Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Factoring Polynomials CHAPTER 7 Solutions Key Are you READY? 1. B; a polynomial with two terms 2. A; a whole number greater than 1 that has more than two whole-number factors 7-1 Factors and Greatest Common Factors Check it OUt! 1a. 40 = 2 · 2 · 2 · 5 = 2 3· 5 3. F; a number that is multiplied by another number to get a product b. 33 = 3 · 11 4. C; the product of any number and a whole number c. 49 = 7 5. E; a whole number greater than 1 that has exactly two factors, itself and 1 d. 19 is a prime number. 6. 3, 6, 9, 12 7. 4, 8, 12, 16 8. 8, 16, 24, 32 9. 15, 30, 45, 60 10. Yes; 5 × 4 = 20 11. no; factors of 50: 1, 2, 5, 10, 25, 50 12. Yes; 8 × 15 = 120 13. Yes; 7 × 35 = 245 14. Prime 15. Prime 16. Composite; 17. Composite; 10 = 2 · 5 38 = 2 · 19 18. Composite; 19. Composite; 115 = 5 · 23 147 = 21 · 7 0. Prime 2 21. Composite; 93 = 3 · 31 22. 2(x + 5) 23. 3h(h + 1) 2(x) + 2(5) 3h(h) + 3h(1) 2 2x +10 3h + 3h 24. xy(x 2- xy 3 ) xy(x ) - xy(xy ) 2 3 3 2 4 x y - x y 25. 6m(m 2 - 4m - 1) 6m(m )- 6m(4m)- 6m(1) 6m 3- 24m 2 - 6m 26. (x + 3)(x + 8) x(x) + x(8) + 3(x) + 3(8) x 2+ 8x + 3x + 24 x 2+ 11x + 24 2 27. (b - 7)(b + 1) b(b) + b(1) - 7(b) - 7(1) b 2+ b - 7b - 7 b 2 - 6b - 7 28. (2p - 5)(p - 1) 2p(p) + 2p(-1) - 5(p) - 5(-1) 2p 2- 2p - 5p + 5 2p 2- 7p + 5 2 2a. Factors of 12: 1, 2, 3, 4, 6, 12 Factors of 16: 1, 2, 4, 8, 16 The GCF of 12 and 16 is 4. b. 15 = 3 · 5 25 = 5 · 5 The GCF of 15 and 25 is 5. 2 3a. 18g = 2 · 3 · 3 · g · g 27g 3 = 3 · 3 · 3 · g · g · g The GCF of 18g 2 and 27g 3 is 9g 2 . 2 b. 16a = 2 · 2 · 2 · 2 · a · a 9b = 3 · 3 · b The GCF of 16a 2 and 9b is 1. c. 8x = 8 · x 2 7v = 7 · v · v The GCF of 8x and 7v 2 is 1. 4. First find the GCF of 36 and 48 because the number of CDs per shelves must be a common factor of 36 and 48. Factors of 36: 1, 2, 3, 4, 6, 9, 12, 18, 36 Factors of 48: 1, 2, 3, 4, 6, 8, 12, 16, 24, 48 The GCF of 36 and 48 is 12. The greatest possible number of CDs in each shelf is 12. Find the number of shelves if each shelf holds 12 CDs. 36 CDs by pop artists + 48 CDs by country artists ________________________________________ 12 CDs per shelf = 7 shelves Think and Discuss 1. Use a factor tree or divide the number by prime factors until the quotient is 1. 2. Coefficient 100 Prime factorization of coefficient 2·2·5·5 Variable Term x2 Variable term as a product x·x 100x 2 Prime Factorization of 100x 2 22 · 52 · x 2 29. (3n + 4)(2n + 3) 3n(2n) + 3n(3) + 4(2n) + 4(3) 6n 2+ 9n + 8n + 12 6n 2+ 17n + 12 223 Holt McDougal Algebra 1 Exercises 26. Factors of 14: 1, 2, 7, 14 Factors of 15: 1, 3, 5, 15 The GCF of 14 and 15 is 1. Guided Practice 1. Possible answer: the greatest number that is a factor of two given numbers 27. Factors of 30: 1, 2, 3, 5, 6, 10, 15, 30 Factors of 40: 1, 2, 4, 5, 8, 10, 20, 40 The GCF of 30 and 40 is 10. 2 2. 20 = 2 · 2 · 5 = 2 · 5 2 2 3. 36 = 3 · 3 · 2 · 2 = 3 · 2 28. 8a 2 = 2 · 2 · 2 · a · a 11 = 1 · 11 The GCF of 8 a 2 and 11 is 1. 3 4. 27 = 3 · 3 · 3 = 3 3 5. 54 = 3 · 3 · 3 · 2 = 3 · 2 29. 9s = 3 · 3 · s 3 63s = 3 · 3 · 7 · s · s · s The GCF of 9s and 63s 3 is 9s. 5 6. 96 = 2 · 2 · 2 · 2 · 2 · 3 = 2 · 3 7. 7 2 2 8. 100 = 2 · 2 · 5 · 5 = 2 · 5 4 30. -64n = -1 · 2 · 2 · 2 · 2 · 2 · 2 · n · n · n · n 24n 2 = 2 · 2 · 2 · 3 · n · n The GCF of -64n 4 and 24n 2 is 8n 2 . 2 9. 75 = 3 · 5 · 5 = 3 · 5 10. Factors of 12: 1, 2, 3, 4, 6, 12 Factors of 60: 1, 2, 3, 4, 5, 6, 10, 12, 20, 30, 60 The GCF of 12 and 60 is 12. 31. First find the GCF of 72 and 108 because the number of tarts must be a common factor of 72 and 108. 72: 1, 2, 3, 4, 6, 8, 9, 12, 18, 36, 72 108: 1, 2, 3, 4, 6, 9, 12, 18, 27, 36, 54, 108 The GCF of 72 and 108 is 36, so there will be 36 fruits in each tart. There will be a total of 5 tarts: 2 raspberry and 3 blueberry. 32. 5 · t = 5t 33. 2 · 2 · x · x = 4x 2 11. Factors of 14: 1, 2, 7, 14 Factors of 49: 1, 7, 49 The GCF of 14 and 49 is 7. 12. Factors of 55: 1, 5, 11, 55 Factors of 121: 1, 11, 121 The GCF of 55 and 121 is 11. 13. 6x 2= 2 · 3 · x · x 5x 2 = 5 · x · x The GCF of 6x 2 and 5x 2 is x 2 . 34. 11 35. 2 · n = 2n 3 36. Possible answer: Even numbers greater than 2 all have 2 as a factor and thus are not prime. 4 37. No; An odd composite number and an even composite number can have no factors in common other than 1. 14. 15y = 3 · 5 · y · y · y -20y = -1 · 2 · 2 · 5 · y The GCF of 15y 3 and -20y is 5y. 15. 13q = 13 · q · q · q · q 2p 2 = 2 · p · p The GCF of 13q 4 and 2p 2 is 1. 16. First find the GCF of 54 and 18 because the number of beads per necklace must be a common factor of 54 and 18. Factors of 54: 1, 2, 3, 6, 9, 18, 27, 54 Factors of 18: 1, 2, 3, 6, 9, 18 The GCF of 54 and 18 is 18. The greatest possible number of beads in each necklace is 18. Find the number of necklaces if each necklace takes 18 beads to make. 54 glass beads + 18 clay beads __________________________ = 4 necklaces 18 beads per necklace Practice and Problem Solving 17. 18 = 2 · 3 · 3 = 2 · 3 2 18. 64 = 2 · 2 · 2 · 2 · 2 · 2 = 2 6 19. 12 = 2 · 2 · 3 = 2 2· 3 20. 150 = 2 · 3 · 5 · 5 =2·3·5 2 21. 17 22. 226 = 2 · 113 38a. Since the area of a rectangle is length times width, to find all possible whole number lengths, find 2 whole numbers that have the product 84. 1 × 84; 2 × 42; 3 × 28; 4 × 21; 6 × 14; 7 × 12 b. P = 2(7 + 12) c. P = 2(1 + 84) = 2(19) = 38 ft = 2(85) = 170 ft 39. First find the GCF of 35 and 40, because the number of guards in each row must be a common factor of 35 and 40. 35: 1, 5, 7, 35 40: 1, 2, 4, 5, 8, 10, 20, 40 The GCF of 35 and 40 is 5. The greatest possible number of guards in each row is 5. Find the number of rows if each row has 5 guards. 35 Cavaliers + 40 Blue Devils _________________________ = 15 rows 5 Guards per row 41. 8: 1, 2, 4, 8 40. 11: 1, 11 20: 1, 2, 4, 5, 10, 20 12: 1, 2, 3, 4, 6, 12 63: 1, 3, 7, 9, 21, 63 14: 1, 2, 7, 14 8 and 20; GCF = 4 12 and 14; GCF = 2 23. 49 = 7 · 7 24. 63 = 3 · 3 · 7 2 = 3 2· 7 =7 25. Factors of 36: 1, 2, 3, 4, 6, 9, 12, 18, 36 Factors of 63: 1, 3, 7, 9, 21, 63 The GCF of 36 and 63 is 9. 224 Holt McDougal Algebra 1 42. 16: 1, 2, 4, 8, 16 21: 1, 3, 7, 21 27: 1, 3, 9, 27 21 and 27; GCF = 3 43. 32: 1, 2, 4, 8, 16, 32 63: 1, 3, 7, 9, 21, 63 105: 1, 3, 5, 7, 15, 21, 35, 105 63 and 105; GCF = 21 44. 25: 1, 5, 25 35: 1, 5, 7, 35 54: 1, 2, 3, 4, 6, 9, 16,18, 27, 54 25 and 35; GCF = 5 45. 35: 1, 5, 7, 35 54: 1, 2, 3, 6, 9, 18, 27, 54 72: 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, 72 54 and 72; GCF = 18 46.2 4· 3; possible answer: because 48 = 2 · 24 and 24 = 2 3· 3, 48 = 2 · 2 3· 3 = 2 4· 3 From top to bottom, left to right: 47. 36; 2; 9; 3; 2 3· 3 2 48. 27; 3; 9; 3 4 49. 105; 5; 7; 2 · 3 · 5 · 7 50. 2; 14; 7; 2 3· 7 2 3 51. 2; 2; 27; 3; 2 · 3 52. 2; 34; 17; 2 3· 17 4 53. 24; 2; 6; 3; 2 · 3 54. 2; 70; 5; 2 2· 5 · 7 3 55. 2; 2; 10; 5; 2 × 5 1 at 2 56a. Use the given formula, d = vt + __ 2 1 (2)t 2 d = (2)t + __ 2 2 = 2t + t b. 2t = 2 · t 2 t = t · t The GCF of 2t and t 2is t. Test Prep 57. D; 16, 24, 48 has a GCF of 8. 58. F; the GCF of 48 and 12 is 12, and the GCF of 12 and 8 is 4. 24 ft 59. 1 ft P = 50 ft 12 ft 2 ft P = 28 ft 3 ft P = 22 ft 6 ft 4 ft P = 20 ft Patricia should make the pen 4 ft × 6 ft because these dimensions give the shortest perimeter and she will need to buy the least fencing. Challenge and Extend 60. 4n 3 = 2 · 2 · n · n · n 16n 2= 2 · 2 · 2 · 2 · n · n 8n = 2 · 2 · 2 · n The GCF of 4n 3 , 16n 2 , and 8n is 4n. 61. 27y = 3 · 3 · 3 · y · y · y 18y 2= 2 · 3 · 3 · y · y 81y = 3 · 3 · 3 · 3 · y The GCF of 27y 3 , 18y 2 , and 81y is 9y. 4 63. 2p r = 2 · p · p · p · p · r 8p 3 r 2 = 2 · 2 · 2 · p · p · p · r · r 16p 2r 3 = 2 · 2 · 2 · 2 · p · p · r · r · r The GCF of 2p 4 r, 8p 3r 2 , and 16p 2 r 3 is 2p 2 r. 3 64. 2x y = 2 · x · x · x · y 8x 2 y 2= 2 · 2 · 2 · x · x · y · y 17xy 3 = 17 · x · y · y · y The GCF of 2x 3 y, 8x 2 y 2, and 17xy 3 is xy. 4 3 65. 8a b = 2 · 2 · 2 · a · a · a · a · b · b · b 3 3 4a b = 2 · 2 · a · a · a · b · b · b 12a 2b 3= 2 · 2 · 3 · a · a · b · b · b The GCF of 8a 4 b 3, 4a 3b 3 , and 12a 2 b 3 is 4a 2 b 3 . 66. 1 × 20; 2 × 10; 4 × 5; 20 × 1; 10 × 2; 5 × 4 67. Possible answer: 21, 35, 49; 7, 14, 84 68. Possible answer: 6, 35, 143 6 = 2 × 3; 35 = 5 × 7; 143 = 11 × 13 7-2 Factoring by GCF Check it out! 1a. 5b = 2 · b 9b 3 = 3 · 3 · b · b · b The GCF of 5b and 9b 3 is b. 5(b) + 9b 2(b) b(5 + 9b 2) 2 b. 9d = 3 · 3 · d · d 8 2 = 2 · 2 · 2 · 2 · 2 · 2 The GCF of 9 d 2 and 8 2is 1; it cannot be factored. 3 c. 18y = 2 · 3 · 3 · y · y · y 7y 2 = 7 · y · y The GCF of 18y 3 and 7y 2 is y 2 . -1[18y(y 2) + 7(y 2 )] -y 2(18y + 7) 4 8 ft 3 62. 100 = 2 · 2 · 5 · 5 25s 5 = 5 · 5 · s · s · s · s · s 50s = 2 · 5 · 5 · s The GCF of 100, 25s 5 , and 50s is 25. d. 8x = 2 · 2 · 2 · x · x · x · x 4x 3= 2 · 2 · x · x · x 2x 2= 2 · x · x The GCF of 8 x 4 , 4x 3and 2 x 2 is 2x 2 2 2 2 4x (2x ) + 2x(2x ) - 1(2x 2 ) 2x 2(4x 2 + 2x - 1) 2 2. A = 2x + 4x = x(2x) + 2(2x) = 2x(x + 2) Possible expression for the dimensions of the solar panel are 2x cm and (x + 2) cm. 3a. 4s(s + 6) - 5(s + 6) (4s - 5)(s + 6) b. 7x(2x + 3) + (2x + 3) 7x(2x + 3) + 1(2x + 3) (7x + 1)(2x + 3) c. 3x(y + 4) - 2y(x + 4) There are no common factors. 225 Holt McDougal Algebra 1 d. 5x(5x - 2) - 2(5x - 2) (5x - 2)(5x - 2) (5x - 2)2 3 2 4a. 6b + 8b + 9b + 12 (6b 3 + 8b 2 ) + ( 9b + 12) 2b 2( 3b + 4)+ 3(3b + 4) (2b 2+ 3)(3b + 4) 3 2 b.4r + 24r + r + 6 (4r 3+ 24r) + (r 2 + 6) 4r(r 2 + 6) + 1(r 2 + 6) (4r + 1)(r 2 + 6) 2 3 5a.15x - 10x + 8x - 12 (15x 2 - 10x 3 ) + (8x - 12) 5x 2(3 - 2x) + 4(2x - 3) 5x 2 (3 - 2x) + 4(-1)(2x - 3) 5x 2 (3 - 2x) - 4(3 - 2x) (5x 2 - 4)(3 - 2x) 3. 35x = 5 · 7 · x 42= 6 · 7 The GCF of 35x and 42 is 7. -35x + 42 -5x(7) + 6(7) 7(-5x + 6) 4. 4x 2= 2 · 2 · x · x 6x = 2 · 3 · x The GCF of 4x 2 and 6x is 2x. -(4x 2+ 6x) -(2x(2x) + 3(2x)) -2x(2x + 3) 4 5. 12h = 2 · 2 · 3 · h · h · h · h 8h 2 = 2 · 2 · 2 · h · h 6h = 2 · 3 · h The GCF of 1 2h 4 , 8h 2and 6h is 2h. 4 2 12h + 8h - 6h 6h 3(2h) + 4h(2h) - 3(2h) 2h(6h 3 + 4h - 3) 2 b. 8y - 8 - x + xy (8y - 8) + (-x + xy) 8(y - 1) - x(1 - y) 8(y - 1) - x(-1)(-1 + y) 8(y - 1) + x(y - 1) (8 + x)(y - 1) 6.3x = 3 · x · x 9x = 3 · 3 · x 3 = 3 The GCF of 3x 2 , 9x and 3 is 3. 3x 2- 9x + 3 x 2 (3) - 3x(3) + 1(3) 3(x 2 - 3x + 1) Think and Discuss 7. 9m = 3 · 3 · m · m m = m The GCF of 9m 2 and m is m. 9m 2 + m 9m(m) + 1(m) m(9m + 1) 1. Possible answer: when you know the GCF of the monomials in a polynomial, you can factor out the GCF from each monomial to factor the polynomial. 2. Factoring by GCF 1. Find the greatest common factor. 2. Write each term as a product using the GCF. 3. Use the Distributive Property to factor out the GCF. 4. Check by multiplying. Exercises Guided Practice 1. 15a = 3 · 5 · a 5a 2 = 5 · a · a The GCF of 15a and 5a 2 is 5a. 15a - 5a 2 3(5a) - a(5a) 5a(3 - a) 2. 10g 3= 2 · 5 · g · g · g 3g= 3 · g The GCF of 10g 3 and 3g is g. 10g 3- 3g 10g 2 (g) - 3(g) g(10g 2 - 3) 2 8. 14n 3 = 2 · 7 · n · n · n 7n = 7 · n 7n 2 = 7 · n · n The GCF of 14n 3 , 7n and 7n 2 is 7n. 14n 3+ 7n + 7n 2 2n 2(7n) + 1(7n) + n(7n) 7n(2n 2 + 1 + n) 9. 36f = 2 · 2 · 3 · 3 · f 2 18f = 2 · 3 · 3 · f · f 3 = 3 The GCF of 36f, 18f 2 and 3 is 3. 36f + 18f 2+ 3 12f(3) + 6f 2 (3) + 1(3) 3(12f + 6f 2+ 1) 2 10. 