Download Trigonometric function identities

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Trigonometric function identities
Our Favorite (capitol ‘F’) trig identities are
1. (symmetries)
sin(−θ) = − sin(θ),
and
cos(−θ) = cos(θ)
2. (pythagorian identity)
sin2 (θ) + cos2 (θ) = 1
3. (angle addition formulas)
sin(θ + φ) = sin(θ) cos(φ) + sin(φ) cos(θ),
and
cos(θ + φ) = cos(θ) cos(φ) − sin(θ) sin(φ)
Using what we know about the relation between points on the unit circle and the functions sin(θ) and cos(θ),
explain/prove the first two identities. Draw pictures.
Trigonometric function identities
For the following problems, use the three basic identities (symmetries, pythagorean, angle addition) to prove
the given equalities.
tan x + tan y
.
1 − tan x tan y
1. tan(x + y) =
14. 1 + tan2 (π/2 − x) =
1
.
cos2 (π/2 − x)
15.
sin A cos A
+
= 1.
csc A sec A
3. cos 3x = cos3 x − 3 cos x sin2 x.
16.
tan B
sec B
−
= 1.
cos B
cot B
4. sin 3x = 3 cos2 x sin x − sin3 x.
17.
1
1
sec2 w
+ sec2 w +
=2+
.
2
2
csc w
sec w
csc2 w
5. sin2 A cot2 A = (1 − sin A)(1 + sin A).
18. sec4 V − sec2 V =
r
2. sin(x/2) = ±
6. tan B =
7.
1 − cos x
.
2
cos B
.
sin B cot2 B
tan V cos V
= 1.
sin V
8. sin E cot E + cos E tan E = sin E + cos E.
9.
10.
1
1
+
.
cot4 V
cot2 V
19. sin4 x + cos2 x = cos4 x + sin2 x.
20. tan 3α =
3 tan α − tan3 α
.
1 − 3 tan2 α
21. cot(α/2) =
sin α
.
1 − cos α
√
1
1
+
− 1 = 0.
sec2 x csc2 x
22. cos(π/6 − x) + cos(π/6 + x) =
sec A − 1 cos A − 1
+
= 0.
sec A + 1 cos A + 1
23. sin(α + β) sin(α − β) = sin2 α − sin2 β.
2
24. sin(π/3 − x) + sin(π/3 + x) =
√
3 cos x.
3 cos x.
11. sin V (1 + cot V ) = csc V .
12.
sin(π/2 − w)
= cot w.
cos(π/2 − w)
25. cos(π/4 − x) − cos(π/4 + x) =
√
2 sin x.
26. 2 sin α cos β = sin(α + β) + sin(α − β).
1
13. sec(π/2 − z) =
.
sin z
27. 2 sin α sin β = cos(α − β) − cos(α + β).
More fun with trigonometric function identities
For the following problems, use the three identities above to prove the given equalities.
1. cos 2θ = 2 sin(π/4 + θ) sin(π/4 − θ).
2. (1/2) sin 2A =
3. cot(x/2) =
tan A
.
1 + tan2 A
1 + cos x
.
sin x
19.
tan 2x
.
tan x
A
A
sin − cos
2
2
2
2
11. cos4 A =
1 − sin A
= (sec A − tan A)2 .
1 + sin A
22.
tan A − sin A
sin3 A
=
.
sec A
1 + cos A
23.
2 tan2 A
= 1 − cos 2A.
1 + tan2 A
.
24. tan 2A = tan A +
2 cos 2A + cos 2A + 1
.
4
25. sin 2A =
12.
tan
sin A + sin B
=
sin A − sin B
tan
A+B
2 .
A−B
2
26.
13.
cot2 θ
.
1 + cot2 θ
21. cos B cos(A + B) + sin B sin(A + B) = cos A.
sin 2x
9. cot x =
.
1 − cos 2x
10. 1 − sin A =
sin(β − α)
.
sin α sin β
20. (tan A − cot A)2 + 4 = sec2 A + csc2 A.
8. csc A sec A = 2 csc 2A .
1 + sin 2A
cos A + sin A
=
.
cos A − sin A
cos 2A
18. cos2 θ =
2
.
1 + tan2 A
7. tan 2x tan x + 2 =
15.
17. tan θ csc θ cos θ = 1.
1 − tan2 θ
= cos 2θ.
1 + tan2 θ
6. 1 + cos 2A =
cos 2A
cot A − 1
=
.
1 + sin 2A
cot A + 1
16. cot α − cot β =
4. sin 2B(cot B + tan B) = 2.
5.
14.
tan A
.
cos 2A
2 tan A
.
1 + tan2 A
4 sin A
1 + sin A 1 − sin A
=
−
.
2
1 − sin A 1 + sin A
1 − sin A
sin α + sin 3α
= tan 2α.
cos α + cos 3α
27. tan A + sin A =
csc A + cot A
.
csc A cot A
Related documents