Download daftar pustaka - Universitas Sumatera Utara

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
hierarchical clustering atau algoritma KNearest Neighbor untuk clustering
data
DAFTAR PUSTAKA
Adeyemo B. A dan Kuye G, 2006, Mining Students’ Acedemic Performance
Using Decision tree Algorithms, Journal of Information Technology Impact,
Vol. 6 No. 3 pp. 161-170
Al-Radaideh Q.A Al-Shawakfa E.M. dan Al-Najjar I.M, 2006, Mining Stuents
Data using Decision Trees, International Arab Conference on Information
Technology (ACIT’2006), pp. 1-5.
Basuki A dan Syarif I, 2003. Decision Tree. Politeknik Elektronika Negeri
Surabaya (PENS) – ITS www2.eepis-its.edu/~basuki/lecture/Decision tree.pdf.
diakses tanggal 11 April 2011.
Berry, M.J.A. dan Linoff G.S, 2004. Data Mining Techinique for Marketing,
sales, Customer Relationship Management, Second Edition, Wiley Publishing,
Inc.
Berry, M. W., and M. Browne. 1999, Understanding Search Engines:
Mathematical Modelling and text Retrieval. Philadelphia, PA: SIAM
Boley, Daniel 1998, Principal Direction Divisive Partitioning, Journal Data
Mining and Knowledge Discovery Volume 2 Issue 4, December 1998.
Burges, Christopher. 1998, A Tutorial on support Vector Machines for Pattern
Recognition. Data Mining and knowledge Discovery, 2(2):955-974.
Craw, S. (2005), case Based Reasoning : Lecture 3 : CBR Case-Base Indexing
www.comp.rgu.ac.uk/staff/teaching/cm3016/Lecture3-cbr-indexing.pp,diakses
tanggal 12 April 2012
Cristianini N., Taylor J. Shawe., 2000, An introduction to Support Vector
machines and other Kernel-based Learning Methods, Cambridge Press
University.
Dubes R.C. and Jain, A.K., 1998, Algorithms for Clustering Data, Prentice-Hall
Dunham, M.H. 2003. Data Mining Introductory and advanced topic. New Jersey:
Prentice Hall.
Universitas Sumatera Utara
Fayyad, U. M, 1996, Advances in Knowledge Discovery and Data Mining.
Cambridge, MA: The MIT Press.
Girolami M., 2002. Mercer Kernel-based Clustering in Feature Space. IEEE
Transactions on Neural Networks. Vol. 13, no. 3, pp. 780.784.
Han,J. and Kamber,M. “Data mining: Concepts and Techniques”, 2nd edition. The
Morgan Kaufmann series in Data Management System, Jim Grey, series
Editor. 2006.
Hammouda, K. Karray, F. 2003, A Comparative Study of Data Clustering
Techniques, Unpublished.
I.S. Dhillon, Y. Guan, and J. Kogan, 2002. “Iterative clustering of High
Dimensional text data augumented by local search. In Proceedings of the
2002 IEEE International Conference on Data Mining Pages, 131-138
Kaufman L., and P.J. Rousseeuw, 1990. Findings Groups in Data: An
Introduction to cluster Analysis. New York: Jhon Wiley & Sons.
Kruck, S. E dan Lending D, 2003, Predicting Academic Performance in an
Introductory College-Level IS Course, nformation Technology, Learning, nd
Performance Journal, Vol. 21, No. 2 pp. 9-15.
Lance G N & Williams W.T. 1967, A general theory of classificatory sorting
strategies I Hierarchical systems. Computer J. 9:373-80
Larose D, T., 2005, Discovering knowledge in data : an introduction to data
mining, Jhon Wiley & Sons Inc.
Larose D, T., 2006, Data Mining Methods and Models, Jhon Wiley & Sons, Inc.
Hoboken New Jersey
Luan, J, 2002. “Chapter 2: Data Mining and Its Application in Higher Education.
Knowledge Management – Building a Competitive Advantage in Higher
Education.” Serban, A. & Luan, J. (eds.) Jossey-Bass.
Maimon, O. dan Last, M. 2000. Knowledge Discovery and Data Mining, The
Info-Fuzzy Network (IFN) Methodology. Dordrecht: Kluwer Academic.
Merceron, A and Yacep, K.,”Educational Data mining: A case study”. In
proceedings of the 12th International Conference on Artificial Intelligence in
Education AIED 2005, Amsterdam, The Netherlands, IOS Press.2005
Mierswa, I., Wurst, M., Klinkenberg, R., Scholz, M. and Euler, T., 2006, Yale
Rapid Prototyping for Complex Data Mining Tasks. Proceedings of the ACM
Universitas Sumatera Utara
SIGKDD International Conference on Knowledge Discovery and Data
Mining.