15b = 3 · 5 · b · b 7b = 7 · b The GCF of 15b 2 and 7b is b. -15b 2 + 7b -15b(b) + 7(b) b(-15b + 7) 11. -16t 2+ 320t -t(16t) + 20(16t) 16t(-t + 20) Using the factored form of the expression can tell you when the rocket will land again. 226 Holt McDougal Algebra 1 12. 5(m - 2) - m(m - 2) (5 - m)(m - 2) Practice and Problem Solving 27. 9y 2 = 3 · 3 · y · y 45y = 3 · 3 · 5 · y The GCF of 9y 2 and 45y is 9y. 9y 2+ 45y y(9y) + 5(9y) 9y(y + 5) 13. 2b(b + 3) + 5(b + 3) (2b + 5)(b + 3) 14. 4(x - 3) - x(y +2) Cannot be factored 3 2 15.x + 4x + 2x + 8 (x 3 + 4x 2 ) + ( 2x + 8) x 2(x + 4) + 2(x + 4) (x 2+ 2)(x + 4) 3 2 3 2 28. 36d 3 = 2 · 2 · 3 · 3 · d · d · d 24 = 2 · 2 · 2 · 3 The GCF of 36d 3 and 24 is 12. 36d 2+ 24 3d 3 (12) + 2(12) 12(3d 3 + 2) 16. 6x + 4x + 3x + 2 (6x 3+ 4x 2 ) + ( 3x + 2) 2x 2( 3x + 2)+ 1(3x + 2) (2x 2+ 1)(3x + 2) 4 29. 14x = 2 · 7 · x · x · x · x 5x 2 = 5 · x · x The GCF of 14x 4 and 5 x 2is x 2 . 4 2 -14x + 5x -14x 2(x 2 ) + 5(x 2 ) x 2(-14x 2 + 5) 17. 4b - 6b +10b - 15 (4b 3 - 6b 2 ) + (10b - 15) 2b 2(2b - 3) + 5(2b - 3) (2b 2 + 5)(2b - 3) 3 2 18. 2m + 4m + 6m + 12 (2m 3+ 4m 2 ) + (6m + 12) 2m 2(m + 2) + 6(m + 2) 2(m + 2)(m 2 + 3) 3 30. 15f = 3 · 5 · f 2 10f = 2 · 5 · f · f The GCF of 15f and 10f 2 is 5f. -15f - 10f 2 3(-5f) + 2f(-5f) -5f(3 + 2f) 2 19. 7r - 35r + 6r - 30 7r 3- 35r 2 + 6r - 30 7r 2(r - 5) + 6(r - 5) (7r 2+ 6)(r - 5) 3 31. 4d 4= 2 · 2 · d · d · d · d d 3 = d · d · d 3d 2 = 3 · d · d The GCF of 4d 4 , d 3 , and 3d 2 is d 2 . -1(4d 4 - d 3 + 3d 2 ) 2 20. 10a + 4a + 5a + 2 (10a 3+ 4a 2 ) + (5a + 2) 2a 2(5a + 2) + 1(5a + 2) (2a 2 + 1)(5a + 2) 2 -d (4d - d + 3) 2 3 2 22. 6b - 3b + 4 - 8b 21. 2r - 6r + 12 - 4r (2r 2- 6r) + (12 - 4r) (6b 2 - 3b) + ( 4 - 8b) 2r(r - 3) - 4(r - 3) 3b(2b - 1) - 4(2b - 1) (2r - 4)(r - 3) (3b - 4)(2b - 1) 2(r - 2)(r - 3) 23. 14q 2- 21q + 6 - 4q (14q 2 - 21q) + ( 6 - 4q) 7q(2q - 3) - 2(2q - 3) (7q - 2)(2q - 3) 24. 3r - r 2+ 2r - 6 3r - r 2 + 2r - 6 r(3 - r) - 2(3 - r) (r - 2)(3 - r) 3 2 25. 2m - 6m + 9 - 3m (2m 3 - 6m 2 ) + ( 9 - 3m) 2m 2(m - 3) - 3(m - 3) 2 (2m - 3)(m - 3) 3 2 26. 6a - 9a - 12 + 8a (6a 3 - 9a 2 ) + (-12 + 8a) 3a 2(2a - 3) + 4(2a - 3) 2 32. 14x = 2 · 7 · x · x · x 63x 2 = 3 · 3 · 7 · x · x 7x = 7 · x The GCF of 14x 2 , 63x 2and 7x is 7x. 14x 3+ 63x 2 - 7x 2x 2(7x) + 9x(7x) - 1(7x) 7x(2x 2 + 9x - 1) 2 33. 21c = 3 · 7 · c · c 14c = 2 · 7 · c The GCF of 21c 2 and 14c is 7c. 21c 2 + 14c 3c(7c) + 2(7c) 7c(3c + 2) 34. 33d 3= 3 · 11 · d · d · d 22d = 2 · 11 · d 11 = 11 The GCF of 3 3d 3 , 22d and 11 is 11. 33d 3+ 22d + 11 3d 3 (11) + 2d(11) + 1(11) 11(3d 3+ 2d + 1) 2 (3a + 4)(2a - 3) 227 Holt McDougal Algebra 1 35. 5g 3 = 5 · g · g · g 15g 2 = 3 · 5 · g · g The GCF of 5g 3 and 15g 2 is 5g 2 . -5g 3- 15g 2 g(-5g 2) + 3(-5g 2 ) -5g 2(g + 3) 36. S = P + Prt = 1(P) + rt(P) = P(1 + rt) P(1 + rt) is the factored expression for P + Prt. 37. Cannot be factored 38. -4x(x + 2) + 9(x + 2) (x + 2)(-4x + 9) 39. 6y(y - 7) + (y - 7) 6y(y - 7) + 1(y - 7) (6y + 1)(y - 7) 40. a(x - 3) + 2b(x - 3) (a + 2b)(x - 3) 41. -3(2 + b) + 4b(b + 2) 42. 5(3x - 2) + x(3x - 2) (-3 + 4b)(b + 2) (5 + x)(3x - 2) 43.2a 3- 8a 2 + 3a - 12 (2a 3 - 8a 2 ) + (3a - 12) 2a 2(a - 4) + 3(a - 4) (2a 2 + 3)(a - 4) 3 2 44.x + 3x + 5x + 15 (x 3 + 3x 2 ) + (5x + 15) x 2(x + 3) + 5(x + 3) (x 2 + 5)(x + 3) 3 2 45.6x + 18x + x + 3 (6x 3 + 18x 2 ) + (x + 3) 6x 2(x + 3) + 1(x + 3) (6x 2 + 1)(x + 3) 3 2 46.7x + 2x + 28x + 8 3 (7x + 2x 2 ) + (28x + 8) x 2(7x + 2) + 4(7x + 2) (x 2+ 4)(7x + 2) 3 2 47.n - 2n + 5n - 10 3 (n - 2n 2 ) + (5n - 10) n 2(n - 2) + 5(n - 2) (n 2 + 5)(n - 2) 3 2 48.10b - 16b + 25b - 40 3 2 (10b - 6b ) + (25b - 40) 2b 2(5b - 8) + 5(5b - 8) (2b 2 + 5)(5b - 8) 3 2 49. 2m - 2m + 3 - 3m (2m 3 - 2m 2 ) - (3m - 3) 2m 2(m - 1) - 3(m - 1) (2m 2- 3)(m - 1) 3 2 50.2d - d - 3 + 6d 3 (2d - d 2 ) + (6d - 3) d 2(2d - 1) + 3(2d -1) (d 2 + 3)(2d - 1) 3 2 51.6f - 8f + 20 - 15f 3 (6f - 8f 2 ) - (15f - 20) 2f 2 (3f - 4) - 5(3f - 4) (2f 2- 5)(3f - 4) 2 3 52.5k - k + 3k - 15 (5k 2 - k 3 ) + (3k - 15) k 2(5 - k) + 3(k - 5) k 2 (5 - k) - 3(5 - k) (k 2 - 3)(5 - k) 3 2 53.b - 2b - 8 + 4b (b 3+ 4b 2 ) - (2b + 8) b 2(b + 4) - 2(b + 4) (b 2 - 2)(b + 4) 2 54.20 - 15x - 6x + 8x (20 - 15x) + (8x - 6x 2 ) 5(4 - 3x) + 2x(4 - 3x) (5 + 2x)(4 - 3x) 55. Given GCF of 4v: 16v + 12v 2 4(4v) + 3v(4v) 4v(4 + 3v) 56. Given GCF of 5x: 15x - 25x 2 5x(3) - 5x(5x) 5x(3 - 5x) 57. Given GCF of -8k 2 : -16k 3- 24k 2 -8k 2(2k) - 8k 2 (3) -8k 2(2k + 3) 58. Given GCF of 1: -x - 10 -1(x) - 1(10) -1(x + 10) 59.x 2+ 5x; polynomial has 2 terms, so it is a binomial. x 2 + 5x x(x) + 5(x) x(x + 5) 2 60. 28c - 49c; polynomial has 2 terms, so it is a binomial. 28c 2 - 49c 4c(7c) - 7(7c) 7c(4c - 7) 61.a 4+ a 3 + a 2 ; polynomial has 3 terms, so it is a trinomial. a 4+ a 3 + a 2 a 2(a 2 ) + a(a 2 ) + 1(a 2 ) a 2(a 2 + a + 1) 2 3 62. 36 + 99r - 40r - 110r ; polynomial has 4 terms, so it is a polynomial. 36 + 99r - 40r 2 - 110r 3 (36 + 99r) - (40r 2 + 110r 3) 9(4 + 11r) - 10r 2(4 + 11r) (11r + 4)(-10r 2+ 9) 63a. Let x be the interest rate of the CDs that Justin’s aunt purchased for him. For CDs purchased in 2004, n = 3 and P = 100. The value of the CDs purchased in 2004 is 1 00x 3. For CDs purchased in 2005, n = 2 and P = 200. The value of the CDs purchased in 2005 is 2 00x 2 . For CDs purchased in 2005, n = 2 and P = 400. The value of the CDs purchased in 2006 is 400x. 228 Holt McDougal Algebra 1 b. The total value is 100x 3+ 200x 2 + 400x + 800. 3 Challenge and Extend 74. 6ab 2 - 24a 2 6a(b 2 ) - 6a(4a) 6a(b 2 - 4a) 2 c. 100x + 200x + 400x + 800 (100x 3+ 200x 2 ) + (400x + 800) 100x 2( x + 2) + 400(x + 2) (100x 2+ 400)(x + 2) 100(x 2 + 4)(x + 2) 100(1.09 2+ 4)(1.09 + 2) = 1603.1229; $1603.12 64. The area of the figure is the sum of the areas of the rectangle and the triangle. The area of the rectangle is 2x(2x + 6), and the area of the triangle is 1 · 2x(x + 8). The sum is __ 2 1 · 2x(x + 8). 2x(2x + 6) + __ 2 1 · 2x(x + 8) 2x(2x + 6) + __ 2 2 2 4x + 12x + x + 8x 5x 2+ 20x 5x(x + 4) Method 2 (3a - 4a) - (3b - 4b) a(3 - 4) - b(3 - 4) (a - b)(3 - 4) (a - b)(-1) (b - a) 65. Method 1 (3a - 3b) - (4a - 4b) 3(a - b) - 4(a - b) (3 - 4)(a - b) -1(a - b) (b - a) 1 (x 3 - 2x + 2x 2 - 4) 66. __ 2 1 [(x 3 - 2x) + (2x 2- 4)] __ 2 1 [x(x 2 - 2) + 2(x 2 - 2)] __ 2 1 (x 2 - 2)(x + 2) __ 2 The base of the triangle is x 2 - 2. 67. If the sum of two binomials is 0, they are opposite binomials. 68a. Either a or b, or both must equal 0. b. The product of t and (3 - t) is 0, so at least one of the factors must be 0. c. The two times are t = 0 and t = 3. 69a. Commutative Property of Addition b. Association Property of Addition c. Distribution Property d. Distribution Property 2 2 70. A is incorrect because n ≠ n (0). Test Prep 71. D; 72. G; 3 2 24x - 12x 12x 2(2x) - 12x 2 (1) 12x 2(2x - 1) 73. C; 2 18x + 36x 18x(x) + 18x(2) 18x(x + 2) 75. -72a 2 b 2 - 45ab -9ab(8ab) - 9ab(5) -9ab(8ab + 5) 76. -18a 2b 2 + 21ab 77. ab + bc + ad + cd -3ab(6ab) - 3ab(-7) (ab + bc) + (ad + cd) -3ab(6ab - 7) b(a + c) + d(a + c) (b + d)(a + c) 79.x 3- 4x 2 + 3x -12 78. 4y 2+ 8ay - y -2a 2 (4y + 8ay) - (y + 2a) (x 3 - 4x 2 ) + (3x - 12) 4y(y + 2a) - 1(y + 2a) x 2(x - 4) + 3(x - 4) (4y - 1)(y + 2a) (x 2 + 3)(x - 4) 2 2 0a. A = πR - πr 8 A = π(R 2) - π(r 2 ) A = π(R 2- r 2 ) 2 2 2 b. A = π(12 - 5 ) = π(119) ≈ 374cm 7-3 factoring x 2 + bx + c Check it out! a.x 2 + 10x + 24 1 (x + 1)(x + 24)= x 2 + 25x + 24 7 (x + 2)(x + 12)= x 2+ 14x + 24 7 (x + 3)(x + 8) = x 2+ 11x + 24 7 (x + 4)(x + 6) = x 2+ 10x + 24 3 The factors of x 2+ 10x + 24 are (x + 4) and (x + 6). x 2+ 10x + 24 = (x + 4)(x + 6) 2 b.x + 7x + 12 (x + 1)(x + 12)= x 2 + 13x + 12 7 (x + 2)(x + 6) = x 2+ 8x + 12 7 (x + 3)(x + 4) = x 2+ 7x + 12 3 The factors of x 2 + 7x + 12 are (x + 3) and (x + 4). x 2+ 7x + 12 = (x + 3)(x + 4) 2 2a.x + 8x + 12 ________________ Factors of 12 Sum 1 and 12 13 7 2 and 6 8 3 (x + 2)(x + 6) b.x 2 - 5x + 6 Factors of 6 Sum _______________ -1 and -6 -7 7 -2 and -3 -5 3 (x - 2)(x - 3) c.x 2 + 13x + 42 Factors ________________ of 42 Sum 1 and 42 43 7 2 and 21 23 7 3 and 14 17 7 6 and 7 13 3 (x + 6)(x + 7) 2 x + 3x - 6x - 18 (x 2+ 3x) - (6x + 18) x(x + 3) - 6(x + 3) (x - 6)(x + 3) 229 Holt McDougal Algebra 1 d.x 2 - 13x + 40 Factors of 40 Sum ________________ -1 and -40 -41 7 -2 and -20 -22 7 -4 and -10 -14 7 -5 and -8 -13 3 (x - 5)(x - 8) a.x 2 + 2x - 15 3 Factors __________________ of -15 Sum -1 and 15 14 7 -3 and 5 2 3 (x - 3)(x + 5) b.x 2 - 6x + 8 Factors of 8 Sum _______________ -1 and -8 -9 7 -2 and -4 -6 3 (x - 2)(x - 4) c.x 2- 8x - 20 Factors _ of -20 Sum __________________ _________________ 1 and -20 -19 7 2 and -10 -8 3 (x -10)(x + 2) 4.n 2- 7n + 10 _______________ Factors of 10 Sum _ -1 and -10 -11 7 -2 and -5 -7 3 (n - 5)(n - 2) n n 2- 7n + 10 0 0 - 7(0) + 10 = 10 1 1 - 7(1) + 10 = 4 2 2 - 7(2) + 10 = 0 3 3 - 7(3) + 10 = -2 4 4 - 7(4) + 10 = -2 n (n - 5)(n - 2) 2 2 2 2 2 0 (0 - 5)(0 - 2) = 10 1 (1 - 5)(1 - 2) = 4 2 (2 - 5)(2 - 2) = 0 3 (3 - 5)(3 - 2) = -2 4 (4 - 5)(4 - 2) = -2 Think and discuss 1. Find the 2 factors of 14 that have a sum of 9: 2 and 7. Then use these numbers as the constants in the factors: (x + 2)(x + 7). Check (x + 2)(x + 7) = x 2 + 2x + 7x + 14 = x 2+ 9x + 14 3 2 2. For x + bx + c = (x + m)(x + n), if c > 0 and b > 0, m > 0 and n > 0. If c > 0 and b < 0, m < 0 and n < 0. If c < 0 and b > 0, the greater of m and n is positive and the lesser is negative. If c < 0 and b < 0, the greater of m and n is negative and the lesser is positive. 3. Factoring x 2 + bx + c c is positive, and b is positive. x 2 + 5x + 6 (x + 2)(x + 3) c is negative, and b is positive. x2 + x - 6 (x - 2)(x + 3) c is positive, and b is negative. x 2 - 5x + 6 (x - 2)(x - 3) c is negative, and b is negative. x2 - x - 6 (x + 2)(x - 3) Exercises Guided Practice 1.x 2 + 13x + 36 (x + 1)(x + 36) = x 2 + 37x + 36 7 (x + 2)(x + 18) = x 2 + 20x + 36 7 (x + 3)(x + 12) = x 2 + 15x + 36 7 (x + 4)(x + 9) = x 2+ 13x + 36 3 The factors of x 2 + 13x + 36 are (x + 4) and (x + 9). x 2+ 13x + 36 = (x + 4)(x + 9) 2 2.x + 11x + 24 (x + 1)(x + 24) = x 2 + 25x + 24 7 (x + 2)(x + 12) = x 2 + 14x + 24 7 (x + 3)(x + 8) = x 2+ 11x + 24 3 The factors of x 2 + 11x + 24 are (x + 3) and (x + 8). x 2+ 11x + 24 = (x + 3)(x + 8) 2 3.x + 14x + 40 (x + 1)(x + 40) = x 2 + 41x + 40 7 (x + 2)(x + 20) = x 2 + 22x + 40 7 (x + 4)(x + 10) = x 2 + 14x + 40 3 The factors of x 2+ 14x + 40 are (x + 4) and (x + 10). x 2+ 14x + 40 = (x + 4)(x + 10) 2 4.x + 4x + 3 _______________ Factors of 3 Sum 1 and 3 4 3 (x + 1)(x + 3) 2 5.x + 10x + 16 ________________ Factors of 16 Sum 1 and 16 17 7 2 and 8 10 3 (x + 2)(x + 8) 6.x 2+ 15x + 44 ________________ Factors of 44 Sum 1 and 44 45 7 2 and 22 24 7 4 and 11 15 3 (x + 4)(x + 11) 7.x 2 - 7x + 6 _______________ Factors of 6 Sum -1 and -6 -7 3 (x - 1)(x - 6) 2 8.x - 9x + 14 ________________ Factors of 14 Sum -1 and -14 -15 7 -2 and -7 -9 3 (x - 2)(x - 7) 230 Holt McDougal Algebra 1 9.x 2 - 11x + 24 Factors of 24 Sum ________________ -1 and -24 -25 7 -2 and -12 -14 7 -3 and -8 -11 3 -4 and -6 -10 3 (x - 3)(x - 8) 10.x 2+ 6x -7 Factors of -7 Sum _________________ -1 and 7 6 3 (x - 7)(x + 1) 2 11.x + 6x - 27 __________________ Factors of -27 Sum -1 and 27 26 7 -3 and 9 6 3 (x - 3)(x + 9) practice and problem solving 17.x 2 + 13x + 30 (x + 1)(x + 30) = x 2 + 31x + 30 7 (x + 2)(x + 15) = x 2 + 17x + 30 7 (x + 3)(x + 10) = x 2 + 13x + 30 3 The factors of x 2+ 13x + 30 are (x + 3) and (x + 10). x 