Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
1. An observer is 120 feet from the base of a television tower which is 150 feet tall. Find, to the nearest degree, the angle of elevation of the top of the tower from the point where the observer is standing. 2. From the top of a vertical cliff which is 40 meters high, the angle of depression of an object that is level with the base of the cliff is 34º. How far is the object from the base of the cliff, to the nearest meter? 3. An airplane is flying at an altitude of 1000 meters. From the plane, the angle of depression to the base of a tree on the ground is measured as 15°. What is the distance from the plane to the base of the tree, rounded to the nearest tenth of a meter? 4. From a 200 feet high cliff a boat is noticed floundering at sea! The boat is approximately 300 yards from the base of the cliff. What is the angle of depression, to the nearest degree, of the line of sight to the boat? Homework #2 Name___________________________________ ©c C2_0b1O6i DKTuqt`a\ ySToIfyt`wpajrFem fLLLSCv.A a VAslrlo drXirgAhftesr Qr`eusaeQr^vTeYd`. State the quadrant in which the terminal side of each angle lies. 1) -170° 2) -240° 3) 285° 4) -105° Find a positive and a negative coterminal angle for each given angle. 5) -605° 6) 245° 7) -290° 8) 534° Find the reference angle. 9) 10) y y -395° x x 385° 11) 520° 12) 405° 13) 120° 14) 280° Find the exact value of each trigonometric function. 15) cos q 16) sin q y y x x -120° 17) cot q -495° 18) csc q y x y -30° x -600° Worksheet by Kuta Software LLC ©M a2P0g1i6D KKOuitZaH sStoUfYtVwfaHrBe[ BLPLgCF.C D aAelGlB frGiLgthYtaso orzeesEeCrRv\eNdc.Y l FMSaDd[ew ^wKivt^hT sI\nifiicnlihtbec mAqlGghebbXrPaO E2S. Homework #3 ANGLES IN STANDARD POSITION WORKSHEET In which quadrant does the terminal side of the each angle lie? 1. 150o 2. -60o 3. -240o 4. 540o Sketch the angles in standard position. 5. 100 6. 45 7. 720 Name four coterminal angles for each angle given. Be sure to include at least one negative angle measure for each. 8. 135 9. 30 Name the reference angle for each of the given angles. 10. 330 11. 225 12. 400 13. 240 14. 30° 15. 260° Determine the six trig functions exact value given a point on the terminal side of an angle in standard position. 16. Given the point ( 5, -7 ) on the terminal side of an angle. 17. Given the point ( -6, -4 ) on the terminal side of an angle, determine the six trig functions. Evaluate trig values given one value and other information. 18. Given sin 3 4 19. Given tan 5 3 and cos 0 , evaluate tan and sec . and θ is in Quadrant IV, evaluate sin and sec . Homework #4 Name___________________________________ ©P t2D0\1z6N cK\ubtaa` SSDobfgtpwOaYrpeU ELDLlCh.y C UAcl[ly vrzingAhItosF drsehsHemrSvNeodP. Draw an angle with the given measure in standard position. Then state the reference angle. 1) 5p 4 2) - 9p 4 y y x x Find a positive and a negative coterminal angle for each given angle. 3) - 7p 3 Convert each degree measure into radians. 4) 120° Convert each radian measure into degrees. 