[email protected] • ENGR-43_Scope_Phase-Angle_Tutorial.ppt
Complete The Example
 From The Scope VoltageMeasurements on the on the “” Slide
Find
• VXpp = 4.6 DIV
• VOLTS/DIV = 0.5 V/Div
 Calc VXM
0.5V
VXpp  4.6 DIV 
 2.3V
Div
VXM  VXpp 2  1.15V
Engineering-43: Engineering Circuit Analysis
17
Bruce Mayer, PE
[email protected] • ENGR-43_Scope_Phase-Angle_Tutorial.ppt
Complete the Example
 Now Can Fully
Characterize the
Unknown Sinusoid
Relative to the
BaseLine
vX
 Using The Results
of the Phase and
Amplitude Calcs
v X t   1.15V cos2  488t  2.452 
t  2.452 
 j 3066rads
sec
 1.15V  Re e



• Note that ω = 2πf
 Alternatively in Std
Phasor Form
VX  1.15V 140.5
Engineering-43: Engineering Circuit Analysis
18
Bruce Mayer, PE
[email protected] • ENGR-43_Scope_Phase-Angle_Tutorial.ppt
Example: Find H(f) = VC/VS
 Find Vc in the Scope-Measured Series
RC Circuit
9.7V0°
Engineering-43: Engineering Circuit Analysis
19
SCOPE
BaseLine
Vc
Bruce Mayer, PE
[email protected] • ENGR-43_Scope_Phase-Angle_Tutorial.ppt
Series Ckt: GND => Vs => R => C => GND
10
8
6
Vc LAGS
2
T = 0.77 mS
0
Vcm =6.15V
Potential to GND (V)
4
-2
-4
PARAMETERS
• Vs = (9.7V)? 0°
• R = 6.8 kΩ
-6
-8
•
C
•
f
=
=
2
1
2
3
n
0
0
td = 0.11 mS
Vs (V)
F
H
z
Vc (V)
-10
0.0
0.1
0.2
file = CR_RC_Phase-Difference_0601.xls
Engineering-43: Engineering Circuit Analysis
20
0.3
0.4
0.5
0.6
0.7
Time (mS)
Bruce Mayer, PE
[email protected] • ENGR-43_Scope_Phase-Angle_Tutorial.ppt
0.8
0.9
The RC Series Ckt Phasor
 Calc The Frequency Parameters
f  1 cycle  T  1 cycle  0.77mS  1.3kHz
2 Rad
kCycle
kRad

f  2 1.3
 8.17
1 Cycle
sec
sec
9.7V0°
Vc
 Calc  noting that Vc LAGS
 td
11

360   360  51  0.89rads
T
77
 Then Vc
by 6.15V
Amplitude
Engineering-43: Engineering Circuit Analysis
21
  8170 

vC t   6.15V cos 
t  0.89 

  sec 

VC  6.15V  51
Bruce Mayer, PE
[email protected] • ENGR-43_Scope_Phase-Angle_Tutorial.ppt
The RC Transfer Function
 The Transfer Function for the R→C
Circuit at 1.3 kHz
VC 6.15V  51
H  f  1.3kHz  

VS
9.7V0
or
VC
H  f  1.3kHz  
 0.6833  51
VS
Engineering-43: Engineering Circuit Analysis
22
Bruce Mayer, PE
[email protected] • ENGR-43_Scope_Phase-Angle_Tutorial.ppt
Example: Swap C↔R for H(f)
 Find Vr in the Scope-Measured Series
CR Circuit
9.7V0°
Engineering-43: Engineering Circuit Analysis
23
SCOPE
BaseLine
Vr
Bruce Mayer, PE
[email protected] • ENGR-43_Scope_Phase-Angle_Tutorial.ppt
Series Ckt: GND => Vs => C => R => GND
10
Vr LEADS
8
6
td = 0.084 mS
2
T = 0.77 mS
0
Vrm = 7.5V
Potential to GND (V)
4
-2
-4
PARAMETERS
• Vs = (9.7V)? 0°
• R = 6.8 kΩ
-6
•
C
•
f
=
2
2
n
Vs (V)
F
-8
=
1
3
0
0
H
z
Vr (V)
-10
0.0
0.1
0.2
file = CR_RC_Phase-Difference_0601.xls
Engineering-43: Engineering Circuit Analysis
24
0.3
0.4
0.5
0.6
0.7
Time (mS)
Bruce Mayer, PE
[email protected] • ENGR-43_Scope_Phase-Angle_Tutorial.ppt
0.8
0.9
The CR Series Ckt Phasor
 Calc The Frequency Parameters
f  1 cycle  T  1 cycle  0.77mS  1.3kHz
2 Rad
kCycle
kRad

f  2 1.3
 8.17
1 Cycle
sec
sec
 Calc  noting that Vr LEADS
9.7V0°
360 84
  t d

360  39  0.68 rads
T
770
 Then Vr
 8170

vR t   7.5V cos
t  0.68 
by 7.5V
 sec

Amplitude V  7.5V39
R
Engineering-43: Engineering Circuit Analysis
25
Bruce Mayer, PE
[email protected] • ENGR-43_Scope_Phase-Angle_Tutorial.ppt
Vr
The CR Transfer Function
 The Transfer Function for the C→R
Circuit at 1.3 kHz
VC 6.15V  51
H  f  1.3kHz  

VS
9.7V0
or
VC
H  f  1.3kHz  
 0.6833  51
VS
Engineering-43: Engineering Circuit Analysis
26
Bruce Mayer, PE
[email protected] • ENGR-43_Scope_Phase-Angle_Tutorial.ppt
All Done with the Tutorial
PhasErs
on
Stun...
 A phaser RIFLE
(often referred to as a
type-3 phaser)
Engineering-43: Engineering Circuit Analysis
27
Bruce Mayer, PE
[email protected] • ENGR-43_Scope_Phase-Angle_Tutorial.ppt
MATLAB Script-Code
% B. Mayer
% ENGR43 * 19Jan06
% Phase-Shift Lag Plot
%
% Parameters
w = 1500; % Angular Freqency in rad/sec
Vsa = 9.7; % Voltage Source Amplitude in Volts
AR = .73; % Attenuation Ratio
phi = -0.925; % phase Angle in Rads
phi_deg = 180*phi/pi % degrees
%
%
% Calc period
T = 2*pi/w % seconds
%
% Define t vector over 1.2 periods
t = linspace(0, 2.2*T, 200);
%
% Calc Vs & Vc over 1.2 periods
Vs = Vsa*cos(w*t);
Vx = AR*Vsa*cos(w*t + phi);
%
% Plot both
plot(1000*t, Vs, 1000*t, Vx, '--'), xlabel('time (mS)'),...
ylabel('Electrical Potenial (V)'),...
legend('Vs(t)', 'Vx(t)'), title('Vx LAGS by 53°')
Engineering-43: Engineering Circuit Analysis
28
Bruce Mayer, PE
[email protected] • ENGR-43_Scope_Phase-Angle_Tutorial.ppt
More Scope Traces
Engineering-43: Engineering Circuit Analysis
29
Bruce Mayer, PE
[email protected] • ENGR-43_Scope_Phase-Angle_Tutorial.ppt
Related documents