2+ 13x + 30 = (x + 3)(x + 10) 2 18.x + 11x + 28 (x + 1)(x + 28) = x 2 + 29x + 28 7 (x + 2)(x + 14) = x 2 + 16x + 28 7 (x + 4)(x + 7) = x 2 + 11x + 28 3 2 The factors of x + 11x + 28 are (x + 4) and (x + 7). x 2+ 11x + 28 = (x + 4)(x + 7) 2 12.x + x - 30 __________________ Factors of -30 Sum -1 and 30 29 7 -2 and 15 13 7 -3 and 10 7 7 -5 and 6 1 3 (x - 5)(x + 6) 19.x + 16x + 48 (x + 1)(x + 48) = x 2 + 49x + 48 7 (x + 2)(x + 24) = x 2 + 26x + 48 7 (x + 3)(x + 16) = x 2 + 19x + 48 7 (x + 4)(x + 12) = x 2 + 16x + 48 3 The factors of x 2+ 16x + 48 are (x + 4) and (x + 12). x 2+ 16x + 48 = (x + 4)(x + 12) 13.x 2- x - 2 Factors of -2 Sum _________________ 1 and -2 -1 3 (x + 1)(x - 2) 20.x + 12x + 11 _ Factors of 11 Sum _______________ 1 and 11 12 3 (x + 1)(x + 11) 2 2 14.x - 3x - 18 __________________ Factors of -18 Sum 1 and -17 -16 7 2 and -9 -7 7 3 and -6 -3 3 (x + 3)(x - 6) 2 15.x - 4x - 45 __________________ Factors of -45 Sum 1 and -45 -44 7 3 and -15 -12 7 5 and -9 -4 3 (x + 5)(x - 9) 2 16.n + 6n - 7 _________________ Factors of -7 Sum -1 and 7 6 3 (n - 1)(n + 7) 2 n + 6n - 7 n 0 2 0 + 6(0) - 7 = -7 2 1 1 + 6(1) - 7 = 0 2 2 2 + 6(2) - 7 = 9 2 3 3 + 6(3) - 7 = 20 2 4 4 + 6(4) - 7 = 33 n (n - 1)(n + 7) 0 (0 - 1)(0 + 7) = -7 2 2 21.x + 16x + 28 ________________ Factors of 28 Sum 1 and 28 29 7 2 and 14 16 3 (x + 2)(x + 14) 22.x 2+ 15x + 36 ________________ Factors of 36 Sum 1 and 36 37 7 2 and 18 20 7 3 and 12 15 3 (x + 3)(x + 12) 23.x 2- 6x + 5 _______________ Factors of 5 Sum -1 and -5 -6 3 (x - 1)(x - 5) 2 24.x - 9x + 18 ________________ Factors of 18 Sum -1 and -18 -19 7 -2 and -9 -11 7 -3 and -6 -9 3 (x - 3)(x - 6) 25.x 2- 12x + 32 ________________ Factors of 32 Sum -1 and -32 -33 7 -2 and -16 -18 7 -4 and -8 -12 3 (x - 4)(x - 8) 1 (1 - 1)(1 + 7) = 0 2 (2 - 1)(2 + 7) = 9 3 (3 - 1)(3 + 7) = 20 4 (4 - 1)(4 + 7) = 33 231 Holt McDougal Algebra 1 26.x 2 + x - 12 __________________ Factors of -12 Sum -1 and 12 11 7 -2 and 6 4 7 -3 and 4 1 3 (x - 3)(x + 4) 27.x 2 + 4x - 21 __________________ Factors of -21 Sum -1 and 21 20 7 -3 and 7 4 3 (x - 3)(x + 7) 28.x 2+ 9x - 36 __________________ Factors of -36 Sum -1 and 36 35 7 -2 and 18 16 7 -3 and 12 9 3 (x - 3)(x + 12) 29.x 2- 12x - 13 __________________ Factors of -13 Sum 1 and -13 -12 3 (x + 1)(x - 13) 2 30.x - 10x - 24 __________________ Factors of -24 Sum 1 and -24 -23 7 2 and -12 -10 3 (x + 2)(x - 12) 31.x 2- 2x - 35 __________________ Factors of -35 Sum 1 and -35 -33 7 5 and -7 -2 3 (x + 5)(x - 7) 32.n 2- 12n - 45 _________________ Factors of -45 Sum _ 1 and -45 -44 7 3 and -15 -12 3 (n + 3)(n - 15) n n 2- 12n - 45 0 0 - 12(0) - 45 = -45 1 1 - 12(1) - 45 = -56 2 2 2 2 2 - 12(2) - 45 = -65 3 3 - 12(3) - 45 = -72 4 4 - 12(4) - 45 = -77 2 2 n (n + 3)(n - 15) 0 (0 + 3)(0 - 15) = -45 1 (1 + 3)(1 - 15) = -56 2 (2 + 3)(2 - 15) = -65 3 (3 + 3)(3 - 15) = -72 4 (4 + 3)(4 - 15) = -77 34. A; 33. C; 2 x 2 - 7x + 10 x + 3x - 10 __________________ ________________ Factors of -10 Sum Factors of 10 Sum -1 and 10 -1 and -10 -11 7 9 7 -2 and 5 3 3 -2 and -5 -7 3 (x - 2)(x + 5) (x - 2)(x - 5) 35. D; 36. B; x 2 - 9x - 10 x 2 + 11x + 10 __________________ ________________ Factors of -10 Sum Factors of 10 Sum 1 and -10 1 and 10 -9 3 11 3 (x + 1)(x - 10) (x + 1)(x + 10) 37. They are inverse operations. 2 38.x + x - 20 __________________ Factors of -20 Sum -1 and 20 19 7 -2 and 10 8 7 -4 and 5 1 3 (x - 4)(x + 5) 39.x 2- 11x + 18 ________________ Factors of 18 Sum -1 and -18 -19 7 -2 and -9 -11 3 (x - 2)(x - 9) 40.x 2- 4x - 21 __________________ Factors of -21 Sum 1 and -21 -20 7 3 and -7 -4 3 (x + 3)(x - 7) 41.x 2+ 10x + 9 _______________ Factors of 9 Sum 1 and 9 10 3 (x + 1)(x + 9) 2 42.x - 12x + 32 __________________ Factors of +32 Sum -1 and -32 -33 7 -2 and -16 -18 7 -4 and -8 -12 3 x 2- 12x + 32 = (x - 4)(x - 8). 2 43.x + 13x + 42 ________________ Factors of 42 Sum 1 and 42 43 2 and 21 23 3 and 14 17 6 and 7 13 (x + 6)(x + 7) 7 7 7 3 44.x 2- 7x + 12 ________________ Factors of 12 Sum -1 and -12 -13 7 -2 and -6 -8 7 -3 and -4 -7 3 (x - 3)(x - 4) 45.x 2+ 11x + 18 ________________ Factors of 18 Sum 1 and 18 19 7 2 and 9 11 3 (x + 2)(x + 9) 232 Holt McDougal Algebra 1 46.x 2 - 6x - 27 _________________ Factors of -27 Sum _ 1 and -27 -26 7 3 and -9 -6 3 (x + 3)(x - 9) 47.x 2+ 5x - 24 __________________ Factors of -24 Sum -1 and 24 23 7 -2 and 12 10 7 -3 and 8 5 3 (x - 3)(x + 8) 48.x 2- 10x + 21 Factors of 21 Sum ________________ -1 and -21 -22 7 -3 and -7 -10 3 (x - 3)(x - 7) 2 49.x + 4x - 45 __________________ Factors of -45 Sum -1 and 45 44 7 -3 and 15 12 7 -5 and 9 4 3 (x - 5)(x + 9) 50.n 2+ 11n + 28 ________________ Factors of 28 Sum 1 and 28 29 7 2 and 14 16 7 4 and 7 11 3 (n + 4)(n + 7) n 2+ 11n + 28 n 58. Sign of c: negative Binomial Factors: (x - 1)(x + 3) Signs of Numbers in Binomials: negative; positive 59. Sign of c: negative Binomial Factors: (x + 1)(x - 3) Signs of Numbers in Binomials: positive; negative 60.x 2 + 6x + 8 = x 2 + 2x + 4x + 2 · 4 = (x + 2)(x + 4) The width of the rectangle is (x + 2). 2 ≠ 4 so (x + 2) ≠ (x + 4) The rectangle cannot be a square. 61a. v = 0, a = 2 1 at 2 d = vt + __ 2 1 (2)t 2 = (0)t + __ 2 2 = t 2 c.t - 4t t(t) - 4(t) t(t - 4) b. v = 4, a = 0 1 at 2 d = vt + __ 2 1 (0)t 2 = (4)t + __ 2 = 4t 63. True 2 64. False; the correct factorization is (x - 1)(x + 2). 2 65. False; the correct factorization is (x - 4)(x + 1). 1 + 11(1) + 28 = 40 2 2 + 11(2) + 28 = 54 3 3 + 11(3) + 28 = 70 4 + 11(4) + 28 = 88 (n + 4)(n + 7) 0 (0 + 4)(0 + 7) = 28 1 (1 + 4)(1 + 7) = 40 2 (2 + 4)(2 + 7) = 54 3 (3 + 4)(3 + 7) = 70 4 (4 + 4)(4 + 7) = 88 51. Approximately 1.5 yards 2 52.x + 8x + 12 = x + 2x + 6x + 2 · 6 = (x + 2)(x + 6) The width of the rectangle is (x + 2) ft. 2 57. Sign of c: positive Binomial Factors: (x - 1)(x - 3) Signs of Numbers in Binomials: both negative 2 0 + 11(0) + 28 = 28 1 2 56.x 2 + 2x - 8 (x + 4)(x - 2) 2 0 n 2 55.x + 6x + 8 x 2 + 2x + 4x + 2 · 4 (x + 2)(x + 4) 62.x 2 + 9x + 14 = x 2 + 2x + 7x + 2 · 7 = (x + 2)(x + 7) The width of the platform is (x + 2) ft. 2 4 54.x 2 + 5x + 6 x 2 + 2x + 3x + 2 · 3 (x + 2)(x + 3) 2 3a.x + 3x + 2 = x + x + 2x + 1 · 2 5 = (x + 1)(x + 2) Length: (x + 2) ft Width: (x + 1) ft 66. False; many trinomials cannot be factored, 2 e.g. x - 12x - 32. 2 2 67.x - 6x + 8 x 2- 2x - 4x + 2 · 4 (x - 2)(x - 4) 68.x - 2x - 8 x 2+ 2x - 4x - 2 · 4 (x + 2)(x - 4) 69.x 2+ 2x - 8 x 2- 2x + 4x - 2 · 4 (x - 2)(x + 4) 70.x + 6x + 8 x 2+ 2x + 4x + 2 · 4 (x + 2)(x + 4) 2 1a.x 2+ 12x + 20 = x 2 + 2x + 10x + 2 · 10 7 = (x + 2)(x + 10) The length of the fountain is (x + 10) ft. b. Length: (x + 10) + 2 · 2 = (x + 14) ft Width: (x + 2) + 2 · 2 = (x + 6) ft 2 c. (x + 14)(x + 6) = x + 14x + 6x + 84 = x 2 + 20x + 84 The total area covered is (x 2 + 20x + 84) ft 2. b.x 2+ 8x + 15 = x 2 + 3x + 5x + 3 · 5 = (x + 3)(x + 5) Length: (x + 3) ft Width: (x + 5) ft c. The length will increase by 1 ft. The width will increase by 4 ft. 233 Holt McDougal Algebra 1 72.x 2 + bx + 6 _______________ Factors of 6 Sum 1 and 6 7 2 and 3 5 -2 and -3 -5 -1 and -6 -7 Possible values of b are 7, 5, -5, and -7. 83.x 2 + bx + 28 ________________ Factors of 28 Sum 1 and 28 29 2 and 14 16 4 and 7 11 Possible values of b are 29, 16 and 11. 84.x 2 + bx + 32 _______________ Factors of 32 Sum _ -1 and -32 -33 -2 and -16 -18 -4 and -8 -12 Possible values of b are -33, -18 and -12. test prep 3. D; (x + 2)(x - 12) = x 2 + 2x - 12x - 24 7 = x 2 - 10x - 24 74. H; 2 x + bx - 20 __________________ Factors of -20 Sum -1 and 20 19 -2 and 10 8 -4 and 5 1 Possible values of b are 19, 8, and 1. 5a.x 2+ 13x + 42 = x 2 + 6x + 7x + 6 · 7 8 = (x + 6)(x + 7) The length of the garden is (x + 7) ft. b. 2 · [(x + 6) + (x + 7)] = 2 · (2x + 13) = 4x + 26 The perimeter is (4x + 26) ft. c. 2 · [4(5) + 26] = 2 · 46 = 92.00 The cost to fence the garden is $92.00 75. C; x 2 + bx - 36 __________________ Factors of -36 Sum -1 and 36 35 -2 and 18 16 -3 and 12 9 -4 and 9 5 -6 and 6 0 Possible values of b are 35, 16, 9, 5, and 0. 2 d. 0.28 · [(5) + 13(5) + 42] = 0.28 · 132 = 36.96 The cost of fertilizer is $36.96. e. 92+ 36.96 = 128.96 The total cost to fence and fertilize is $128.96. 2 7-4 factoring ax + bx + c 76.x 2 + 2x - 24 b = 2 and c = -24; look for factors of -24 whose sum is 2. The factor with the greater absolute value is positive. Factors of -24 Sum __________________ -1 and 24 23 7 -2 and 12 10 7 -3 and 8 5 7 -4 and 6 2 3 The factors are -4 and 6. (x - 4)(x + 6) check it out! 1a. 6x 2 + 11x + 3 (1x + 3)(6x + 1) = 6x 2 + 19x + 3 7 (1x + 1)(6x + 3) = 6x 2 + 9x + 3 7 (2x + 3)(3x + 1) = 6x 2 + 11x + 3 3 The factors of 6x 2+ 11x + 3 are (2x + 3) and (3x + 1). 6x 2+ 11x + 3 = (2x + 3)(3x + 1) 2 b. 3x - 2x - 8 (1x - 8)(3x + 1) = 3x 2 - 23x - 8 7 (1x - 4)(3x + 2) = 3x 2 -10x - 8 7 (1x + 4)(3x - 2) = 3x 2 + 10x - 8 7 (1x + 8)(3x - 1) = 3x 2 + 23x -8 7 (3x - 8)(1x + 1) = 3x 2 - 5x - 8 7 (3x - 4)(1x + 2) = 3x 2 + 2x - 8 7 (3x + 4)(1x - 2) = 3x 2 - 2x - 8 3 The factors of 3x 2- 2x - 8 are (3x + 4) and (x - 2). 3x 2- 2x - 8 = (3x + 4)(x - 2) challenge and extend 4 2 77.x 4 + 18x 2 + 81 78.y - 5y - 24 Factors Factors of 81 Sum of -24 Sum ________________ __________________ 1 and 81 1 and -24 82 -23 3 and 27 30 2 and -12 -10 9 and 9 18 3 and -8 -5 (x 2 + 9)(x 2 + 9) (y 2 + 3)(y 2 - 8) 4 2 0.(u + v) 2+ 2(u + v) - 3 8 79.d + 22d + 21 Factors Factors of 21 Sum of -3 Sum ________________ _________________ 1 and 21 -1 and 3 22 2 (d 2+ 1)(d 2+ 21) (u + v - 1)(u + v + 3) 2 81.(de) 2- (de) - 20 82.(m - n) 2- 4(m - n) - 45 Factors Factors of -20 Sum of -45 Sum __________________ __________________ 1 and -20 1 and -45 -19 -44 2 and -10 -8 3 and -15 -12 4 and -5 -1 5 and -9 -4 (de + 4)(de - 5) (m - n + 5)(m - n - 9) 2a. 6x + 17x + 5 Factors of ___________________________________ 6 Factors of 5 Outer + Inner 1 and 6 1 and 5 1(5) + 6(1) = 11 7 2 and 3 5 and 12(1) + 3(5) = 17 3 (2x + 5)(3x + 1) b. 9x 2 - 15x + 4 ___________________________________ Factors of 9 Factors of 4 Outer + Inner 1 and 9 -1 and -4 1(-4) + 9(-1) = -13 7 1 and 9 -4 and -1 1(-1) + 9(-4) = -37 7 1 and 9 -2 and -21(-2) + 9(-2) = -20 7 3 and 3 -1 and -4 3(-4) + 3(-1) = -15 3 (3x - 1)(3x - 4) 234 Holt McDougal Algebra 1 c. 3x 2 + 13x + 12 ____________________________________ Factors of 3 Factors of 12 Outer + Inner 1 and 3 1 and 12 1(12) + 3(1) = 15 1 and 3 12 and 1 1(1) + 3(12) = 37 1 and 3 2 and 6 1(6) + 3(2) = 12 1 and 3 6 and 2 1(2) + 3(6) = 20 1 and 3 3 and 4 1(4) + 3(3) = 13 (x + 3)(3x + 4) Exercises Guided Practice 7 7 7 7 3 3a. 6x 2 + 7x - 3 _ Factors of 6 Factors of -3 Outer + Inner ___________________________________ 1 and 6 1 and -3 1(-3) + 6(1) = 3 7 1 and 6 -1 and 3 1(3) + 6(-1) = -3 7 1 and 6 3 and -1 1(-1) + 6(3) = 17 7 1 and 6 -3 and 1 1(1) + 6(-3) = -17 7 2 and 3 1 and -3 2(-3) + 3(1) = -3 7 2 and 3 -1 and 3 2(3) + 3(-1) = 3 7 2 and 3 3 and -1 2(-1) + 3(3) = 7 3 (2x + 3)(3x - 1) b. 4n 2- n - 3 _ Factors of 4 Factors of -3 Outer + Inner ___________________________________ 1 and 4 1 and -3 1(-3) + 4(1) = 1 7 1 and 4 -1 and 3 1(3) + 4(-1) = -1 3 (n - 1)(4n + 3) 4a. -6x 2- 17x - 12 -1(6x 2 + 17x + 12) Factors of 6 Factors of 12 Outer + Inner ____________________________________ 1 and 6 1 and 12 1(12) + 6(1) = 18 7 1 and 6 12 and 1 1(1) + 6(12) = 73 7 1 and 6 2 and 6 1(6) + 6(2) = 18 7 1 and 6 6 and 2 1(2) + 6(6) = 38 7 1 and 6 3 and 4 1(4) + 6(3) = 22 7 1 and 6 4 and 3 1(3) + 6(4) = 27 7 2 and 3 1 and 12 2(12) + 3(1) = 27 7 2 and 3 12 and 1 2(1) + 3(12) = 38 7 2 and 3 2 and 6 2(6) + 3(2) = 18 7 2 and 3 6 and 2 2(2) + 3(6) = 22 7 2 and 3 3 and 4 2(4) + 3(3) = 17 3 -1(2x + 3)(3x + 4) b. -3x 2- 17x - 10 -1(3x 2 + 17x + 10) Factors of 3 Factors of 10 Outer + Inner ____________________________________ 1 and 3 1 and 10 1(10) + 3(1) = 12 7 1 and 3 10 and 1 1(1) + 3(10) = 31 7 1 and 3 2 and 5 1(5) + 3(2) = 11 7 1 and 3 5 and 2 1(2) + 3(5) = 17 3 -1(x + 5)(3x + 2) 1. 