Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
hierarchical clustering atau algoritma KNearest Neighbor untuk clustering data DAFTAR PUSTAKA Adeyemo B. A dan Kuye G, 2006, Mining Students’ Acedemic Performance Using Decision tree Algorithms, Journal of Information Technology Impact, Vol. 6 No. 3 pp. 161-170 Al-Radaideh Q.A Al-Shawakfa E.M. dan Al-Najjar I.M, 2006, Mining Stuents Data using Decision Trees, International Arab Conference on Information Technology (ACIT’2006), pp. 1-5. Basuki A dan Syarif I, 2003. Decision Tree. Politeknik Elektronika Negeri Surabaya (PENS) – ITS www2.eepis-its.edu/~basuki/lecture/Decision tree.pdf. diakses tanggal 11 April 2011. Berry, M.J.A. dan Linoff G.S, 2004. Data Mining Techinique for Marketing, sales, Customer Relationship Management, Second Edition, Wiley Publishing, Inc. Berry, M. W., and M. Browne. 1999, Understanding Search Engines: Mathematical Modelling and text Retrieval. Philadelphia, PA: SIAM Boley, Daniel 1998, Principal Direction Divisive Partitioning, Journal Data Mining and Knowledge Discovery Volume 2 Issue 4, December 1998. Burges, Christopher. 1998, A Tutorial on support Vector Machines for Pattern Recognition. Data Mining and knowledge Discovery, 2(2):955-974. Craw, S. (2005), case Based Reasoning : Lecture 3 : CBR Case-Base Indexing www.comp.rgu.ac.uk/staff/teaching/cm3016/Lecture3-cbr-indexing.pp,diakses tanggal 12 April 2012 Cristianini N., Taylor J. Shawe., 2000, An introduction to Support Vector machines and other Kernel-based Learning Methods, Cambridge Press University. Dubes R.C. and Jain, A.K., 1998, Algorithms for Clustering Data, Prentice-Hall Dunham, M.H. 2003. Data Mining Introductory and advanced topic. New Jersey: Prentice Hall. Universitas Sumatera Utara Fayyad, U. M, 1996, Advances in Knowledge Discovery and Data Mining. Cambridge, MA: The MIT Press. Girolami M., 2002. Mercer Kernel-based Clustering in Feature Space. IEEE Transactions on Neural Networks. Vol. 13, no. 3, pp. 780.784. Han,J. and Kamber,M. “Data mining: Concepts and Techniques”, 2nd edition. The Morgan Kaufmann series in Data Management System, Jim Grey, series Editor. 2006. Hammouda, K. Karray, F. 2003, A Comparative Study of Data Clustering Techniques, Unpublished. I.S. Dhillon, Y. Guan, and J. Kogan, 2002. “Iterative clustering of High Dimensional text data augumented by local search. In Proceedings of the 2002 IEEE International Conference on Data Mining Pages, 131-138 Kaufman L., and P.J. Rousseeuw, 1990. Findings Groups in Data: An Introduction to cluster Analysis. New York: Jhon Wiley & Sons. Kruck, S. E dan Lending D, 2003, Predicting Academic Performance in an Introductory College-Level IS Course, nformation Technology, Learning, nd Performance Journal, Vol. 21, No. 2 pp. 9-15. Lance G N & Williams W.T. 1967, A general theory of classificatory sorting strategies I Hierarchical systems. Computer J. 9:373-80 Larose D, T., 2005, Discovering knowledge in data : an introduction to data mining, Jhon Wiley & Sons Inc. Larose D, T., 2006, Data Mining Methods and Models, Jhon Wiley & Sons, Inc. Hoboken New Jersey Luan, J, 2002. “Chapter 2: Data Mining and Its Application in Higher Education. Knowledge Management – Building a Competitive Advantage in Higher Education.” Serban, A. & Luan, J. (eds.) Jossey-Bass. Maimon, O. dan Last, M. 2000. Knowledge Discovery and Data Mining, The Info-Fuzzy Network (IFN) Methodology. Dordrecht: Kluwer Academic. Merceron, A and Yacep, K.,”Educational Data mining: A case study”. In proceedings of the 12th International Conference on Artificial Intelligence in Education AIED 2005, Amsterdam, The Netherlands, IOS Press.2005 Mierswa, I., Wurst, M., Klinkenberg, R., Scholz, M. and Euler, T., 2006, Yale Rapid Prototyping for Complex Data Mining Tasks. Proceedings of the ACM Universitas