N. Cristianini and J. Shawe, Tylor, 2000. Introduction to Suport Vector Machines:
and other Kernel-based Learning Methods. Cambridge University Press,
Cambridge.U.K
Naeimeh Delavari and Mohammad Reza Beikzadeh and Somnuk PhonAmnuaisuk, “Application of Enhanced Analysis Model for Data Mining
th
Processes in Higher Educational System”. ITHET 6 Annual International
Conference. Juan Dolio, Dominican Republic. July 7 – 9, 2005,pp F4BNugroho F.S,D, 2008, Implementasi Decision Tree Berbasis Analisis Teknikal
untuk Pembelian dan Penjualan Saham, Vol 9, pp. 38-49
Ogor Emmanuel. N, 2007. “Student Academic Performance: Monitoring and
Evaluation Using Data Mining Techniques”. Fourth Congress of Electronics,
Robotics and Automotive Mechanics.. I EEE Computer Society.
Olson Clark F. 1995, Parallel Algorithms for Hierarchical Clustering, Technical
Report, University of California.
Oyelade, O.J, Oladiupo, O.O, Obagbuwa,I.C, 2010. Application of K-means
Clustering Algorithm For prediction of student Academic Performance.
International Journal of Computer Science and Informatio Security. Volume.
7. No.1.pp.292-295, January 2010, USA.
Parr Rud, O, 2001. Data Mining Cookbook. Modeling Data for Marketing, Risk,
and Customer Relationship Management. John Wiley & Sons, Inc.
Piatetsky, G and Shapiro, 2006, An Introduction Machine Learning data mining
and knowledge discovery, Corse in data mining kdnuggets.
Pramudiono, I 2007. Pengantar Data mining : Menambang Permata Pengetahuan
di Gunung Data. http://www.ilmu computer.org/wp-content/uploads/
2006/08/iko-datamining.
Prayudho B J, 2008, Analisis Cluster, http://prayudho.wordpress.com/2008/12/30/
analisis-Cluster/#more-45
Quinlan JR. Induction of decision trees. Machine Learning, volume 1. Morgan
Kaufmann; 1986. p. 81-106.
Quinlan JR, 1993. C4.5: Programs for Machine Learning. Morgan Kaufmann.
Universitas Sumatera Utara
Romero, C. and Ventura, S, 2007. ”Educational Data mining: A survey from
1995 to 2005”, Expert systems With Application” (33) 135-146.
Rui Xu and Donald C. Wunsch II, 2009, Clustering, A John Wiley & Sons, Inc.,
Publication.
Rusu L, Bre_felean VP. Management prototype for universities. Annals of the
Tiberiu Popoviciu Seminar, International Workshop in Collaborative
Systems, Volume 4, 2006, Mediamira Publisher, Cluj- Napoca, Romania;
2006. p. 287-295
Santosa Budi. 2007, Data Mining Teknik Pemanfaatan Data untuk Keperluan
Bisnis, Graha Ilmu, Yogyakarta
Sajadin S, Embong. A, Mohammad, M. A, Furqan.M, 2009 ” Improving Student
Academik Performance Using Data Mining Techniques”. Proceeding The
5th IMTGT International Conference on Mathematic, Statistics and Their
Application (ICMSA 2009), ISBN 978-602-95343-0-6, page 390-394.
Steinbach, M., Karypis.G, and Vivin Kumar, 2000. Comparison of Document
Clustering Techniques. KDD 2000 Workshop on Text Mining, Augustus
2000.
Turban, E., Aronson, J. E. dan Liang, T., 2005, Decision Support Sistems and
Intelliget Sistems (Sistem Pendukung Keputusan dan Sistem Cerdas), Edisi
Ketujuh, Andi, Yogyakarta.
Vapnik V.N., 2007. The Nature of Statistical Learning Theory, 2nd edition,
Springer-Verlag, New York Berlin Heilderberg.
Waiyamai,K, 2003. “Improving Quality Graduate Student by Data Mining”.
Departement of Computer engineering. Faculty of Engineering. Kasetsart
University, Bangkok Thailand.
Yu C.H, DiGangi S, Pennell J.A dan Kaprolet C, 2010, A Data Mining Approach
for Identifying of Student Retention from Sophomore to Junior Year,
Journal of Data Sciences Vol. 8, pp 307-325
Zhang Rong and A I. Rudnicky, 2006. A large Scale Clustering Scheme for
kernel-K-Menas. School of Computer Science, Carnegie Mellon University
5000 Forbes Avenue, Pittsburgh, PA 15213, USA
Universitas Sumatera Utara