2x 2 + 9x + 10 (1x + 10)(2x + 1) = 2x 2 + 21x + 10 7 (1x + 5)(2x + 2)= 2x 2 + 12x + 10 7 (1x + 2)(2x + 5) = 2x 2 + 9x + 10 3 The factors of 2x 2+ 9x + 10 are (x + 2) and (2x + 5). 2x 2+ 9x + 10 = (x + 2)(2x + 5) 2 2. 5x + 31x + 6 (1x + 6)(5x + 1) = 5x 2 + 31x + 6 3 The factors of 5x 2+ 31x + 6 are (x + 6) and (5x + 1). 5x 2+ 31x + 6 = (x + 6)(5x + 1) 2 3. 5x + 7x - 6 (1x - 6)(5x + 1) = 5x 2 - 29x - 6 7 (1x - 3)(5x + 2) = 5x 2- 13x - 6 7 (1x - 2)(5x + 3) = 5x 2- 7x - 6 7 (1x + 2)(5x - 3) = 5x 2 + 7x - 6 3 The factors of 5x 2+ 7x - 6 are (x + 2) and (5x - 3). 5x 2+ 7x - 6 = (x + 2)(5x - 3) 2 4. 6x + 37x + 6 (1x + 6)(6x + 1) = 6x 2 + 37x + 6 3 The factors of 6x 2+ 37x + 6 are (x + 6) and (6x + 1). 6x 2+ 37x + 6 = (x + 6)(6x + 1) 2 5. 3x - 14x - 24 (1x - 24)(3x + 1) = 3x 2 - 71x - 24 7 (1x - 12)(3x + 2) = 3x 2 - 34x - 24 7 (1x - 8)(3x + 3) = 3x 2 - 21x - 24 7 (1x - 6)(3x + 4)= 3x 2 - 14x - 24 3 The factors of 3x 2- 14x - 24 are (x - 6) and (3x + 4). 3x 2- 14x - 24 = (x - 6)(3x + 4) 2 6.6x + x - 2 (1x - 2)(6x + 1) = 6x 2 - 11x - 2 7 (1x - 1)(6x + 2) = 6x 2 - 4x - 2 7 (1x + 1)(6x - 2) = 6x 2 + 4x -2 7 (1x + 2)(6x - 1) = 6x 2+ 11x - 2 7 (2x - 2)(3x + 1) = 6x 2 - 4x -2 7 (2x - 1)(3x + 2) = 6x 2 + x -2 3 The factors of 6x 2+ x - 2 are (2x - 1) and (3x + 2). 6x 2+ x - 2 = (2x - 1)(3x + 2). 2 think and discuss 1. The signs of the numbers are all positive. 2. Factoring ax 2 + bx + c c>0 b>0 b<0 3x 2 + 10x + 8 = (3x + 4)(x + 2) 3x 2 - 10x + 8 = (3x - 4)(x - 2) c<0 b<0 2 3x - 10x - 8 = (3x + 2)(x - 4) 7. 5x + 11x + 2 ___________________________________ Factors of 5 Factors of 2 Outer + Inner 1 and 5 1 and 2 1(2) + 5(1) = 7 7 1 and 5 2 and 1 1(1) + 5(2) = 11 3 (x + 2)(5x + 1) 8. 2x 2 + 11x + 5 ___________________________________ Factors of 2 Factors of 5 Outer + Inner 1 and 2 1 and 5 1(5) + 2(1) = 7 7 1 and 2 5 and 1 1(1) + 2(5) = 11 3 (x + 5)(2x + 1) b>0 2 3x + 10x - 8 = (3x - 2)(x + 4) 235 Holt McDougal Algebra 1 9. 4x 2 - 9x + 5 __________________________________ Factors of 4 Factors of 5 Outer + Inner _ 1 and 4 -1 and -5 1(-5) + 4(-1) = -9 3 (x - 1)(4x - 5) 2 10. 2y - 11y + 14 __________________________________ Factors of 2 Factors of 14 Outer + Inner _ 1 and 2 -1 and -141(-14) + 2(-1) = -167 1 and 2 -14 and -1 1(-1) + 2(-14) = -297 1 and 2 -2 and -7 1(-7) + 2(-2) = -113 (2y - 7)(y - 2) 2 11. 5x + 9x + 4 ___________________________________ Factors of 5 Factors of 4 Outer + Inner 1 and 5 1 and 4 1(4) + 5(1) = 9 3 (x + 1)(5x + 4) 2 12. 3x + 7x + 2 ___________________________________ Factors of 3 Factors of 2 Outer + Inner 1 and 3 1 and 2 1(2) + 3(1) = 5 7 1 and 3 2 and 1 1(1) + 3(2) = 7 3 (x + 2)(3x + 1) 13. 4a 2 + 8a - 5 _ Factors of 4 Factors of -5 Outer + Inner ___________________________________ 1 and 4 1 and -5 1(-5) + 4(1) = -1 7 1 and 4 -1 and 5 1(5) + 4(-1) = 1 7 1 and 4 5 and -1 1(-1) + 4(5) = 19 7 1 and 4 -5 and 1 1(1) + 4(-5) = -19 7 2 and 2 1 and -5 2(-5) + 2(1) = - 8 7 2 and 2 -1 and 5 2(5) + 2(-1) = 8 3 (2a - 1)(2a + 5) 14. 15x 2+ 4x - 3 ____________________________________ Factors of 15 Factors of -3 Outer + Inner 1 and 15 1 and -3 1(-3) + 15(1) = 12 7 1 and 15 -1 and 3 1(3) + 15(-1) = -127 1 and 15 3 and -1 1(-1) + 15(3) = 44 7 1 and 15 -3 and 1 1(1) + 15(-3) = -447 3 and 5 1 and -3 3(-3) + 5(1) = -4 7 3 and 5 -1 and 3 3(3) + 5(-1) = 4 3 (3x - 1)(5x + 3) 15. 2x 2 + x - 6 _ Factors of 2 Factors of -6 Outer + Inner ___________________________________ 1 and 2 1 and -6 1(-6) + 2(1) = -4 7 1 and 2 -1 and 6 1(6) + 2(-1) = 4 7 1 and 2 2 and -3 1(-3) + 2(2) = 1 3 (x + 2)(2x - 3) 16. 6n 2- 11n - 10 ____________________________________ Factors of 6 Factors of -10 Outer + Inner 1 and 6 1 and -10 1(-10) + 6(1) = -47 1 and 6 -1 and 10 1(10) + 6(-1) = 47 1 and 6 2 and -5 1(-5) + 6(2) = 7 7 1 and 6 -2 and 5 1(5) + 6(-2) = -77 1 and 6 5 and -2 1(-2) + 6(5) = 287 1 and 6 -5 and 2 1(2) + 6(-5) = -287 1 and 6 10 and -1 1(-1) + 6(10) = 597 1 and 6 -10 and 1 1(1) + 6(-10) = -597 2 and 3 2 and -5 2(-5) + 3(2) = -47 2 and 3 -2 and 5 2(5) + 3(-2) = 47 2 and 3 5 and -2 2(-2) + 3(5) = 117 2 and 3 -5 and 2 2(2) + 3(-5) = -113 (2n - 5)(3n + 2) 17. 10x 2 - 9x - 1 _____________________________________ Factors of 10 Factors of -1 Outer + Inner 1 and 10 1 and -1 1(-1) + 10(1) = 9 7 1 and 10 -1 and 1 1(1) + 10(-1) = -93 (x - 1)(10x + 1) 18. 7x 2 - 3x - 10 _____________________________________ Factors of 7 Factors of -10 Outer + Inner 1 and 7 1 and -10 1(-10) + 7(1) = -33 (x + 1)(7x - 10) 2 19. -2x + 5x + 12 -1(2x 2 - 5x - 12) Factors of 2 Factors of -12 Outer + Inner ____________________________________ 1 and 2 1 and -12 1(-12) + 2(1) = -107 1 and 2 -1 and 12 1(12) + 2(-1) = 10 7 1 and 2 2 and -6 1(-6) + 2(2) = -2 7 1 and 2 -2 and 6 1(6) + 2(-2) = 2 7 1 and 2 3 and -4 1(-4) + 2(3) = 2 7 1 and 2 -3 and 4 1(4) + 2(-3) = -2 7 1 and 2 4 and -3 1(-3) + 2(4) = 5 7 1 and 2 -4 and 3 1(3) + 2(-4) = -53 = -1(2x + 3)(x - 4) 20. -4n 2- 16n + 9 -1(4n 2+ 16n - 9) Factors of 4 Factors of -9 Outer + Inner ____________________________________ 1 and 4 1 and -9 1(-9) + 4(1) = -5 7 1 and 4 -1 and 9 1(9) + 4(-1) = 5 7 1 and 4 3 and -3 1(-3) + 4(3) = 9 7 1 and 4 -3 and 3 1(3) + 4(-3) = -9 7 1 and 4 9 and -1 1(-1) + 4(9) = 35 7 1 and 4 -9 and 1 1(1) + 4(-9) = -35 7 2 and 2 1 and -9 2(-9) + 2(1) = -16 7 2 and 2 -1 and 9 2(9) + 2(-1) = 16 3 -1(2n - 1)(2n + 9) 21. -5x 2 + 7x + 6 -1(5x 2- 7x - 6) Factors of 5 Factors of -6 Outer + Inner ____________________________________ 1 and 5 1 and -6 1(-6) + 5(1) = -1 7 1 and 5 -1 and 6 1(6) + 5(-1) = 1 7 1 and 5 2 and -3 1(-3) + 5(2) = 7 7 1 and 5 -2 and 3 1(3) + 5(-2) = -7 3 -1(x - 2)(5x + 3) 22. -6x 2 + 13x - 2 -1(6x 2- 13x + 2) ___________________________________ Factors of 6 Factors of 2 Outer + Inner 1 and 6 -1 and -2 1(-2) + 6(-1) = -8 7 1 and 6 -2 and -1 1(-1) + 6(-2) = -13 3 -1(x - 2)(6x - 1) 23. -4x 2 - 8x + 5 -1(4x 2+ 8x - 5) Factors of 4 Factors of -5 Outer + Inner ____________________________________ 1 and 4 1 and -5 1(-5) + 4(1) = -1 7 1 and 4 -1 and 5 1(5) + 4(-1) = 1 7 1 and 4 5 and -1 1(-1) + 4(5) = 19 7 1 and 4 -5 and 1 1(1) + 4(-5) = -19 7 2 and 2 1 and -5 2(-5) + 2(1) = -8 7 2 and 2 -1 and 5 2(5) + 2(-1) = 8 3 -1(2x - 1)(2x + 5) 236 Holt McDougal Algebra 1 24. -5x 2 + x + 18 -1(5x 2 - x - 18) Factors of 5 Factors of -18 Outer + Inner ____________________________________ 1 and 5 1 and -18 1(-18) + 5(1) = -137 1 and 5 -1 and 18 1(18) + 5(-1) = 13 7 1 and 5 2 and -9 1(-9) + 5(2) = 1 7 1 and 5 -2 and 9 1(9) + 5(-2) = -1 3 -1(x - 2)(5x + 9) practice and problem solving 25. 9x 2 + 9x + 2 (1x + 2)(9x + 1) = 9x 2 + 19x + 2 7 (1x + 1)(9x + 2) = 9x 2 + 11x + 2 7 (3x + 2)(3x + 1) = 9x 2 + 9x + 2 3 The factors of 9x 2+ 9x + 2 are (3x + 2) and (3x + 1). 9x 2+ 9x + 2 = (3x + 2)(3x + 1) 2 26. 2x + 7x + 5 (1x + 5)(2x + 1) = 2x 2 + 11x + 5 7 (1x + 1)(2x + 5) = 2x 2 + 7x + 5 3 The factors of 2x 2+ 7x + 5 are (x + 1) and (2x + 5). 2x 2+ 7x + 5 = (x + 1)(2x + 5) 2 27. 3n + 8n + 4 (1n + 4)(3n + 1) = 3n 2 + 13n + 4 7 (1n + 2)(3n + 2) = 3n 2+ 8n + 4 3 The factors of 3n 2+ 8n + 4 are (n + 2) and (3n + 2). 3n 2+ 8n + 4 = (n + 2)(3n + 2) 2 28. 10d + 17d + 7 (1d + 7)(10d + 1) = 10d 2 + 71d + 7 7 (1d + 1)(10d + 7) = 10d 2 + 17d + 7 3 The factors of 10d 2+ 17d + 7 are (d + 1) and (10d + 7). 10d 2+ 17d + 7 = (d + 1)(10d + 7) 2 29. 4c - 17c + 15 (1c - 15)(4c - 1) = 4c 2 - 61c + 15 7 (1c - 5)(4c - 3)= 4c 2- 23c + 15 7 (1c - 3)(4c - 5)= 4c 2- 17c + 15 3 The factors of 4c 2- 17c + 15 are (c - 3) and (4c - 5). 4c 2- 17c + 15 = (c - 3)(4c - 5) 2 30. 6x + 14x + 4 (1x + 4)(6x + 1) = 6x 2 + 25x + 4 7 (1x + 2)(6x + 2) = 6x 2 + 14x + 4 3 The factors of 6x 2+ 14x + 4 are (x + 2) and (6x + 2). 6x 2+ 14x + 4 = 2(3x + 1)(x + 2) 2 31. 8x + 22x + 5 (1x + 5)(8x + 1) = 8x 2 + 41x + 5 7 (1x + 1)(8x + 5) = 8x 2 + 13x + 5 7 (2x + 5)(4x + 1) = 8x 2 + 22x + 5 3 The factors of 8x 2+ 22x + 5 are (2x + 5) and (4x + 1). 8x 2+ 22x + 5 = (2x + 5)(4x + 1) 32. 6x 2- 13x + 6 (1x - 6)(6x - 1) = 6x 2 - 37x + 6 7 (1x - 3)(6x - 2) = 6x 2 - 20x + 6 7 (1x - 2)(6x - 3) = 6x 2 - 15x + 6 7 (1x - 1)(6x - 6) = 6x 2 - 12x + 6 7 (2x - 6)(3x - 1) = 6x 2 - 20x + 6 7 (2x - 3)(3x - 2) = 6x 2 - 13x + 6 3 The factors of 6x 2- 13x + 6 are (2x - 3) and (3x - 2). 6x 2- 13x + 6 = (2x - 3)(3x - 2) 2 33. 5x + 9x - 18 (1x + 18)(5x - 1) = 5x 2 + 89x - 18 7 (1x + 9)(5x - 2)= 5x 2 + 43x - 18 7 (1x + 6)(5x - 3)= 5x 2 + 27x - 18 7 (1x + 3)(5x - 6)= 5x 2+ 9x - 18 3 The factors of 5x 2+ 9x - 18 are (x + 3) and (5x - 6). 5x 2+ 9x - 18 = (x + 3)(5x - 6) 2 34. 6x + 23x + 7 ___________________________________ Factors of 6 Factors of 7 Outer + Inner 1 and 6 1 and 7 1(7) + 6(1) = 13 1 and 6 7 and 1 1(1) + 6(7) = 43 2 and 3 1 and 7 2(7) + 3(1) = 17 2 and 3 7 and 1 2(1) + 3(7) = 23 (2x + 7)(3x + 1) 7 7 7 3 35. 10n 2 - 17n + 7 ___________________________________ Factors of 10 Factors of 7 Outer + Inner 1 and 10 -1 and -7 1(-7) + 10(-1) = -173 (n - 1)(10n - 7) 2 36. 3x + 11x + 6 ___________________________________ Factors of 3 Factors of 6 Outer + Inner 1 and 3 1 and 6 1(6) + 3(1) = 9 1 and 3 6 and 1 1(1) + 3(6) = 19 1 and 3 2 and 3 1(3) + 3(2) = 9 1 and 3 3 and 2 1(2) + 3(3) = 11 (x + 3)(3x + 2) 7 7 7 3 37. 7x 2 + 15x + 2 ___________________________________ Factors of 7 Factors of 2 Outer + Inner 1 and 7 1 and 2 1(2) + 7(1) = 9 7 1 and 7 2 and 1 1(1) + 7(2) = 15 3 (x + 2)(7x + 1) 38. 3n 2 + 4n + 1 ___________________________________ Factors of 3 Factors of 1 Outer + Inner 1 and 3 1 and 1 1(1) + 3(1) = 4 3 (n + 1)(3n + 1) 2 39. 3x - 19x + 20 ___________________________________ Factors of 3 Factors of 20 Outer + Inner 1 and 3 -1 and -20 1(-20) + 3(-1) = -237 1 and 3 -20 and -1 1(-1) + 3(-20) = -617 1 and 3 -2 and -101(-10) + 3(-2) = -167 1 and 3 -10 and -2 1(-2) + 3(-10) = -327 1 and 3 -4 and -5 1(-5) + 3(-4) = -177 1 and 3 -5 and -4 1(-4) + 3(-5) = -193 (x - 5)(3x - 4) 237 Holt McDougal Algebra 1 40. 6x 2 + 11x + 4 __________________________________ Factors of 6 Factors of 4 Outer + Inner _ 1 and 6 1 and 4 1(4) + 6(1) = 10 1 and 6 4 and 1 1(1) + 6(4) = 25 1 and 6 2 and 2 1(2) + 6(2) = 14 2 and 3 1 and 4 2(4) + 3(1) = 11 (2x + 1)(3x + 4) 7 7 7 3 41. 4x 2 - 31x + 21 __________________________________ Factors of 4 Factors of 21 Outer + Inner _ 1 and 4 -1 and -211(-21) + 4(-1) = -257 1 and 4 -21 and -1 1(-1) + 4(-21) = -857 1 and 4 -3 and -7 1(-7) + 4(-3) = -197 1 and 4 -7 and -3 1(-3) + 4(-7) = -313 (x - 7)(4x - 3) 42. 10x 2+ 31x + 15 _____________________________________ Factors of 10 Factors of 15 Outer + Inner 1 and 10 1 and 15 1(15) + 10(1) = 25 7 1 and 10 15 and 1 1(1) + 10(15) = 1517 1 and 10 3 and 5 1(5) + 10(3) = 35 7 1 and 10 5 and 3 1(3) + 10(5) = 53 7 2 and 5 1 and 15 2(15) + 5(1) = 35 7 2 and 5 15 and 1 2(1) + 5(15) = 77 7 2 and 5 3 and 5 2(5) + 5(3) = 25 7 2 and 5 5 and 3 2(3) + 5(5) = 31 3 (2x + 5)(5x + 3) 43. 