Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Math 104 – Calculus 8.4 Trigonometric Subs=tu=ons Math 104 -‐ Yu Trigonometric subs=tu=on • Some=mes it is very helpful to use trigonometric iden==es to simplify involving radical expressions. • It can be used to evaluate integrals containing the following expressions: 1. p a2 2. p a2 + x2 or 3. p x2 x2 1 a2 + x2 a2 • Don’t forget to change the limits of the definite integrals! Math 104 -‐ Yu 2 -‐ x2 2-x2 Square r oot o f a Integrals with square root of a Integrals with square root of a2-x2 = axsin Let xLet = a✓ sin ✓ p p p p 2 Then Then a2 ax22 =x2 =a2 a2a2 sin a2 sin✓2 ✓ q q 2 2 2 (1 2 (1 = a sin = a sin ✓) ✓) p p 2✓ 2 cos = a2 2cos = a ✓ a| ✓| cos ✓| = a|=cos x x We✓have ✓ = arcsin We have = arcsin a a a Since Since ax a, x a ⇡ ⇡ ✓ Then ⇡ ⇡ 2 2 and cos ✓ > 0 Then ✓ and cos ✓ 0. 2 p 2 Thus p a2 x2 = a cos ✓ Thus a2 x2 = a cos ✓. Nicolas Fraiman Math 104 Math 104 -‐ Yu Nicolas Fraiman Evaluate 1. Z p 1 Examples Example 2 dx p x2 4 x2 Math 104 -‐ Yu Nicolas Fraiman Math 104 Example 2. Find the area of the unit disk. Math 104 -‐ Yu Tips To evaluate a definite integral we either undo the change of variable, or find the limits in the new variable θ. To undo the change of variable we use the reference triangle to find formulas for functions of θ. To find the new limits we use inverse trig. functions. Nicolas Fraim Math 104 Math 104 -‐ Yu 2+x2 Integrals with square root of a 2 + x2 2 2 Square r oot o f a Integrals with square root of a +x Let x = a tan ✓ Let x = a tan ✓ p p p 2 + x2 = p 2 + a2 tan2 ✓ a a Then 2 Then a2 + x2 =q a2 + a2 tan ✓ q2 2 = a (1 + tan 2 = a (1 + tan2 ✓) ✓) pp 2✓ == aa22sec sec2 ✓ ==a|a|sec sec✓|✓| x We have ✓ = arctan x We have ✓ = arctan a a Since x can be any real number, ⇡ ⇡ Then and sec sec ✓✓ > 1. Then ⇡2 2<✓ ✓<⇡22 and 0 p p 2 + x2 = a sec ✓. a Thus 2 a + x2 = a sec ✓ Thus Nicolas Math 1Fraiman 04 -‐ Yu Nicolas Fraiman Math 104 Examples Example 3. Find Z 1 dx 2 1+x ! ! ! 4. Evaluate Z 1 0 dx (x2 + 4)3/2 Nicolas Fraiman Math 104 Math 104 -‐ Yu 2 -‐ of 2 x2-a2 Integrals with square root Square r oot o f x a 2-a2 Integrals with square root of x Let x = a sec ✓ Let x = a sec ✓ p p 2 2 = 2 sec2 ✓ 2 p Then xp a a a Then x2 a2 p = a2 sec2 ✓ a2 2 (sec2 ✓ = ap 1) 2 2 = a (sec ✓ 1) p p 2 tan2 ✓ = a 2 tan2 ✓ = a = a| tan ✓| = a| tan ✓| x x We have ✓ = arcsec x 1 We We havehave ✓ = sec , note that |x| a ✓ = arcsec a a a ⇡ 0 0✓✓ 2< ⇡ , If x 1.If Ifxax then a then 0✓ 2 a then p so p 2 = a tan ✓. so x2px2 2a2a= ✓ ✓ x a2a=tan a tan ⇡ ⇡ ⇡ ✓ ⇡ 2. If x a then x a If If px then 2 2<✓ ✓⇡⇡, a then 2 2 2 = x a a tan ✓. so p sox2p 2a2 =2 a tan ✓ ✓ x a = a tan Nicolas Fraiman Math 104 -‐ Yu Nicolas Math 104 Fraiman 5. Evaluate Z p dx . 2 9x 4 Example Math 104 -‐ Yu Summary 1. a 2 − x 2 Let x = a sin θ a2 + x2 2. Math 104 – Rimmer 8.3 Trig. Substitution Let x = a tan θ 3. x2 − a2 Let x = a sec θ 2 a 2 + x 2 = a 2 + ( a tan θ ) = a 2 − a 2 sin 2 θ = a 2 + a 2 tan 2 θ = a 2 sec2 θ − a 2 = a 2 (1 − sin 2 θ ) = a 2 (1 + tan 2 θ ) = a 2 ( sec 2 θ − 1) = a 2 cos 2 θ = a 2 sec2 θ = a 2 tan 2 θ a 2 − x 2 = a 2 − ( a sin θ ) a 2 − x 2 = a cos θ x x = a sin θ ⇒ = sin θ a −π π ≤θ ≤ 2 2 a 2 + x 2 = a sec θ x x = a tan θ ⇒ = tan θ a ⇡ −π π ⇡ 22 ≤< θ ≤✓ < 2 2 a 2 a +x θ 2 a −x 2 a ( a sec θ ) 2 − a2 x 2 − a 2 = a tan θ for xx > aa x 2 − a 2 = − a tan θ for x x <−a a x x = a sec θ ⇒ = sec θ a π π x θ x2 − a2 = 0 ≤θ < 2 x 2 2 2 <θ ≤π x x2 − a2 θ a Math 104 -‐ Yu Completing squares Evaluate 6. Z Comple=ng squares 2 1 dx p 4x x2 ! ! Hint: Write 4x x2 = ( 4 + 4x =4 (x x2 ) + 4 2)2 Nicolas Fraiman Math 104 Math 104 -‐ Yu Remember u-substitution ! Remember u-‐subsitu=on ! • Evaluate Z p x x2 + 4 dx ! ! • Don’t use a trig. substitution if a u-substitution is easier. Nicolas Fraim Math 1Math 04 -‐104 Yu