Sumatera Utara SIGKDD International Conference on Knowledge Discovery and Data Mining. N. Cristianini and J. Shawe, Tylor, 2000. Introduction to Suport Vector Machines: and other Kernel-based Learning Methods. Cambridge University Press, Cambridge.U.K Naeimeh Delavari and Mohammad Reza Beikzadeh and Somnuk PhonAmnuaisuk, “Application of Enhanced Analysis Model for Data Mining th Processes in Higher Educational System”. ITHET 6 Annual International Conference. Juan Dolio, Dominican Republic. July 7 – 9, 2005,pp F4BNugroho F.S,D, 2008, Implementasi Decision Tree Berbasis Analisis Teknikal untuk Pembelian dan Penjualan Saham, Vol 9, pp. 38-49 Ogor Emmanuel. N, 2007. “Student Academic Performance: Monitoring and Evaluation Using Data Mining Techniques”. Fourth Congress of Electronics, Robotics and Automotive Mechanics.. I EEE Computer Society. Olson Clark F. 1995, Parallel Algorithms for Hierarchical Clustering, Technical Report, University of California. Oyelade, O.J, Oladiupo, O.O, Obagbuwa,I.C, 2010. Application of K-means Clustering Algorithm For prediction of student Academic Performance. International Journal of Computer Science and Informatio Security. Volume. 7. No.1.pp.292-295, January 2010, USA. Parr Rud, O, 2001. Data Mining Cookbook. Modeling Data for Marketing, Risk, and Customer Relationship Management. John Wiley & Sons, Inc. Piatetsky, G and Shapiro, 2006, An Introduction Machine Learning data mining and knowledge discovery, Corse in data mining kdnuggets. Pramudiono, I 2007. Pengantar Data mining : Menambang Permata Pengetahuan di Gunung Data. http://www.ilmu computer.org/wp-content/uploads/ 2006/08/iko-datamining. Prayudho B J, 2008, Analisis Cluster, http://prayudho.wordpress.com/2008/12/30/ analisis-Cluster/#more-45 Quinlan JR. Induction of decision trees. Machine Learning, volume 1. Morgan Kaufmann; 1986. p. 81-106. Quinlan JR, 1993. C4.5: Programs for Machine Learning. Morgan Kaufmann. Universitas Sumatera Utara Romero, C. and Ventura, S, 2007. ”Educational Data mining: A survey from 1995 to 2005”, Expert systems With Application” (33) 135-146. Rui Xu and Donald C. Wunsch II, 2009, Clustering, A John Wiley & Sons, Inc., Publication. Rusu L, Bre_felean VP. Management prototype for universities. Annals of the Tiberiu Popoviciu Seminar, International Workshop in Collaborative Systems, Volume 4, 2006, Mediamira Publisher, Cluj- Napoca, Romania; 2006. p. 287-295 Santosa Budi. 2007, Data Mining Teknik Pemanfaatan Data untuk Keperluan Bisnis, Graha Ilmu, Yogyakarta Sajadin S, Embong. A, Mohammad, M. A, Furqan.M, 2009 ” Improving Student Academik Performance Using Data Mining Techniques”. Proceeding The 5th IMTGT International Conference on Mathematic, Statistics and Their Application (ICMSA 2009), ISBN 978-602-95343-0-6, page 390-394. Steinbach, M., Karypis.G, and Vivin Kumar, 2000. Comparison of Document Clustering Techniques. KDD 2000 Workshop on Text Mining, Augustus 2000. Turban, E., Aronson, J. E. dan Liang, T., 2005, Decision Support Sistems and Intelliget Sistems (Sistem Pendukung Keputusan dan Sistem Cerdas), Edisi Ketujuh, Andi, Yogyakarta. Vapnik V.N., 2007. The Nature of Statistical Learning Theory, 2nd edition, Springer-Verlag, New York Berlin Heilderberg. Waiyamai,K, 2003. “Improving Quality Graduate Student by Data Mining”. Departement of Computer engineering. Faculty of Engineering. Kasetsart University, Bangkok Thailand. Yu C.H, DiGangi S, Pennell J.A dan Kaprolet C, 2010, A Data Mining Approach for Identifying of Student Retention from Sophomore to Junior Year, Journal of Data Sciences Vol. 8, pp 307-325 Zhang Rong and A I. Rudnicky, 2006. A large Scale Clustering Scheme for kernel-K-Menas. School of Computer Science, Carnegie Mellon University 5000 Forbes Avenue, Pittsburgh, PA 15213, USA Universitas Sumatera Utara