12y 2 + 17y - 5 ____________________________________ Factors of 12 Factors of -5 Outer + Inner 1 and 12 1 and -5 1(-5) + 12(1) = 7 7 1 and 12 -1 and 5 1(5) + 12(-1) = -7 7 1 and 12 5 and -1 1(-1) + 12(5) = 59 7 1 and 12 -5 and 1 1(1) + 12(-5) = -597 2 and 6 1 and -5 2(-5) + 6(1) = -4 7 2 and 6 -1 and 5 2(5) + 6(-1) = 4 7 2 and 6 5 and -1 2(-1) + 6(5) = 28 7 2 and 6 -5 and 1 2(1) + 6(-5) = -287 3 and 4 1 and -5 3(-5) + 4(1) = -117 3 and 4 -1 and 5 3(5) + 4(-1) = 11 7 3 and 4 5 and -1 3(-1) + 4(5) = 17 3 (3y + 5)(4y - 1) 44. 3x 2 + 10x - 8 _ Factors of 3 Factors of -8 Outer + Inner ___________________________________ 1 and 3 1 and -8 1(-8) + 3(1) = -57 1 and 3 -1 and 8 1(8) + 3(-1) = 5 7 1 and 3 2 and -4 1(-4) + 3(2) = 2 7 1 and 3 -2 and 4 1(4) + 3(-2) = -2 7 1 and 3 4 and -2 1(-2) + 3(4) = 10 3 (x + 4)(3x - 2) 45. 4x 2 + 4x - 3 _ Factors of 4 Factors of -3 Outer + Inner ___________________________________ 1 and 4 1 and -3 1(-3) + 4(1) = 1 7 1 and 4 -1 and 3 1(3) + 4(-1) = -1 7 1 and 4 3 and -1 1(-1) + 4(3) = 11 7 1 and 4 -3 and 1 1(1) + 4(-3) = -11 7 2 and 2 1 and -3 2(-3) + 2(1) = -4 7 2 and 2 -1 and 3 2(3) + 2(-1) = 4 3 (2x - 1)(2x + 3) 46. 2n 2 - 7n - 4 _ Factors of 2 Factors of -4 Outer + Inner ___________________________________ 1 and 2 1 and -4 1(-4) + 2(1) = -2 7 1 and 2 -1 and 4 1(4) + 2(-1) = 2 7 1 and 2 2 and -2 1(-2) + 2(2) = 2 7 1 and 2 -2 and 2 1(2) + 2(-2) = -2 7 1 and 2 4 and -1 1(-1) + 2(4) = 7 7 1 and 2 -4 and 1 1(1) + 2(-4) = -7 3 (n - 4)(2n + 1) 47. 3x 2 - 4x - 15 _ Factors of 3 Factors of -15 Outer + Inner ___________________________________ 1 and 3 1 and -15 1(-15) + 3(1) = -127 1 and 3 -1 and 15 1(15) + 3(-1) = 12 7 1 and 3 3 and -5 1(-5) + 3(3) = 4 7 1 and 3 -3 and 5 1(5) + 3(-3) = -4 3 (x - 3)(3x + 5) 48. 3n 2- n - 4 _ Factors of 3 Factors of -4 Outer + Inner ___________________________________ 1 and 3 1 and -4 1(-4) + 3(1) = -1 3 (n + 1)(3n - 4) 2 49. -4x - 4x + 15 -1(4x 2+ 4x - 15) _ Factors of 4 Factors of -15 Outer + Inner ___________________________________ 1 and 4 1 and -15 1(-15) + 4(1) = -117 1 and 4 -1 and 15 1(15) + 4(-1) = 11 7 1 and 4 3 and -5 1(-5) + 4(3) = 7 7 1 and 4 -3 and 5 1(5) + 4(-3) = -7 7 1 and 4 5 and -3 1(-3) + 4(5) = 17 7 1 and 4 -5 and 3 1(3) + 4(-5) = -177 1 and 4 15 and -1 1(-1) + 4(15) = 59 7 1 and 4 -15 and 1 1(1) + 4(-15) = -597 2 and 2 1 and -152(-15) + 2(1) = -287 2 and 2 -1 and 15 2(15) + 2(-1) = 28 7 2 and 2 3 and -5 2(-5) + 2(3) = -4 7 2 and 2 -3 and 5 2(5) + 2(-3) = 4 3 -1(2x - 3)(2x + 5) 50. -3x 2+ 16x - 16 -1(3x 2 - 16x + 16) ___________________________________ Factors of 3 Factors of 16 Outer + Inner 1 and 3 -1 and -161(-16) + 3(-1) = -197 1 and 3 -16 and -1 1(-1) + 3(-16) = -497 1 and 3 -2 and -8 1(-8) + 3(-2) = -147 1 and 3 -8 and -2 1(-2) + 2(-8) = -187 1 and 3 -4 and -4 1(-4) + 3(-4) = -163 -1(x - 4)(3x - 4) 51. -3x 2 - x + 2 -1(3x 2 + x - 2) _ Factors of 3 Factors of -2 Outer + Inner ___________________________________ 1 and 3 1 and -2 1(-2) + 3(1) = 1 3 -1(x + 1)(3x - 2) 52. 12x 2+ 24x + 3x + 6 53. 2x 2 - 4x - x + 2 (12x 2 + 24x) + (3x + 6) (2x 2- 4x) - (x - 2) 12x(x + 2) + 3(x + 2) 2x(x - 2) - (x - 2) 12x 2+ 27 + 6; (2x - 1)(x - 2) 3(4x + 1)(x + 2) 54. 5x 2+ 35x - 4x - 28 (5x 2 + 35x) - (4x + 28) 5x(x + 7) - 4(x + 7) (5x - 4)(x + 7) 238 Holt McDougal Algebra 1 55. 9n 2 + 17n + 8 (1n + 8)(9n + 1) = 9n 2 + 73n + 8 7 (1n + 4)(9n + 2) = 9n 2 + 38n + 8 7 (1n + 2)(9n + 4) = 9n 2 + 22n + 8 7 (1n + 1)(9n + 8) = 9n 2 + 17n + 8 3 The factors of 9n 2+ 17n + 8 are (n + 1) and (9n + 8). 9n 2+ 17n + 8 = (n + 1)(9n + 8) 2 56. 2x - 7x - 4 (1x - 4)(2x + 1) = 2x 2 - 7x - 4 3 The factors of 2x 2- 7x - 4 are (x - 4) and (2x + 1). 2x 2- 7x - 4 = (x - 4)(2x + 1) 2 57. 4x - 12x + 5 (1x - 5)(4x - 1) = 4x 2 - 21x + 5 7 (1x - 1)(4x - 5) = 4x 2 - 9x + 5 7 (2x - 5)(2x - 1) = 4x 2 - 12x + 5 3 The factors of 4x 2- 12x + 5 are (2x - 5) and (2x - 1). 4x 2- 12x + 5 = (2x - 5)(2x - 1) 2 58. 5x - 4x + 12 (1x - 12)(5x - 1) = 5x 2 - 61x + 12 7 (1x - 6)(5x - 2)= 5x 2- 32x + 12 7 (1x - 4)(5x - 3)= 5x 2- 23x + 12 7 (1x - 3)(5x - 4)= 5x 2 - 19x + 12 7 (1x - 2)(5x - 6)= 5x 2- 16x + 12 7 (1x - 1)(5x - 12) = 5x 2 - 17x + 12 7 (5x 2- 4x + 12) cannot be factored. 2 59. 3x + 14x + 16 (1x + 16)(3x + 1) = 3x 2 + 49x + 16 7 (1x + 8)(3x + 2)= 3x 2+ 26x + 16 7 (1x + 4)(3x + 4)= 3x 2 + 16x + 16 7 (1x + 2)(3x + 8)= 3x 2+ 14x + 16 3 The factors of 3x 2+ 14x + 16 are (x + 2) and (3x + 8). 3x 2+ 14x + 16 = (x + 2)(3x + 8) 2 60. -3x - 11x + 4 -1(3x 2 + 11x - 4) (1x - 4)(3x + 1) = 3x 2 - 11x - 4 7 (1x + 4)(3x - 1) = 3x 2 + 11x - 4 3 The factors of 3x 2+ 11x - 4 are (x + 4) and (3x - 1). -3x 2 - 11x + 4 = -1(x + 4)(3x - 1) 61. 6x 2 - x - 12 (1x - 12)(6x + 1) = 6x 2 - 71x - 12 7 (1x + 12)(6x - 1) = 6x 2 + 71x - 12 7 (1x - 6)(6x + 2)= 6x 2- 34x - 12 7 (1x + 6)(6x - 2)= 6x 2 + 34x - 12 7 (1x - 4)(6x + 3)= 6x 2 - 21x - 12 7 (1x + 4)(6x - 3)= 6x 2 + 21x - 12 7 (1x - 3)(6x + 4)= 6x 2 - 14x - 12 7 (1x + 3)(6x - 4)= 6x 2 + 14x - 12 7 (1x - 2)(6x + 6)= 6x 2 - 6x - 12 7 (1x + 2)(6x - 6)= 6x 2 + 6x - 12 7 (1x - 1)(6x + 12) = 6x 2 + 6x - 12 7 (1x + 1)(6x - 12) = 6x 2 - 6x - 12 7 (2x - 12)(3x + 1) = 6x 2 - 34x - 12 7 (2x + 12)(3x - 1) = 6x 2 + 34x - 12 7 (2x - 6)(3x + 2)= 6x 2 - 14x - 12 7 (2x + 6)(3x - 2)= 6x 2 + 14x - 12 7 (2x - 4)(3x + 3)= 6x 2 - 6x - 12 7 (2x + 4)(3x - 3)= 6x 2 + 6x - 12 7 (2x - 3)(3x + 4)= 6x 2 - x - 12 3 The factors of 6x 2- x - 12 are (2x - 3) and (3x + 4). 6x 2- x - 12 = (2x - 3)(3x + 4) 2 62. 10a + 11a + 3 (1a + 3)(10a + 1) = 10a 2 + 31a + 3 7 (1a + 1)(10a + 3) = 10a 2 + 13a + 3 7 (2a + 3)(5a + 1)= 10a 2 + 17a + 3 7 (2a + 1)(5a + 3)= 10a 2 + 11a + 3 3 The factors of 10a 2+ 11a + 3 are (2a + 1) and (5a + 3). 10a 2+ 11a + 3 = (2a + 1)(5a + 3) 2 63. 4x - 12x + 9 (1x - 9)(4x - 1) = 4x 2 - 37x + 9 7 (1x - 3)(4x - 3) = 4x 2 - 15x + 9 7 (1x - 1)(4x - 9) = 4x 2 - 13x + 9 7 (2x - 9)(2x - 2) = 4x 2 - 22x + 9 7 (2x - 3)(2x - 3) = 4x 2 - 12x + 9 3 The factors of 4x 2- 12x + 9 are (2x - 3) and (2x - 3). 4x 2- 12x + 9 = (2x - 3)(2x - 3) 2 64. 6x + 11x + 5 (1x + 6)(6x + 1) = 6x 2 + 37x + 5 (1x + 1)(6x + 5) = 6x 2 + 11x + 5 The factors of 6x 2+ 11x + 5 are (x + 1) and (6x + 5). The length of the rectangle is (6x + 5) cm. 65. 6x 2+ 13x + 6 a = 6 and c = 6; Outer + Inner = 13 ___________________________________ Factors of 6 Factors of 6 Outer + Inner 1 and 6 1 and 6 1(6) + 6(1) = 12 7 1 and 6 6 and 1 1(1) + 6(6) = 37 7 1 and 6 2 and 3 1(3) + 6(2) = 15 7 1 and 6 3 and 2 1(2) + 6(3) = 20 7 2 and 3 1 and 6 2(6) + 3(1) = 15 7 2 and 3 6 and 1 2(1) + 3(6) = 20 7 2 and 3 2 and 3 2(3) + 3(2) = 12 7 2 and 3 3 and 2 2(2) + 3(3) = 13 3 (2x + 3)(3x + 2) 239 Holt McDougal Algebra 1 67. 4x 2 + 9x + 2 66. 8x 2 + 18x - 5 2 8x + 20x - 2x - 5 4x 2 + 8x + x + 2 2 (8x + 20x) + (-2x - 5) (4x 2+ 8x) + (x + 2) 4x(2x + 5) - 1(2x + 5) 4x(x + 2) + 1(x + 2) (4x - 1)(2x + 5) (4x + 1)(x + 2) test prep 68. 2w 2 + 7w + 6 (1w + 6)(2w + 1) = 2w 2 + 13w + 6 (1w + 3)(2w + 2) = 2w 2 + 8w + 6 (1w + 2)(2w + 3) = 2w 2 + 7w + 6 The length of Rebecca’s old garden is (2w) yd, and the width is (w)yd. The length of Rebecca’s new garden is (2w + 3) yd, and the width is (w + 2) yd. Length increased by 3 yd, and width increased by 2 yd. 9a. v = 20, h = 6 6 -16t 2+ vt + h = -16t 2 + 20t + 6 2 b. -16t + 20t + 6 -2(8t 2 - 10t - 3) (1t + 1)(8t - 3) = 8t 2 + 5t - 3 7 (1t - 1)(8t + 3) = 8t 2 - 5t - 3 7 (1t + 3)(8t - 1) = 8t 2 + 23t - 3 7 (1t - 3)(8t + 1) = 8t 2 - 23t - 3 7 (2t + 1)(4t - 3) = 8t 2 - 2t - 3 7 (2t - 1)(4t + 3) = 8t 2+ 2t - 3 7 (2t + 3)(4t - 1) = 8t 2 + 10t - 3 7 (2t - 3)(4t + 1) = 8t 2 - 10t - 3 3 -2(4t + 1)(2t - 3) c.-1(2t - 3)(8t + 2) = -1(2(1) - 3)(8(1) + 2) = -1(-1)(10) = 10 The height of the football after 1 second is 10 ft. 70. Possible answer: The student tried factors of 12 instead of factors of 2 · 12. 2 1a. 7 2t = 10t - 8 2 2t - 10t + 8 = 0 2 b. 2t - 10t + 8 2(t 2 - 5t + 4) (t - 4)(t - 1) = t 2 - 5t + 4 3 The factors of t 2- 5t + 4 are (t - 4) and (t - 1). 2t 2- 10t + 8 = 2(t - 4)(t - 1) c. The boats are the same distance from the start 2 point w hen 2t - 10t + 8 = 0. From factorization, 2(t - 4)(t - 1) = 0, so (t - 4) = 0 or (t - 1) = 0. Therefore the boats are the same distance from the start point when t = 1 and t = 4. 72. D; (x - 5)(6x + 1) 6x 2 + x - 30x - 5 6x 2- 29x - 5 73. B; (x - 5)(6x - 1) 6x 2- x - 30x + 5 6x 2- 31x + 5 75. C; 74. A; (x + 5)(6x - 1) (x + 5)(6x - 1) 6x 2- x + 30x - 5 6x 2- x + 30x - 5 6x 2+ 29x - 5 6x 2+ 29x - 5 76a. Both signs are positive, or both signs are negative. b. One sign is positive, and the other is negative. 77. B; 3x 2 + bx - 8 _ Factors of 3 Factors of -8 Outer + Inner ___________________________________ 1 and 3 1 and -8 1(-8) + 3(1) = -5 1 and 3 -1 and 8 1(8) + 3(-1) = 5 1 and 3 2 and -4 1(-4) + 3(2) = 2 1 and 3 -2 and 4 1(4) + 3(-2) = -2 1 and 3 4 and -2 1(-2) + 3(4) = 10 1 and 3 -4 and 2 1(2) + 3(-4) = -10 1 and 3 8 and -1 1(-1) + 3(8) = 23 1 and 3 -8 and 1 1(1) + 3(-8) = -23 Possible values of b are -23, -10, -5, -2, 2, 5, 10, and 23. 78. H; 5x 2 + 15x + 4x + 12 (5x 2 + 15x) + (4x + 12) 5x(x + 3) + 4(x + 3) (5x + 4)(x + 3) 79. A; 24x 2- 49x + 2 (1x - 2)(24x -1) = 24x 2 - 49x + 2 3 The factors of 24x 2- 49x + 2 are (x - 2) and (24x - 1). 80. G; c = -15; 2x 2+ x - 15 (1x + 1)(2x - 15) = 2x 2 - 13x - 15 7 (1x - 1)(2x + 15) = 2x 2 + 13x - 15 7 (1x + 3)(2x - 5)= 2x 2 + x - 15 3 The factors of 2x 2+ x - 15 are (x + 3) and (2x - 5). c = -9; 2x 2+ x - 9 (1x + 1)(2x - 9) = 2x 2 - 7x - 9 7 (1x - 1)(2x + 9) = 2x 2+ 7x - 9 7 (1x + 3)(2x - 3) = 2x 2+ 3x - 9 7 (1x - 3)(2x + 3) = 2x 2- 3x - 9 7 (1x + 9)(2x - 1) = 2x 2 + 17x - 9 7 (1x - 9)(2x + 1) = 2x 2 - 17x - 9 7 (2x 2+ x - 9) cannot be factored. c = -6; 2x 2 + x - 6 (1x + 1)(2x - 6) = 2x 2 - 4x - 6 7 (1x - 1)(2x + 6) = 2x 2 + 4x - 6 7 (1x + 2)(2x - 3) = 2x 2 + x -6 3 The factors of 2x 2+ x - 6 are (x + 2) and (2x - 3). c = -1; 2x 2+ x - 1 (1x + 1)(2x - 1) = 2x 2 + x -1 3 The factors of 2x 2+ x - 1 are (x + 1) and (2x - 1). challenge and extend 81. 1 + 4x + 4x 2 ___________________________________ Factors of 4 Factors of 1 Outer + Inner 1 and 4 1 and 1 1(1) + 4(1) = 5 7 2 and 2 1 and 1 1(2) + 2(1) = 4 3 (2x + 1)(2x + 1) 82. 1 - 14x + 49x 2 Factors of 49 Factors of 1 Outer + Inner ___________________________________ 1 and 49 -1 and -1 1(-1) + 49(-1) = -507 7 and 7 -1 and -1 7(-1) + 7(-1) = -143 (7x - 1)(7x - 1) 240 Holt McDougal Algebra 1 83. 1 + 18x + 81x 2 Factors of 81 Factors of 1 Outer + Inner ____________________________________ 1 and 81 1 and 1 1(1) + 81(1) = 82 7 9 and 9 1 and 1 9(1) + 9(1) = 18 3 (9x + 1)(9x + 1) 3 7. 6p = 2 · 3 · p · p · p 2p = 2 · p The GCF of 6 p 3 and 2p is 2p. 3 8. 12x = 2 · 2 · 3 · x · x · x 18x 4 = 2 · 3 · 3 · x · x · x · x The GCF of 12x 3 and 18x 4is 6x 3 . 84. 25 + 30x + 9x 2 Factors of 9 Factors of 25 Outer + Inner ____________________________________ 1 and 9 1 and 25 1(25) + 9(1) = 34 7 1 and 9 25 and 1 1(1) + 9(25) = 226 7 1 and 9 5 and 5 1(5) + 9(5) = 50 7 3 and 3 1 and 25 3(25) + 3(1) = 78 7 3 and 3 5 and 5 3(5) + 3(5) = 30 3 (3x + 5)(3x + 5) 9. -15 = -1 · 3 · 5 4 20s = 2 · 2 · 5 · s · s · s · s The GCF of -15 and 20s 4 is 5. 10. 3a = 3 · a 2 4b = 2 · 2 · b · b The GCF of 3a and 4b 2 is 1. 85. 4 + 20x + 25x 2 Factors of 25 Factors of 4 Outer + Inner ____________________________________ 1 and 25 1 and 4 1(4) + 25(1) = 29 7 1 and 25 4 and 1 1(1) + 25(4) = 101 7 1 and 25 2 and 2 1(2) + 25(2) = 52 7 5 and 5 1 and 4 5(4) + 5(1) = 25 7 5 and 5 2 and 2 5(2) + 5(2) = 20 3 (5x + 2)(5x + 2) 86. 