Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
11.7 – Proof by Mathematical Induction • Mathematical induction is a method of proving statements involving natural numbers. • Mathematical induction is a method of proving statements involving natural numbers. • To prove a statement true for all natural numbers, n: • Mathematical induction is a method of proving statements involving natural numbers. • To prove a statement true for all natural numbers, n: 1. Show that the statement is true for n = 1 • Mathematical induction is a method of proving statements involving natural numbers. • To prove a statement true for all natural numbers, n: 1. Show that the statement is true for n = 1 2. Assume that the statement is true for some natural number, k. (induction hypothesis) • Mathematical induction is a method of proving statements involving natural numbers. • To prove a statement true for all natural numbers, n: 1. Show that the statement is true for n = 1 2. Assume that the statement is true for some natural number, k. (induction hypothesis) 3. Show that the statement is true for the next natural number, k + 1. Ex. 1 Prove that 13 + 23 + 33 + … + n3 = n2(n+1)2 4 Ex. 1 Prove that 13 + 23 + 33 + … + n3 = n2(n+1)2 4 1. Show that the statement is true for n = 1. Ex. 1 Prove that 13 + 23 + 33 + … + n3 = n2(n+1)2 4 1. Show that the statement is true for n = 1. 13 + 23 + 33 + … + n3 = n2(n+1)2 4 Ex. 1 Prove that 13 + 23 + 33 + … + n3 = n2(n+1)2 4 1. Show that the statement is true for n = 1. 13 + 23 + 33 + … + n3 = n2(n+1)2 4 n = 1: Ex. 1 Prove that 13 + 23 + 33 + … + n3 = n2(n+1)2 4 1. Show that the statement is true for n = 1. 13 + 23 + 33 + … + n3 = n2(n+1)2 4 n = 1: 13= 12(1+1)2 4 Ex. 1 Prove that 13 + 23 + 33 + … + n3 = n2(n+1)2 4 1. Show that the statement is true for n = 1. 13 + 23 + 33 + … + n3 = n2(n+1)2 4 n = 1: 13= 12(1+1)2 4 Ex. 1 Prove that 13 + 23 + 33 + … + n3 = n2(n+1)2 4 1. Show that the statement is true for n = 1. 13 + 23 + 33 + … + n3 = n2(n+1)2 4 n = 1: 13= 12(1+1)2 4 1 = 1(2)2 4 Ex. 1 Prove that 13 + 23 + 33 + … + n3 = n2(n+1)2 4 1. Show that the statement is true for n = 1. 13 + 23 + 33 + … + n3 = n2(n+1)2 4 n = 1: 13= 12(1+1)2 4 1 = 1(2)2 4 1 = 1, thus shown to be true. 2. Assume that the statement is true for some natural number, k. 2. Assume that the statement is true for some natural number, k. 13 + 23 + 33 + … + n3 = n2(n+1)2 4 2. Assume that the statement is true for some natural number, k. 13 + 23 + 33 + … + n3 = n2(n+1)2 4 13 + 23 + 33 + … + k3 = k2(k+1)2 4 3. Show that the statement is true for the next natural number, k + 1. 3. Show that the statement is true for the next natural number, k + 1. 13 + 23 + 33 + … + k3 = k2(k+1)2 4 3. Show that the statement is true for the next natural number, k + 1. 13 + 23 + 33 + … + k3 = k2(k+1)2 4 13 + 23 + 33 + … + k3 + (k+1)3 = k2(k+1)2 + (k+1)3 4 3. Show that the statement is true for the next natural number, k + 1. 13 + 23 + 33 + … + k3 = k2(k+1)2 4 13 + 23 + 33 + … + k3 + (k+1)3 = k2(k+1)2 + (k+1)3 4 = k2(k+1)2 + (k+1)3 4 1 3. Show that the statement is true for the next natural number, k + 1. 