Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
ECS20 Homework 5 Exercise 1 Find these values : a ) ë1.1û b) é1.1ù d ) é- 0.1ù e) é2.99ù c ) ë- 0.1û f ) é- 2.99ù ê 1 é 1 ùú éê 1 ú é 1 ù 1 ù g ) ê + ê úú h) ê ê ú + ê ú + ú ë 2 ê 2 úû êë 2 û ê 2 ú 2 ú Exercise 2 (proof) a) Show that the following statement is true: “If x is a real number such that x2+1=0, then x4 = π”. b) Constructive proof: “If x and y are real numbers such that x < y, show that there exists a real number z with x <z < y” Exercise 3 1ú ê 2ú ê Let x be a real number. Show that ë3x û = ëx û + ê x + ú + ê x + ú 3û ë 3û ë Exercise 4 Let f be a bijection from a set A to a set B. The inverse of f, noted f -1 is the function that assigns to an element b in B the unique element a in A such that f(a)=b. Hence f -1(b) = a when f(a) = b. Let f be a bijection from a set A to a set B. Let S and T be two subsets of A. a) Show that b) Show that c) Show that **Extra credit: Let us consider a generalization of exercise 1. Let x be a real number, and N an integer greater or equal to 3. Show that: 1ú ê 2ú N - 1ú ê ê ëNx û = ëx û + ê x + ú + ê x + ú + … + ê x + Nû ë Nû N úû ë ë (Hint: Consider the function f(x) defined as: 1ú ê 2ú N - 1ú ê ê f ( x ) = ëNx û - ëx û - ê x + ú - ê x + ú - … - ê x + Nû ë Nû N úû ë ë Show first that f(x) is periodic, of period 1/N (i.e. f(x+1/N)=f(x) for all x) )