4 - 12x + 9x 2 ___________________________________ Factors of 9 Factors of 4 Outer + Inner 1 and 9 -1 and -4 1(-4) + 9(-1) = -13 7 1 and 9 -4 and -1 1(-1) + 9(-4) = -37 7 1 and 9 -2 and -2 1(-2) + 9(-2) = -20 7 3 and 3 -1 and -4 3(-4) + 3(-1) = -15 7 3 and 3 -2 and -2 3(-2) + 3(-2) = -12 3 (3x - 2)(3x - 2) 87. 3x 2 + bx + 2 ___________________________________ Factors of 3 Factors of 2 Outer + Inner 1 and 3 1 and 2 1(2) + 3(1) = 5 1 and 3 2 and 1 1(1) + 3(2) = 7 1 and 3 -1 and -2 1(-2) + 3(-1) = -5 1 and 3 -2 and -1 1(-1) + 3(-2) = -7 Possible values of b are -7, -5, 5, and 7. 88. 3x 2 + bx - 2 _ Factors of 3 Factors of -2 Outer + Inner ___________________________________ 1 and 3 1 and -2 1(-2) + 3(1) = 1 1 and 3 -1 and 2 1(2) + 3(-1) = -1 1 and 3 2 and -1 1(-1) + 3(2) = 5 1 and 3 -2 and 1 1(1) + 3(-2) = -5 Possible values of b are -5, -1, 1, and 5. 89. 5x 2+ bx + 1 ___________________________________ Factors of 5 Factors of 1 Outer + Inner 1 and 5 1 and 1 1(1) + 5(1) = 6 1 and 5 -1 and -1 1(-1) + 5(-1) = -6 Possible values of b are -6 and 6. ready to go on? Section A Quiz 1. 54 = 2 · 3 · 3 · 3 = 2 · 3 3 2. 42 = 2 · 3 · 7 2 3. 50 = 2 · 5 · 5 = 2 · 5 3 4. 120 = 2 · 2 · 2 · 3 · 5 = 2 · 3 · 5 2 5. 44 = 2 · 2 · 11 = 2 · 11 6. 78 = 2 · 3 · 13 11. The 24 American League games’ balls and 30 National League games’ balls must be divided into groups of equal size. The number of balls in each row must be a common factor of 24 and 30. factors of 24: 1, 2, 3, 4, 6, 8, 12, 24 factors of 30: 1, 2, 3, 5, 6, 10, 15, 30 The GCF of 24 and 30 is 6. The greatest possible number of balls in each row is 6. Find the number of rows. 24 balls from American League games _______________________________ = 4 rows 6 balls per row 30 balls from National League games = 5 rows ______________________________ 6 balls per row When the greatest possible number of balls is in each row, there are 9 rows in total. 3 12. 2d = 2 · d · d · d 4d = 2 · 2 · d The GCF of 2 d 3 and 4d is 2d. 3 2d + 4d d 2(2d) + 2(2d) 2d(d 2 + 2) 2 13. m = m · m 8m 5 = 2 · 2 · m · m · m · m · m The GCF of m 2 and 8m 5 is m 2 . 2 5 m - 8m 1(m 2) - 8m 3 (m 2 ) m 2(1 - 8m 3 ) 4 14. 12x = 2 · 2 · 3 · x · x · x · x 8x 3 = 2 · 2 · 2 · x · x · x 4x 2 = 2 · 2 · x · x The GCF of 1 2x 4 , 8x 3 and 4x 2is 4x 2 . 4 3 12x - 8x - 4x 2 4x 2(3x 2 - 2x - 1) _ Factors of 3 Factors of -1 Outer + Inner ___________________________________ 1 and 3 1 and -1 1(-1) + 3(1) = 2 7 1 and 3 -1 and 1 1(1) + 3(-1) = -2 3 3x 2- 2x - 1 = (x - 1)(3x + 1) 12x 4 - 8x 3 - 4x 2 = 4x 2 (x - 1)(3x + 1) 2 15. 3k = 3 · k · k 6k = 2 · 3 · k 3 =3 The GCF of 3 k 2 , 6k, and 3 is 3. 2 3k + 6k - 3 k 2 (3) + 2k(3) - 1(3) 3(k 2 + 2k - 1) 241 Holt McDougal Algebra 1 16. sπr = s · π · r πr 2 = π · r · r The GCF of sπr andπr 2 is πr. sπr + πr 2 s(πr) + r(πr) πr(s + r) 27. n(n+ 3) - 4 n 2 + 3n - 4 _________________ Factors of -4 Sum -1 and 4 3 3 (n - 1)(n + 4) 3 3 2 19. 2p - 6p + 15 - 5p (2p 3 - 6p 2 ) - (5p - 15) 2p 2(p - 3) - 5(p - 3) (2p 2 - 5)(p - 3) 3 0 2 18. 3x + 6x - 4x - 8 (3x 3+ 6x 2 ) - (4x + 8) 3x 2(x + 2) - 4(x + 2) (3x 2 - 4)(x + 2) 2 20.n - 6n + 5n - 30 (n 3 - 6n 2 ) + (5n - 30) n 2(n - 6) + 5(n - 6) = (n 2 + 5)(n - 6) 2 21.n + 9n + 20 _______________ Factors of 20 Sum _ 1 and 20 21 7 2 and 10 12 7 4 and 5 9 3 (n + 4)(n + 5) 22.d 2 - 6d - 7 ________________ Factors of -7 Sum _ 1 and -7 -6 3 (d + 1)(d - 7) 2 23.x - 6x + 8 _______________ Factors of 8 Sum -1 and -8 -9 7 -2 and -4 -6 3 (x - 2)(x - 4) 2 24.y + 7y - 30 __________________ Factors of -30 Sum -1 and 30 29 7 -2 and 15 13 7 -3 and 10 7 3 (y - 3)(y + 10) n 2+ 3n - 4 n (n - 1)(n + 4) 2 0 + 3(0) - 4 = -4 0 (0 + 4)(0 - 1) = -4 2 1 (1 + 4)(1 - 1) = 0 2 2 (2 + 4)(2 - 1) = 6 2 3 (3 + 4)(3 - 1) = 14 2 4 (4 + 4)(4 - 1) = 24 n 17.w 3- 4w 2 + w - 4 (w 3- 4w 2 ) + (w - 4) w 2(w - 4) + 1(w - 4) (w 2 + 1)(w - 4) 1 1 + 3(1) - 4 = 0 2 2 + 3(2) - 4 = 6 3 + 3(3) - 4 = 14 3 4 + 3(4) - 4 = 24 4 2 28. 2x + 11x + 5 ___________________________________ Factors of 2 Factors of 5 Outer + Inner 1 and 2 1 and 5 1(5) + 2(1) = 7 7 1 and 2 5 and 1 1(1) + 2(5) = 11 3 (x + 5)(2x + 1) 29. 3n 2 + 16n + 21 ____________________________________ Factors of 3 Factors of 21 Outer + Inner 1 and 3 1 and 21 1(21) + 3(1) = 24 7 1 and 3 21 and 1 1(1) + 3(21) = 64 7 1 and 3 3 and 7 1(7) + 3(3) = 16 3 (n + 3)(3n + 7) 30. 5y 2 - 7y - 6 _ Factors of 5 Factors of -6 Outer + Inner ___________________________________ 1 and 5 1 and -6 1(-6) + 5(1) = -1 7 1 and 5 -1 and 6 1(6) + 5(-1) = 1 7 1 and 5 2 and -3 1(-3) + 5(2) = 7 7 1 and 5 -2 and 3 1(3) + 5(-2) = -7 3 (y - 2)(5y + 3) 31. 4g 2- 10g + 6 ___________________________________ Factors of 4 Factors of 6 Outer + Inner 1 and 4 -1 and -6 1(-6) + 4(-1) = -10 3 (g - 1)(4g - 6) 2(g - 1)(2g - 3) 32. 6p 2 - 18p - 24 ____________________________________ Factors of 6 Factors of -24 Outer + Inner 1 and 6 1 and -24 1(-24) + 6(1) = -183 (p + 1)(6p - 24) 6(p + 1)(p - 4) 25.k 2- 6k + 5 _______________ Factors of 5 Sum -1 and -5 -6 3 (k - 1)(k - 5) 2 26.c - 10c + 24 ________________ Factors of 24 Sum -1 and -24 -25 7 -2 and -12 -14 7 -3 and -8 -11 7 -4 and -6 -10 3 (c - 4)(c - 6) 242 Holt McDougal Algebra 1 33. 12d 2 + 7d - 12 Factors of 12 Factors of -12 Outer + Inner _____________________________________ 7 1 and 12 1 and -12 1(-12) + 12(1) = 0 7 1 and 12 -1 and 12 1(12) + 12(-1) = 0 1 and 12 2 and -6 1(-6) + 12(2) = 18 7 1 and 12 -2 and 6 1(6) + 12(-2) = -18 7 2 and 6 1 and -12 2(-12) + 6(1) = -18 7 2 and 6 -1 and 12 2(12) + 6(-1) = 18 7 7 2 and 6 2 and -6 2(-6) + 6(2) = 0 7 2 and 6 -2 and 6 2(6) + 6(-2) = 0 2 and 6 3 and -4 2(-4) + 6(3) = 10 7 2 and 6 -3 and 4 2(4) + 6(-3) = -10 7 3 and 4 1 and -12 3(-12) + 4(1) = -32 7 3 and 4 -1 and 12 3(12) + 4(-1) = 32 7 3 and 4 2 and -6 3(-6) + 4(2) = -10 7 3 and 4 -2 and 6 3(6) + 4(-2) = 10 7 7 3 and 4 3 and -4 3(-4) + 4(3) = 0 7 3 and 4 -3 and 4 3(4) + 4(-3) = 0 3 and 4 4 and -3 3(-3) + 4(4) = 7 3 (3d + 4)(4d - 3) think and discuss 1. 1 - x 4 2 1 2- (x 2 ) (1 + x 2 )(1 - x 2 ) a = 1, b = x 2 3. 2 2.x + 8x + 16 x 2 + 2(x)(4) + 4 2 (x + 4) 2 a = x, b = 4 Special Product Factored Form Perfect-square trinomial with positive coefficient of middle term: x 2 + 2x + 1 (x + 1) 2 Perfect-square trinomial with negative coefficient of middle term: x 2 - 2x + 1 (x - 1) 2 Difference of two squares: x2 - 1 (x - 1)(x + 1) Exercises Guided Practice 7-5 factoring SPECIAL PRODUCTS 1. Yes x 2 - 4x + 4 x 2 - 2(x)(2) + 2 2 (x - 2) 2 check it out! 2. No, the trinomial is not a perfect square because the last term of the trinomial is not positive. 1a. Yes, the trinomial is a perfect square. x 2 + 4x + 4 x 2+ 2(x)(2) + 2 2 (x + 2) 2 3. Yes 9x 2- 12x + 4 (3x) 2- 2(3x)(2) + 2 2 2 (3x - 2) b. Yes, the trinomial is a perfect square. 2 x - 14x + 49 x 2- 2(x)(7) + 7 2 2 (x - 7) 5. Yes x 2- 6x + 9 x 2- 2(x)(3) + 3 2 (x - 3) 2 c. No, the trinomial is not a perfect square. 9x 2= (3x) 2, 4 = 2 2, but -6x ≠ 2(3x)(2) 6. No, the trinomial is not a perfect square because the last term of the trinomial is not positive. 34. (4x + 2) cm 2 2. 9x + 6x + 1 (3x) 2+ 2(3x)(1) + 1 2 2 (3x + 1) The perimeter of each sheet is 4(3x + 1) m. x = 3, 4(3x + 1) = 4(3(3) + 1) = 40 The perimeter is 40 m when x = 3 m. 3a. Yes, the binomial is a difference of two squares. 1 - 4x 2 1 2- (2x) 2 (1 + 2x)(1 - 2x) 1 - 4x 2= (1 + 2x)(1 - 2x) b.Yes, the binomial is a difference of two squares. 8 6 p - 49q 2 4 2 (p ) - (7q 3 ) 4 3 4 (p + 7q )(p - 7q 3 ) p 8- 49q 6 = (p 4 + 7q 3 )(p 4 - 7q 3 ) c. No, the binomial is not a difference of two squares 5 because 4y is not a perfect square. 4. Yes x 2+ 2x + 1 x 2 + 2(x)(1) + 1 2 2 (x + 1) 2 7.x + 24x + 144 x 2+ 2(x)(12) + 1 2 2 2 (x + 12) The length and width are both (x + 12) yd. The perimeter of the park is 4(x + 12) yd. x = 10; 4(x + 12) = 4(10 + 12) = 88 The perimeter of the park is 88 yd when x = 10 yd. 8. Yes 1 - 4x 2 1 2- (2x) 2 (1 + 2x)(1 - 2x) 9. Yes s 2- 4 2 (s + 4)(s - 4) 10. Yes 81x 2- 1 (9x) 2- 1 2 (9x + 1)(9x - 1) 11. Yes 4x 4- 9y 2 2 2 2 ( 2x ) - (3y) (2x 2+ 3y)(2x 2 - 3y) 12. No, the binomial is not a difference of two squares because 50 is not a perfect square. 13. Yes x 6- 9 3 2 2 ( x ) - 3 (x 3+ 3)(x 3 - 3) 243 Holt McDougal Algebra 1 practice and problem solving 34. Perfect-square trinomial 35. Difference of 2 squares 2 2 (x 7 ) - (12) 2 49x - 70x + 25 2 2 (7x) - 2(7x)(5) + 5 (x 7+ 12)(x 7 - 12) (7x - 5) 2 14. Yes 4x 2 - 4x + 1 (2x) 2- 2(2x)(1) + 1 2 2 (2x - 1) 15. No, the trinomial is not a perfect square because the last term of the trinomial is not positive. 16. Yes 36x 2- 12x + 1 (6x) 2- 2(6x)(1) + 1 2 2 (6x - 1) 37. Possible answer: multiply a binomial by itself. Choose 2 perfect squares, find 2 times the product of their square roots, and then write these 3 expressions as a sum. 17. No, the trinomial is not a perfect square. 2 2 2, but 10x ≠ 2(5x)(2) 25x = (5x) , 4 = 2 38.x 2- 22x + 121 x 2 - 2(x)(11) + 1 1 2 2 (x - 11) b = -11 19. Yes 16x 2- 40x + 25 (4x) 2- 2(4x)(5) + 5 2 2 (4x - 5) 18. Yes 9x 2+ 18x + 9 (3x) 2+ 2(3x) + 3 2 (3x + 3) 2 9(x + 1)2 2 2 b. ℓ = (x + 5) ft w = (x - 5) ft 5 feet were added to the length and subtracted from the width. c. ℓ = (x + 5) = (8 + 5) = 13 ft w = (x - 5) = (8 - 5) = 3 ft 1a. 25z 2- 40z + 16 4 (5z) 2- 2(5z)(4) + 4 2 2 (5z - 4) The length of a side of the square is 5z - 4. 22. Yes 25m 2- 16n 2 (5m) 2- (4n) 2 (5m + 4n)(5m - 4n) b. The perimeter of the square is 4(5z - 4) = 20z - 16. c. z = 3 5z - 4 = 5(3) - 4 = 11 4(5z - 4) = 4(11) = 44 (5z - 4) 2= (11) 2 = 121 When z = 3, the length of a side is 11, the perimeter is 44, and the area is 121. 23. No, the binomial is not a difference of two squares because 4x and 9y are not perfect squares. 24. Yes 25.Yes 49p 12- 9q 6 9 2- 100x 4 2 6 2 3 2 (7p ) - (3q ) 9 2- (10x 2 ) 6 3 6 3 2 (7p + 3q )(7p - 3q ) (9 + 10x )(9 - 10x 2 ) 2a. The area of the larger rectangle is 3x(x) = 3x 2. 4 The area of the smaller rectangle is 3y(y) = 3y 2 . 26. No, the binomial is not a difference of two squares because x 3and y 3 are not perfect squares. 2 2 2 2 c. 3x - 3y 3(x 2 - y 2 ) 3(x + y)(x - y) 2 28. 9x = (3x) , 25 = 5 a = 3x, b = 5, and 2ab = 2(3x)(5) = 30x 9x 2+ 30x + 25 3a. x = -5 4 x 2+ 10x + 25 = ( -5) 2+ 10(-5) + 25 = 0 (x + 5) 2= (-5 + 5) 2= 0 (x - 5) 2= (-5 - 5) 2= 100 x 2- 10x + 25 = ( -5) 2- 10(-5) + 25 = 100 x 2- 25 = (-5) 2- 25 = 0 29. 36y = 2(2y)(9) a = 2y and a 2 = (2y) 2= 4y 2 4y 2- 36y + 81 30. Perfect-square trinomial 31. Difference of 2 squares 100x 2 - 81y 2 x 2 - 8x + 16 2 2 x - 2(x)(4) + 4 (10x) 2- (9y) 2 2 (10x + 9y)(10x - 9y) (x - 4) 32. Perfect-square trinomial 33. Difference of 2 squares 4r 6 - 25s 6 36x 2+ 24x + 4 2 2 2 2 (6x) + 2(6x)(2) + 2 (2r 3) - (5s 3 ) 2 (6x + 2) (2r 3+ 5s 3 )(2r 3- 5s 3 ) 2 b. The area of the green region is 3x - 3y . 27. 14x = 2(x)(7) b = 7 and b 2 = 7 2= 49 x 2+ 14x + 49 2 39. 256 = 1 6 2 a = x, b = 16 2ab = 2(x)(16) = 32x c = 32 0a.x - 25 4 x 2 - 5 2 (x + 5)(x - 5) 20. 