13 + 23 + 33 + … + k3 = k2(k+1)2 4 13 + 23 + 33 + … + k3 + (k+1)3 = k2(k+1)2 + (k+1)3 4 = k2(k+1)2 + (k+1)3 . 4 4 1 4 3. Show that the statement is true for the next natural number, k + 1. 13 + 23 + 33 + … + k3 = k2(k+1)2 4 13 + 23 + 33 + … + k3 + (k+1)3 = k2(k+1)2 + (k+1)3 4 = k2(k+1)2 + (k+1)3 . 4 4 1 4 = k2(k+1)2 + 4(k+1)3 4 4 = k2(k+1)2 + 4(k+1)3 4 = k2(k+1)2 + 4(k+1)3 4 = (k+1)2 [k2 + 4(k+1)] 4 = k2(k+1)2 + 4(k+1)3 4 = (k+1)2 [k2 + 4(k+1)] 4 = (k+1)2 [k2 + 4k+4] 4 = k2(k+1)2 + 4(k+1)3 4 = (k+1)2 [k2 + 4(k+1)] 4 = (k+1)2 [k2 + 4k+4] 4 = (k+1)2 (k+2)2 4 = k2(k+1)2 + 4(k+1)3 4 = (k+1)2 [k2 + 4(k+1)] 4 = (k+1)2 [k2 + 4k+4] 4 = (k+1)2 (k+2)2 4 13 + 23 + 33 + … + k3 + (k+1)3 = (k+1)2 (k+2)2 4 • So we started with the problem: 13 + 23 + 33 + … + n3 = n2(n+1)2 4 • So we started with the problem: 13 + 23 + 33 + … + n3 = n2(n+1)2 4 • And we showed: 13 + 23 + 33 + … + k3 + (k+1)3 = (k+1)2 (k+2)2 4 • So we started with the problem: 13 + 23 + 33 + … + n3 = n2(n+1)2 4 • And we showed: 13 + 23 + 33 + … + k3 + (k+1)3 = (k+1)2 (k+2)2 4 • So we proved that the statement holds true when we replace n with k + 1 and thus proven. Ex. 2 Find a counterexample to disprove the statement. 12 + 22 + 32 + … + n2 = n(3n – 1) 2 Ex. 2 Find a counterexample to disprove the statement. 12 + 22 + 32 + … + n2 = n(3n – 1) 2 n = 1: Ex. 2 Find a counterexample to disprove the statement. 12 + 22 + 32 + … + n2 = n(3n – 1) 2 n = 1: 12 = 1(3∙1 – 1) 2 Ex. 2 Find a counterexample to disprove the statement. 12 + 22 + 32 + … + n2 = n(3n – 1) 2 n = 1: 12 = 1(3∙1 – 1) 2 1=1 Ex. 2 Find a counterexample to disprove the statement. 12 + 22 + 32 + … + n2 = n(3n – 1) 2 n = 1: 12 = 1(3∙1 – 1) 2 1=1 n = 2: Ex. 2 Find a counterexample to disprove the statement. 12 + 22 + 32 + … + n2 = n(3n – 1) 2 n = 1: 12 = 1(3∙1 – 1) 2 1=1 n = 2: 12 + 22 = 2(3∙2 – 1) 2 Ex. 2 Find a counterexample to disprove the statement. 12 + 22 + 32 + … + n2 = n(3n – 1) 2 n = 1: 12 = 1(3∙1 – 1) 2 1=1 n = 2: 12 + 22 = 2(3∙2 – 1) 2 5=5 Ex. 2 Find a counterexample to disprove the statement. 12 + 22 + 32 + … + n2 = n(3n – 1) 2 n = 1: 12 = 1(3∙1 – 1) 2 1=1 n = 2: 12 + 22 = 2(3∙2 – 1) 2 5=5 n = 3: Ex. 2 Find a counterexample to disprove the statement. 12 + 22 + 32 + … + n2 = n(3n – 1) 2 n = 1: 12 = 1(3∙1 – 1) 2 1=1 n = 2: 12 + 22 = 2(3∙2 – 1) 2 5=5 n = 3: 12 + 22 + 32 = 3(3∙3 – 1) 2 Ex. 2 Find a counterexample to disprove the statement. 12 + 22 + 32 + … + n2 = n(3n – 1) 2 n = 1: 12 = 1(3∙1 – 1) 2 1=1 n = 2: 12 + 22 = 2(3∙2 – 1) 2 5=5 n = 3: 12 + 22 + 32 = 3(3∙3 – 1) 2 14 = 12 Ex. 2 Find a counterexample to disprove the statement. 12 + 22 + 32 + … + n2 = n(3n – 1) 2 n = 1: 12 = 1(3∙1 – 1) 2 1=1 n = 2: 12 + 22 = 2(3∙2 – 1) 2 5=5 n = 3: 12 + 22 + 32 = 3(3∙3 – 1) 2 14 = 12, FALSE Ex. 2 Find a counterexample to disprove the statement. 12 + 22 + 32 + … + n2 = n(3n – 1) 2 n = 1: 12 = 1(3∙1 – 1) 2 1=1 n = 2: 12 + 22 = 2(3∙2 – 1) 2 5=5 n = 3: 12 + 22 + 32 = 3(3∙3 – 1) 2 14 = 12, FALSE n=3