5) 3p 2 Find the exact value of each trigonometric function. 6) cos q 7) sin q y y x x 2p 3 3p 4 Find the length of each arc. 8) 9) p 4 16 yd 13 mi p 3 Worksheet by Kuta Software LLC ©o N2j0h1`6A zKnustiaX FSooAfStDwZaGrQew XLaLUCO.n D BAulwlL zrRiRguhztRs^ jrXegsSeTrCv`eDdG.X o CMdaxdneR fwDiyt_h[ dIjnRfFiDnEirtje_ iAllAgoegb[rNaL [2o. Trigonometric Functions Maze Directions: Every angle has a match. Pick three different colors, shade sine angles and measures in one color, cosine angles and measures in a second color and tangent angles and measures in the third color. sin 𝜋𝜋 6 1 2 −√3 5𝜋𝜋 3 tan cos 𝜋𝜋 1 2 −1 sin 𝜋𝜋 4 1 1 2 cos tan − tan 7𝜋𝜋 4 √2 − 2 5𝜋𝜋 6 2𝜋𝜋 3 −1 5𝜋𝜋 sin 4 © 2014 FlamingoMath.com cos 𝜋𝜋 3 1 2 tan 0 cos 3𝜋𝜋 4 tan 𝜋𝜋 − √2 2 √2 2 tan sin 𝜋𝜋 4 𝜋𝜋 3 1 𝜋𝜋 6 √3 3 𝜋𝜋 6 sin 𝜋𝜋 − cos 2𝜋𝜋 0 Undef. sin 1 2 tan 𝜋𝜋 2 √3 2 √3 5𝜋𝜋 3 cos 11𝜋𝜋 6 sin √3 2 tan sin √3 2 cos 4𝜋𝜋 3 √3 cos 𝜋𝜋 3 √3 2 𝜋𝜋 2 1 2𝜋𝜋 3 sin 1 cos 4𝜋𝜋 3 cos 7𝜋𝜋 6 1 2 3𝜋𝜋 2 0 tan − 5𝜋𝜋 4 1 2 Jean Adams Homework #5 Name___________________________________ ©L e2S0m1B6g pKfu[tmao kSIoWfItUwFa^rme] ALLL[Cy.o \ VAcl_l[ rrPi[gXhVtnsi qrWensBePrHvVeWdv. Assignment Solve each triangle. Round your answers to the nearest tenth. 1) m A = 34°, m B = 37°, a = 13 km 2) m B = 148°, m C = 18°, a = 11 km 3) 4) A 28 cm B 27 cm A 21 m 84° 24 m C C 25 cm B 5) m C = 41°, b = 34 yd, c = 27 yd 6) m C = 41°, b = 32 mi, c = 31 mi Find each measurement indicated. Round your answers to the nearest tenth. 7) m B = 104°, a = 23 yd, b = 15 yd Find m C Worksheet by Kuta Software LLC ©a i2x0]1^6q VKvuEtYaZ NSOoJfTtwwNaGroeh mLvLkCZ.O D qAPlglH `ruiGgahDtTsJ frlefsPe`rsvfeLdq.p Q jMbawdNeH RwfiHtrhx gIJnLfnihnKiotFel jAYlSgBejbcreav P2K. Name___________________________________ HOMEWORK #7 Graph two full periods of each function. Label the scale on both axes. 1. y sin x 3 Amplitude: Period: Phase Shift: Vertical Displacement: Reflection? 2. f ( x) 2 tan x Amplitude: Period: Phase Shift: Vertical Displacement: Reflection? 3. y cos 2 x Amplitude: Period: Phase Shift: Vertical Displacement: Reflection? 4. y tan 4 x 1 Amplitude: Period: Phase Shift: Vertical Displacement: Reflection? 5. f ( x) 1 cos x Amplitude: Period: Phase Shift: Vertical Displacement: Reflection? 6. y 1 2 sin 2 x 3 Amplitude: Period: Phase Shift: Vertical Displacement: Reflection? Write an equation of the graph described. 7. The graph of y tan x translated down 4 units and left 1 unit. 8. The reflection of the graph of 9. The graph of y cos x with a period of 4π. y sin x with an amplitude of 4 that is translated right 3 units. 10. The reciprocal of y sin x that is translated left 5 units and up 4 units. Homework #9 Using a calculator, solve each equation to the nearest tenth. Use the given restrictions. 1. tan 1.4 , for 90 90 3. sin 0.75 , for 180 270 2. cos 0.25 , for 0 180 Without using a calculator, solve each equation. Solve for all angles 0 2 . 4. Solve 3tan tan 2 5. Solve 2cos 3 0 6. Solve 2sin 1 2 sin 7. Solve sin 2 2sin 3 , for 8. Solve cos2 2cos 3 , for 9. Solve 2cos2 sin 1, for 10. Solve sin 2 sin 0 , for Homework #10 Trig Identities Puzzle