4x - 44x + 121 (2x) 2- 2(2x)(11) + 11 2 (2x - 11) 2 The length and width are both (2x - 11) mm. The perimeter of the rectangle is 4(2x - 11) mm. x = 41, 4(2x - 11) = 4(2(41) - 11) = 4(71) = 284 The perimeter of the rectangle is 284 mm when x = 41mm. 21. Yes 1 2- 4x 2 1 2- (2x) 2 (1 + 2x)(1 - 2x) 36. Possible answer: they are similar in that the first and last terms of each are perfect squares. They are different in that a perfect-square trinomial has 3 terms and a difference of 2 squares has 2 terms. b. x = -1 2 2 x + 10x + 25 = ( -1) + 10(-1) + 25 = 16 2 2 (x + 5) = (-1 + 5) = 16 (x - 5) 2= (-1 - 5) 2= 36 x 2- 10x + 25 = ( -1) 2- 10(-1) + 25 = 36 x 2- 25 = (-1) 2- 25 = -24 244 Holt McDougal Algebra 1 c. x = 0 x 2+ 10x + 25 = (0) 2+ 10(0) + 25 = 25 (x + 5) 2= (0 + 5) 2= 25 (x - 5) 2= (0 - 5) 2= 25 x 2- 10x + 25 = (0) 2- 10(0) + 25 = 25 x 2- 25 = (0) 2- 25 = -25 51a. a = 2, b = (v + 2) 2 b. 4 - ( v + 2) (2 + (v + 2))(2 - (v - 2)) (v + 4)(-v) -v 2- 4v 52.x 3 - 1 x 3 - 1 3 a = x, b = 1 (x - 1)(x 2 + (x)(1) + 1 2) 2 (x - 1)(x + x + 1) d. x = 1 2 2 x + 10x + 25 = (1) + 10(1) + 25 = 36 2 2 (x + 5) = (1 + 5) = 36 (x - 5) 2= (1 - 5) 2= 16 x 2- 10x + 25 = (1) 2- 10(1) + 25 = 16 x 2- 25 = (1) 2- 25 = -24 3 53. 27y - 64 (3y) 3- 4 3 a = 3y, b = 4 (3y - 4)((3y) 2+ (3y)(4) + 4 2) (3y - 4)(9y 2+ 12y + 16) e. x = 5 2 2 x + 10x + 25 = (5) + 10(5) + 25 = 100 2 2 (x + 5) = (5 + 5) = 100 (x - 5) 2= (5 - 5) 2= 0 x 2- 10x + 25 = (5) 2- 10(5) + 25 = 0 x 2- 25 = (5) 2- 25 = 0 6 44. Columns 1 and 2 have equivalent values because 2 2 x + 10x + 25 = (x + 5) . Columns 3 and 4 have equivalent values because (x - 5) 2= x 2 - 10x + 25. 45. The missing labels are (a + b) and (a - b). 4 54.n - 8 3 (n 2 ) - 2 3 a = n 2 , b = 2 2 2 2 2 2 ) (n - 2)((n ) + (n )(2) + 2 (n 2- 2)(n 4 + 2n 2 + 4) 7-6 choosing a factoring method 46. Student A is incorrect because (5x)(5x) ≠ 25x , and (-3)(3) ≠ 9y 2 . check it out! test prep 1a. Yes, 5x 2 (x - 1) is completely factored. 47. C; x 2 - 2xy + y 2 x 2- 2(x)(y) + y 2 (x - y) 2 x = 0, y = 0; ( x - y)2= (0 - 0) 2= 0 x = -1, y = -1; (x - y) 2= ( -1 + 1) 2= 0 x = 1, y = 1; ( x - y) 2= (1 - 1) 2= 0 x = 1, y = -1; ( x - y) 2= (1 + 1) 2= 4 48. J; 2 4x + 20x + 25 (2x) 2 + 2(2x)(5) + 5 2 2 (2x + 5) 2 challenge and extend b. 9x 2- 4 (3x) 2- 2 2 (3x + 2)(3x - 2) 4 c. Possible answer: x - 1 2 (x 2) - 1 2 (x 2+ 1)(x 2 - 1) (x 2+ 1)(x 2 - 1 2) (x 2+ 1)(x + 1)(x - 1) 3 2 2 3 2a. 4x + 16x + 16x 4x(x 2 + 4x + 4) 4x(x + 2) 2 b. 2x y - 2y 2y(x 2 - y 2 ) 2y(x + y)(x - y) 2 49.x - 18x + 81 x 2- 2(x)(9) + 9 2 2 (x - 9) x = 10, x 2- 18x + 81 = (x - 9) 2= (10 - 9) 2= 1 0a. 81x 4- 16 5 2 (9x 2) - 4 2 2 (9x + 4)(9x 2 - 4) b. No, (4x + 4)(x + 1) is not completely factored. (4x + 4)(x + 1) 4(x + 1)(x + 1) 4(x + 1) 2 3a. 3x + 7x + 4 _ Factors of 3 Factors of 4 Outer + Inner _________________________________ 1 and 3 1 and 4 1(4) + 3(1) = 7 3 (x + 1)(3x + 4) 5 4 3 6 5 4 b. 2p + 10p - 12p 2p 3(p 2 + 5p - 6) Factors of -6 Sum _________________ -1 and 6 5 3 2p 3(p - 1)(p + 6) c. 9q + 30q + 24q 3q 4(3q 2 + 10q + 8) ___________________________________ Factors of 3 Factors of 8 Outer + Inner 1 and 3 1 and 8 1(8) + 3(1) = 11 7 1 and 3 8 and 1 1(1) + 3(8) = 25 7 1 and 3 2 and 4 1(4) + 3(2) = 10 3 3q 4 (q + 2)(3q + 4) 4 d. 2x + 18 2(x 4 ) + 2(9) 2(x 4 + 9) 245 Holt McDougal Algebra 1 2 think and discuss 1. Possible answer: (x 2 + 1)(x 2 - 1) 2 2 2. Possible answer:x + 1; x + x + 1 3. Factoring Methods Polynomial Method 1. 16x 4 - 25y 8 A. Factoring out the GCF 2. x 2 + 1 0 x + 25 B. Factoring by grouping 3. 9t 2 + 27t + 18t 4 C. Unfactorable 4. a 2 + 3a - 7a - 21 D. Difference of two squares 5. 100b 2 + 81 E. Perfect-Square trinomial exercises 1. Yes, 3x(9x 2 + 1) is completely factored. 2. No 3 2 2(4x - 3x - 8x) 2 2x(4x - 3x - 8) 3 3. Yes, 2k (4 - k ) is completely factored. 4. Yes, (2x + 3)(3x - 5) is completely factored. 5. No 2 4(4p - 1) 4[(2p) 2- 1 2] 4(2p 2+ 1)(2p 2- 1) 3 3 7. 3x - 12x 3x 3(x 2 - 4) 3x 3(x + 2)(x - 2) 3 2 8. 4x + 8x + 4x 4x(x 2+ 2x + 1) 4x(x + 1) 2 2 9. 8pq + 8pq + 2p 2p(4q 2 + 4q + 1) 2p(2q + 1) 2 2 10. 18rs - 2r 2r(9s 2 - 1) 2r(3s + 1)(3s - 1) 5 3 11. mn - m n mn(n 4- m 2 ) mn(n 2+ m)(n 2 - m) 2 12. 2x y - 20xy + 50y 2y(x 2 - 10x + 25) 2y(x - 5) 2 4 3 2 13. 6x - 3x - 9x 3x 2(2x 2 - x - 3) _ Factors of 2 Factors of -3 Outer + Inner ___________________________________ 1 and 2 1 and -3 1(-3) + 2(1) = -1 3 3x 2(x + 1)(2x - 3) 3 2 5 4 3 16. 7x + 21x - 28x 7x 3(x 2 + 3x - 4) Factors of -4 Sum _________________ -1 and 4 3 3 7x 3(x - 1)(x + 4) 17. 2z + 11z + 6 ___________________________________ Factors of 2 Factors of 6 Outer + Inner 1 and 2 1 and 6 1(6) + 2(1) = 8 7 1 and 2 6 and 1 1(1) + 2(6) = 13 7 1 and 2 2 and 3 1(3) + 2(2) = 7 7 1 and 2 3 and 2 1(2) + 2(3) = 8 7 2z 2 + 11z + 6 cannot be factored. 2 2 18. 9p - q + 3p + q (9p 2- q 2 ) + (3p + q) (3p - q)(3p + q) + 1(3p + q) (3p - q + 1)(3p + q) practice and problem solving 2 6. Yes, a(a + 2ab + b ) is completely factored. 5 5 15.p + 3p + p + 3 (p 5+ 3p 3 ) + (p 2 + 3) p 3(p 2 + 3) + 1(p 2 + 3) (p 3+ 1)(p 2 + 3) 2 guided practice 2 14. 3y + 14y + 4 ___________________________________ Factors of 3 Factors of 4 Outer + Inner 1 and 3 1 and 4 1(4) + 3(1) = 7 7 1 and 3 4 and 1 1(1) + 3(4) = 13 7 1 and 3 2 and 2 1(2) + 3(2) = 8 7 3y 2 + 14y + 4 cannot be factored. 19. No 2x(y 3 - 4y 2 + 5y) 2xy(y 2- 4y + 5) 20. No 6 2r(25r - 36) 3 2 2 2r[(5r ) - 6 ] 2r(5r 3+ 6)(5r 3 - 6) 21. No 3n 2(n 2 - 25) 3n 2(n 2 - 5 2) 3n 2(n + 5)(n - 5) 22. Yes, 2m(m + 1)(m + 4) is completely factored. 2 2 23. Yes, 2y (4x + 9) is completely factored. 2 24. Yes, 4(7g + 9h ) is completely factored. 3 2 25. -4x + 24x - 36x -4x(x 2- 6x + 9) -4x(x - 3) 2 2 4 26. 24r - 6r 6r 2(4 - r 2 ) 6r 2(2 + r)(2 - r) 2 27. 5d - 60d + 135 5(d 2 - 12d + 27) __________________ Factors of 27 Sum -1 and -27 -28 7 -3 and -9 -12 3 5(d - 3)(d - 9) 28. 4y 8 + 36y 7 + 81y 6 y 6(4y 2 + 36y + 81) y 6(2y + 9) 2 246 Holt McDougal Algebra 1 29. 98x 3 - 50xy 2 2x(49x 2- 25y 2 ) 2x(7x + 5y)(7x - 5y) 3 40. Let a be the number of apples on the tree. 3a 2 - 22a + 35 ___________________________________ Factors of 3 Factors of 35 Outer + Inner 1 and 3 -1 and -35 1(-35) + 3(-1) = -38 7 1 and 3 -35 and -1 1(-1) + 3(-35) = -1067 1 and 3 -5 and -7 1(-7) + 3(-5) = -22 3 (a - 5)(3a - 7) 2 30. 4x y - 4x y - 8xy 4xy(x 2- x - 2) Factors of -2 Sum ___________________ 1 and -2 -1 3 4xy(x + 1)(x - 2) 2 31. 5x - 10x + 14 ___________________________________ Factors of 5 Factors of 14 Outer + Inner 1 and 5 -1 and -14 1(-14) + 5(-1) = -197 1 and 5 -14 and -1 1(-1) + 5(-14) = -717 1 and 5 -2 and -7 1(-7) + 5(-2) = -177 1 and 5 -7 and -2 1(-2) + 5(-7) = -377 5x 2 - 10x + 14 cannot be factored. 2 36y 2 cannot be factored. 32. 121x + 4 33.p - 16 (p 2 + 4)(p 2 - 4) (p 2+ 4)(p + 2)(p - 2) 6 5 4 34. 4m - 30m + 36m 2m 4(2m 2 - 15m + 18) ___________________________________ Factors of 2 Factors of 18 Outer + Inner 1 and 2 -1 and -181(-18) + 2(-1) = -207 1 and 2 -18 and -1 1(-1) + 2(-18) = -377 1 and 2 -2 and -9 1(-9) + 2(-2) = -137 1 and 2 -9 and -2 1(-2) + 2(-9) = -207 1 and 2 -3 and -6 1(-6) + 2(-3) = -127 1 and 2 -6 and -3 1(-3) + 2(-6) = -153 2m 4 (m - 6)(2m - 3) 3 2 35. 2k + 3k + 6k + 9 (2k 3+ 3k 2 ) + (6k + 9) k 2(2k + 3) + 3(2k + 3) (k 2 + 3)(2k + 3) (k 2 + 3)(2k + 3) 4 36. ab - 16a a(b 4- 16) a(b 2 + 4)(b 2 - 4) a(b 2+ 4)(b + 2)(b - 2) 37. Let x be Ella’s age. 2 x + 12x + 36 x 2+ 2(x)(6) + 6 2 2 (x + 6) 38. Let d be the distance from point A to point B. 2 d - 81 d 2- 9 2 (d + 9)(d - 9) 39. Let s be the number of seconds Bob can hold. s 2- 16s + 28 ________________ Factors of 28 Sum -1 and -28 -29 7 -2 and -14 -16 3 (s - 2)(s - 14) 41. Let b be Beth’s score. b 2- 49 b 2 - 7 2 (b + 7)(b - 7) 2 42. -5t + 30t + 1 -1(5t 2- 30t - 1) _ Factors of 5 Factors of -1 Outer + Inner ___________________________________ 1 and 5 1 and -1 1(-1) + 5(1) = 4 7 1 and 5 -1 and 1 1(1) + 5(-1) = -4 7 -5t 2 + 30t + 1 is fully factored. 43. The next step is to check for a pattern, such as a perfect-square trinomial, or a difference of 2 squares. 2 44. 12(x + 1) + 60(x + 1) + 75 3[4(x + 1) 2+ 20(x + 1) + 25] 3[(2(x + 1)) 2+ 2(2(x + 1))(5) + 5 2] 2 3[2(x + 1) + 5] 3(2x + 7) 2 45.(2x + 3) 2- (x - 4) 2 [(2x + 3) + (x - 4)][(2x + 3) - (x - 4)] (3x - 1)(x + 7) 2 46. 45x(x - 2) + 60x(x - 2) + 20x 5x[9(x - 2) 2+ 12(x - 2) + 4] 5x[3(x - 2)) 2+ 2(3(x - 2))(2) + 2 2] 2 5x[3(x - 2) + 2] 5x(3x - 4) 2 2 2 47.(3x - 5) - (y + 2) [(3x - 5) + (y + 2)][(3x - 5) - (y + 2)] (3x + y - 3)(3x - y - 7) 8a.x 2+ 2x - 15 4 Factors of -15 Sum __________________ -1 and 15 14 7 -3 and 5 2 3 (x - 3)(x + 5) b. x+5 x-3 c. x = 7 ℓ = x + 5 = 7 + 5 = 12 ft w = x - 3 = 7 - 3 = 4 ft 49. Method 1: 4x 2 - 100 = 4(x 2 - 25) = 4(x + 5)(x - 5) Method 2: 4x 2- 100 = (2x + 10)(2x - 10) = 2(x + 5) · 2(x - 5) = 4(x + 5)(x - 5) 247 Holt McDougal Algebra 1 50. 2x 2 + 5xy + 3y 2 ___________________________________ Factors of 2 Factors of 3 Outer + Inner 1 and 2 1 and 3 1(3) + 2(1) = 5 3 (x + y)(2x + 3y) x = -10.1, y = 10.05 2x 2 + 5xy + 3y 2 = (x + y)(2x + 3y) = approx. 0 2 61.h 2 + h 8 + h 6 + h 4 h 2(1) + h 2 (h 6 ) + h 2 (h 4 ) + h 2 (h 2 ) 2 6 h (h + h 4 + h 2 + 1) h 2[(h 6 + h 4 ) + (h 2 + 1)] h 2[h 4 (h 2 + 1) + (h 2 + 1)] h 2(h 4 + 1)(h 2 + 1) n+2 + x n + 1+ x n 62. x n 2 x (x ) + x n (x) + x n (1) x n(x 2 + x + 1) 2 51. Possible answer: ( 2x - 1) ≠ 4x - 4x - 1 6 53.(a + b) 8 52.(a + b) 7 54.(a + b) test prep 55. C; 6x 2 + 7x - 10 Factors of 6 Factors of -10 Outer + Inner _____________________________________ 1 and 6 1 and -10 1(-10) + 6(1) = -47 1 and 6 -1 and 10 1(10) + 6(-1) = 4 7 1 and 6 2 and -5 1(-5) + 6(2) = 7 3 (x + 2)(6x - 5) 56. H; 16x 12 - 256 16(x 12 - 16) 16(x 6 + 4)(x 6 - 4) 16(x 6+ 4)(x 3 + 2)(x 3 - 2) 2 2 9a. 72πp + 48πp + 8π 5 8p(9πp 2+ 6πp + π) 8p[π(9p 2 + 6p + 1)] 8p[π(3p + 1) 2] b. The radius of the cylinder is (3p + 1) cm. c. 3p + 1 = 4 3p = 3 p=1 h = 8p = 8(1) = 8 cm V = 8p[π(3p + 1) 2] = 8[π(4) 2] = 128π cm 3 7 3 5 4 60.g + g + g + g g 3(g 4 ) + g 3 (1) + g 3 (g 2 ) + g 3 (g) 3 4 2 g (g + g + g + 1) 2. Yes 4x 2- 20x + 25 (2x) 2- 2(2x)(5) + 5 2 (2x - 5) 2 3. No, (x 2+ 3x + 9) is not a perfect square because 3x ≠ 2(x)(3). 4. No, - 4x ≠ 2(x)(2) b. The polynomial could be factored by finding factors of 8 and factors of 18 that would result in 24 as the sum of the outer and inner products. Then one binomial would need to be factored again. 3 b. V = w(w + 5)(w + 9) = (w 2+ 5w)(w + 9) = w 3+ 9w 2 + 5w 2 + 45w = w 3+ 14w 2 + 45w 1. Yes x 2 + 8x + 16 x 2 + 2(x)(4) + 4 2 2 (x + 4) 8a. 8x + 24x + 18x 5 2x(4x 2+ 12x + 9) 2x[(2x) 2+ 2(2x)(3) + 3 2] 2 2x(2x + 3) First factor out the GCF of 8x 3 , 24x 2 and 18x, which is 2x; then use the pattern for a perfectsquare trinomial. challenge and extend 4a. h = w + 5 6 ℓ = w + 9 ready to go on? Section B Quiz 57. C 3 n + 5 + x n + 4 + x n + 3 63.x x n + 3(x 2 ) + x n + 3 (x) + x n + 3 (1) x n + 3(x 2 + x + 1) 5. Yes 2 9x - 12x + 4 (3x) 2- 2(3x)(2) + 2 2 2 (3x - 2) 2 6. No, (x - 12x - 36) is not a perfect square because the last term is not positive. 2 7.x + 20x + 100 x 2 + 2(x)(10) + 10 2 (x + 10) 2 ℓ = w = (x + 10) ft The perimeter of a window is 4(x + 10) ft. x = 4, 4(x + 10) = 4(4 + 10) = 56 The perimeter of a window is 56 ft when x = 4 ft. 8. Yes x 2- 121 x 2 - 11 2 (x + 11)(x - 11) 9. No, (4t 2 - 20) is not a difference of 2 squares because 20 is not a perfect square. 10. Yes 1 - 9y 4 2 1 2- (3y 2 ) 2 (1 + 3y )(1 - 3y 2 ) 12. No, (16x 2+ 49) is not a 11. Yes 2 6 difference of 2 squares 25m - 4m 2 because the last term is (5m) 2- (2m 3 ) 2 2 2 not negative. m (5 + 2m )(5 - 2m ) 248 Holt McDougal Algebra 1 27. Let ℓ be the length. ℓ 2 - 36 ℓ 2 - 6 2 (ℓ + 6)(ℓ - 6) 28. Let a be Michael’s age. a 2- 8a + 16 a 2 - 2(a)(4) + 4 2 (a - 4) 2 4a. 36d - 36d + 9 1 (6d) 2- 2(6d)(3) + 3 2 2 (6d - 3) ℓ = (6d - 3) in 29. Let v be the speed. 2 2v + 2v - 12 2(v 2 + v - 6) 2(v + 3)(v - 2) 30. Let h be Jessie’s height. 3h 3+ 3h 2 - 6h 3h(h 2+ h - 2) 3h(h + 2)(h - 1) b. The perimeter of the square is 4(6d - 3) in. 31. A = (9x)(8x) - (8y)(4y) = 72x 2- 32y 2 = 8(9x 2- 4y 2 ) = 8(3x + 2y)(3x - 2y) 13. Yes r 4 - t 2 2 (r 2) - t 2 2 (r + t)(r 2 - t) 2 c. d = 2 6d - 3 = 6(2) - 3 = 9 4(6d - 3) = 4(9) = 36 (6d - 3) 2= (9) 2= 81 When d = 2 in, the length of a side is 9 in, the perimeter is 36 in, and the area is 81 in 2. 2 15. Yes, 5(x + 3x + 1) is completely factored. 16. No 6x(5x 2 - x) 6x[5x(x) - 1(x)] 6x 2(5x - 1) 17. No 3t(t 4 - 9) 2 3t[(t 2 ) - 3 2] 2 3t(t + 3)(t 2 - 3) 18. No. 2(m 2- 10m + 25) 2[m 2- 2(m)(5) + 5 2] 2 2(m - 5) Study guide: review 1. Prime factorization 2. Greatest common factor 7-1 FACTORS AND GREATEST COMMON FACTORS 3. 12 = 2 · 2 · 3 = 2 2· 3 4. 20 = 2 · 2 · 5 = 2 2· 5 5. 32 = 2 · 2 · 2 · 2 · 2 = 2 5 6. 23 is a prime number 7. 40 = 2 · 2 · 2 · 5 = 2 3· 5 6 8. 64 = 2 · 2 · 2 · 2 · 2 · 2 = 2 19. Yes, 3(2y - 5)(y + 1) is completely factored. 9. 66 = 2 · 3 · 11 20. No (2n + 6)(n - 4) 2(n + 3)(n - 4) 11. 15 = 3 · 5 50 = 2 · 2 · 5 The GCF of 15 and 50 is 5. 2 3 2 21. 3x - 12x + 12x 3x(x 2 - 4x + 4) 3x[(x 2- 2(x)(2) + 2 2] 2 3x(x - 2) 3 22. 16m - 4m 4m(4m 2 - 1) 4m[(2m) 2- 1 2] 4m(2m + 1)(2m - 1) 3 23. 5x y - 45xy 5xy(x 2 - 9) 5xy(x 2- 3 2) 5xy(x + 3)(x - 3) 2 24. 3t + 5t - 1 _ Factors of 3 Factors of -1 Outer + Inner ___________________________________ 1 and 3 1 and -1 1(-1) + 3(1) = -2 7 1 and 3 -1 and 1 1(1) + 3(-1) = 2 7 3t 2+ 5t - 1 cannot be factored. 2 25.3c + 12c - 63 3(c 2 + 4c - 21) Factors of -21 Sum __________________ -1 and 21 20 7 -3 and 7 4 3 3(c - 3)(c + 7) 26.x 5- 81x x(x 4 - 81) 2 x[(x 2) - 9 2] 2 x(x + 9)(x 2 - 9) x(x 2+ 9)(x + 3)(x - 3) 10. 114 = 2 · 3 · 19 12. 36 = 2 · 2 · 3 · 3 132 = 2 · 2 · 3 · 11 The GCF of 36 and 132 is 12. 13. 29 is a prime number. 30 = 2 · 3 · 5 The GCF of 29 and 30 is 1. 14. 54 = 2 · 3 · 3 · 3 81 = 3 · 3 · 3 · 3 The GCF of 54 and 81 is 27. 15. 20 = 2 · 2 · 5 48 = 2 · 2 · 2 · 2 · 3 The GCF of 20 and 48 is 4. 16. 9m = 3 · 3 · m 3 is a prime number. The GCF of 9m and 3 is 3. 17. 4x = 2 · 2 · x 2x 2= 2 · x · x The GCF of 4x and 2x 2 is 2x. 4 18. -18b = -1 · 2 · 3 · 3 · b · b · b · b 27b 2= 3 · 3 · 3 · b · b The GCF of -18b 4 and 27b 2 is 9b 2 . 19. 100r = 2 · 2 · 5 · 5 · r 5 25r = 5 · 5 · r · r · r · r · r The GCF of 100r and 2 5r 5 is 25r. 249 Holt McDougal Algebra 1 20. The 42 types of boxed nails and 36 types of boxed screws must be divided into groups of equal size. The number of boxes in each row must be a common factor of 42 and 36. factors of 42: 1, 2, 3, 6, 7, 14, 21, 42 factors of 36: 1, 2, 3, 4, 6, 9, 12, 18, 36 The GCF of 42 and 36 is 6. The greatest possible number of boxes in each row is 6. Find the number of rows. 42 types of boxed nails ___________________ = 7 rows 6 boxes per row 36 types of boxed screws = 6 rows _____________________ 6 boxes per row When the greatest possible number of boxes is in each row, there are 13 rows in total. 7-2 Factoring by GCF 21. 5x = 5 · x 15x 3 = 3 · 5 · x · x · x GCF: 5 · x = 5x 5x - 15x 3 = 5x(1) - 5x(3x 2 ) = 5x(1 - 3x 2) 22. 16b = 2 · 2 · 2 · 2 · b 32 = 2 · 2 · 2 · 2 · 2 GCF: 2 · 2 · 2 · 2 = 16 -16b + 32 = 16(-b) + 16(2) = 16(-b + 2) 23. -1(14v + 21) 14v = 2 · 7 · v 21 = 3 · 7 GCF: 7 -1(14v + 21) -1[7(2v) + 7(3)] -7(2v + 3) 24. 4a 2= 2 · 2 · a · a 12a = 2 · 2 · 3 · a 8 =2·2·2 GCF: 2 · 2 = 4 4a 2 - 12a - 8 = 4(a 2 ) - 4(3a) - 4(2) = 4(a 2 - 3a - 2) 5 25. 5g = 5 · g · g · g · g · g 10g 3 = 2 · 5 · g · g · g 15g = 3 · 5 · g GCF: 5 · g = 5g 5g 5 - 10g 3 - 15g = 5g(g 4 ) - 5g(2g 2 ) - 5g(3) = 5g(g 4- 2g 2 - 3) = 5g(g 2- 3)(g 2 + 1) 2 26. 40p = 2 · 2 · 2 · 5 · p · p 10p = 2 · 5 · p 30 = 2 · 3 · 5 GCF: 2 · 5 = 10 40p 2 - 10p + 30 = 10(4p 2 ) - 10(p) + 10(3) = 10(4p 2 - p + 3) 2 27. 6x = 2 · 3 · x · x 5x = 5 · x GCF: x 6x 2 + 5x = x(6x) + x(5) = x(6x + 5) The dimension of the lot is (6x + 5) ft by x ft. 28. 2x(x - 4) + 9(x - 4) (2x + 9)(x - 4) 29. t(3t + 5) - 6(3t + 5) (t - 6)(3t + 5) 30. 5(6 - n) - 3n(6 - n) (5 - 3n)(6 - n) 31. b(b + 4) + 2(b + 4) (b + 2)(b + 4) 32.x 2 (x - 3) + 7(x - 3) (x 2 + 7)(x - 3) 33.n + n - 4n - 4 (n 3- 4n 2 ) + (n - 4) n 2(n - 4) + 1(n - 4) (n 2 + 1)(n - 4) 3 2 2 34. 6b - 8b + 15b - 20 (6b 2 - 8b) + (15b - 20) 2b(3b - 4) + 5(3b - 4) (2b + 5)(3b - 4) 35. 2h 3 - 7h + 14h 2 - 49 (2h 3+ 14h 2 ) - (7h + 49) 2h 2(h + 7) - 7(h + 7) (2h 2 - 7)(h + 7) 2 3 2 37. 10m + 15m - 2m - 3 36. 3t + 18t + t + 6 (3t 2 + 18t) + (t + 6) (10m 3+ 15m 2 ) - (2m + 3) 3t(t + 6) + 1(t + 6) 5m 2(2m + 3) - 1(2m + 3) (3t + 1)(t + 6) (5m 2 - 1)(2m + 3) 2 38. 8p 3 + 4p - 6p 2 - 3 39. 5r - 10 + 2r - r 3 2 2 (8p - 6p ) + (4p - 3) (5r - 10) - (r - 2r) 5(r - 2) - r(r - 2) 2p 2(4p - 3) + 1(4p - 3) 2 -1(r - 5)(r - 2) (2p + 1)(4p - 3) 3 2 40.b 3 - 5b + 15 - 3b 2 41. 6t - t - 4t + 24 3 2 3 2 -( t + 4 t ) + (6t + 24) (b - 3b ) - (5b - 15) 2 2 -t (t + 4) + 6(t + 4) b (b - 3) - 5(b - 3) -1(t 2- 6)(t + 4) (b 2 - 5)(b - 3) 2 3. d - d 2 + d - 1 4 42. 12h - 3h + h - 4 2 -1(3h - 12h) + (h - 4) -(d 2- d) + (d - 1) -3h(h - 4) + 1(h - 4) -d(d - 1) + 1(d - 1) -1(3h - 1)(h - 4) -1(d - 1 ) 2 2 2 45. 5t - t - t + 5 44. 6b - 5b + 10b - 12 -(5b 2 - 6b) + (10b - 12) -(t 2 - 5t) - (t - 5) -b(5b - 6) + 2(5b - 6) -t(t - 5) - 1(t - 5) -1(b - 2)(5b - 6) -1(t + 1)(t - 5) 2 46. 8b 2- 2b 3 - 5b + 20 47. 3r - 3r - 1 + r 3 2 2 -(2b - 8b ) - (5b - 20) -(3r - 3r) + (r - 1) -3r(r - 1) + 1(r - 1) -2b 2(b - 4) - 5(b - 4) 2 -1(3r - 1)(r - 1) -1(2b + 5)(b - 4) 48. Left rectangle: x(2x + 3) = 2x 2+ 3x Right rectangle: 2(4x + 6) = 8x + 12 Combined: (2x 2+ 3x) + (8x + 12) = (2x 2+ 8x) + (3x + 12) = 2x(x + 4) + 3(x + 4) = (2x + 3)(x + 4) 7-3 factoring x 2+ bx + c 49.x 2 + 6x + 5 (x + 1)(x + 5) 2 50.x + 6x + 8 (x + 2)(x + 4) 2 51.x + 8x + 15 (x + 3)(x + 5) 250 Holt McDougal Algebra 1 52.x 2 - 8x + 12 (x - 2)(x - 6) 2 53.x + 10x + 25 x 2+ 2(x)(5) + 5 2 2 (x + 5) 2 54.x - 13x + 22 (x - 2)(x - 11) 2 55.x + 24x + 80 (x + 4)(x + 20) 2 56.x - 26x + 120 (x - 6)(x - 20) 2 57.x + 5x - 84 (x + 12)(x - 7) 2 58.x - 5x - 24 (x + 3)(x - 8) 2 59.x - 3x - 28 (x + 4)(x - 7) 2 60.x + 4x - 5 (x + 5)(x - 1) 2 61.x + x - 6 (x + 3)(x - 2) 2 62.x + x - 20 (x + 5)(x - 4) 2 63.x - 2x - 48 (x + 6)(x - 8) 2 64.x - 5x - 36 (x + 4)(x - 9) 2 65.x - 6x - 72 (x + 6)(x - 12) 2 66.x - 3x - 70 (x + 7)(x - 10) 2 67.x + 14x - 120 (x + 20)(x - 6) 2 68.x + 6x - 7 (x + 7)(x - 1) 2 69.y + 8y + 15 (y + 3)(y + 5) ℓ= (y + 5) m w = (y + 3) m 7-4 factoring ax 2+ bx + c 70. 2x 2 + 11x + 5 ___________________________________ Factors of 2 Factors of 5 Outer + Inner 1 and 2 1 and 5 1(5) + 2(1) = 7 1 and 2 5 and 1 1(1) + 2(5) = 11 (x + 5)(2x + 1) 71. 3x 2 + 10x + 7 ___________________________________ Factors of 3 Factors of 7 Outer + Inner 1 and 3 1 and 7 1(7) + 3(1) = 10 (x + 1)(3x + 7) 2 72. 2x - 3x + 1 ___________________________________ Factors of 2 Factors of 1 Outer + Inner 1 and 2 -1 and -1 1(-1) + 2(-1) = -3 (x - 1)(2x - 1) 73. 3x 2 + 8x + 4 ___________________________________ Factors of 3 Factors of 4 Outer + Inner 1 and 3 1 and 4 1(4) + 3(1) = 7 1 and 3 4 and 1 1(1) + 3(4) = 13 1 and 3 2 and 2 1(2) + 3(2) = 8 (x + 2)(3x + 2) 74. 5x 2 + 28x + 15 ____________________________________ Factors of 5 Factors of 15 Outer + Inner 1 and 5 1 and 15 1(15) + 5(1) = 20 1 and 5 15 and 1 1(1) + 5(15) = 76 1 and 5 3 and 5 1(5) + 5(3) = 20 1 and 5 5 and 3 1(3) + 5(5) = 28 (x + 5)(5x + 3) 75. 6x 2 - 19x + 15 ____________________________________ Factors of 6 Factors of 15 Outer + Inner 1 and 6 -1 and -15 1(-15) + 6(-1) = -21 1 and 6 -15 and -1 1(-1) + 6(-15) = -91 1 and 6 -3 and -5 1(-5) + 6(-3) = -23 1 and 6 -5 and -3 1(-3) + 6(-5) = -33 2 and 3 -1 and -15 2(-15) + 3(-1) = -33 2 and 3 -15 and -1 2(-1) + 3(-15) = -47 2 and 3 -3 and -5 2(-5) + 3(-3) = -19 (2x - 3)(3x - 5) 76. 4x 2+ 13x + 10 ____________________________________ Factors of 4 Factors of 10 Outer + Inner 1 and 4 1 and 10 1(10) + 4(1) = 14 1 and 4 10 and 1 1(1) + 4(10) = 41 1 and 4 2 and 5 1(5) + 4(2) = 13 (x + 2)(4x + 5) 77. 3x 2+ 10x + 8 ___________________________________ Factors of 3 Factors of 8 Outer + Inner 1 and 3 1 and 8 1(8) + 3(1) = 11 1 and 3 8 and 1 1(1) + 3(8) = 25 1 and 3 2 and 4 1(4) + 3(2) = 10 (x + 2)(3x + 4) 78. 7x 2 - 37x + 10 ____________________________________ Factors of 7 Factors of 10 Outer + Inner 1 and 7 -1 and -10 1(-10) + 7(-1) = -17 1 and 7 -10 and -1 1(-1) + 7(-10) = -71 1 and 7 -2 and -5 1(-5) + 7(-2) = -19 1 and 7 -5 and -2 1(-2) + 7(-5) = -37 (x - 5)(7x - 2) 79. 9x 2+ 18x + 8 ___________________________________ Factors of 9 Factors of 8 Outer + Inner 1 and 9 1 and 8 1(8) + 9(1) = 17 1 and 9 8 and 1 1(1) + 9(8) = 73 1 and 9 2 and 4 1(4) + 9(2) = 22 1 and 9 4 and 2 1(2) + 9(4) = 38 3 and 3 1 and 8 3(8) + 3(1) = 27 3 and 3 2 and 4 3(4) + 3(2) = 18 (3x + 2)(3x + 4) 80. 2x 2 - x - 1 _ Factors of 2 Factors of -1 Outer + Inner ___________________________________ 1 and 2 1 and -1 1(-1) + 2(1) = 1 1 and 2 -1 and 1 1(1) + 2(-1) = -1 (x - 1)(2x + 1) 251 Holt McDougal Algebra 1 81. 3x 2 - 11x - 4 Factors of 3 Factors of -4 Outer + Inner _ ___________________________________ 1 and 3 1 and -4 1(-4) + 3(1) = -1 1 and 3 -1 and 4 1(4) + 3(-1) = 1 1 and 3 2 and -2 1(-2) + 3(2) = 4 1 and 3 -2 and 2 1(2) + 3(-2) = -4 1 and 3 4 and -1 1(-1) + 3(4) = 11 1 and 3 -4 and 1 1(1) + 3(-4) = -11 (x - 4)(3x + 1) 88. -4x 2+ 8x + 5 -1(4x 2 - 8x - 5) _ Factors of 4 Factors of -5 Outer + Inner ___________________________________ 1 and 4 1 and -5 1(-5) + 4(1) = -1 1 and 4 -1 and 5 1(5) + 4(-1) = 1 1 and 4 5 and -1 1(-1) + 4(5) = 19 1 and 4 -5 and 1 1(1) + 4(-5) = -19 2 and 2 1 and -5 2(-5) + 2(1) = -8 -1(2x + 1)(2x - 5) 82. 2x 2- 11x + 5 __________________________________ Factors of 2 Factors of 5 Outer + Inner _ 1 and 2 -1 and -5 1(-5) + 2(-1) = -7 1 and 2 -5 and -1 1(-1) + 2(-5) = -11 (x - 5)(2x - 1) 89. -10x 2+ 11x + 6 -1(10x 2 - 11x - 6) _____________________________________ Factors of 10 Factors of -6 Outer + Inner 1 and 10 1 and -6 1(-6) + 10(1) = 4 1 and 10 -1 and 6 1(6) + 10(-1) = -4 1 and 10 2 and -3 1(-3) + 10(2) = 17 1 and 10 -2 and 3 1(3) + 10(-2) = -17 1 and 10 3 and -2 1(-2) + 10(3) = 28 1 and 10 -3 and 2 1(2) + 10(-3) = -28 1 and 10 6 and -1 1(-1) + 10(6) = 59 1 and 10 -6 and 1 1(1) + 10(-6) = -59 2 and 5 1 and -6 2(-6) + 5(1) = -7 2 and 5 -1 and 6 2(6) + 5(-1) = 7 2 and 5 2 and -3 2(-3) + 5(2) = 4 2 and 5 -2 and 3 2(3) + 5(-2) = -4 2 and 5 3 and -2 2(-2) + 5(3) = 11 2 and 5 -3 and 2 2(2) + 5(-3) = -11 -1(2x - 3)(5x + 2) 83. 7x 2 - 19x - 6 Factors of 7 Factors of -6 Outer + Inner _ ___________________________________ 1 and 7 1 and -6 1(-6) + 7(1) = 1 1 and 7 -1 and 6 1(6) + 7(-1) = -1 1 and 7 2 and -3 1(-3) + 7(2) = 11 1 and 7 -2 and 3 1(3) + 7(-2) = -11 1 and 7 3 and -2 1(-2) + 7(3) = 19 1 and 7 -3 and 2 1(2) + 7(-3) = -19 (x - 3)(7x + 2) 84. 5x 2- 9x - 2 Factors of 5 Factors of -2 Outer + Inner _ ___________________________________ 1 and 5 1 and -2 1(-2) + 5(1) = 3 1 and 5 -1 and 2 1(2) + 5(-1) = -3 1 and 5 2 and -1 1(-1) + 5(2) = 9 1 and 5 -2 and 1 1(1) + 5(-2) = -9 (x - 2)(5x + 1) 90. 12x 2+ 4x - 15x - 5 (12x 2 + 4x) - (15x + 5) 4x(3x + 1) - 5(3x + 1) (4x - 5)(3x + 1) 85. -6x 2- x + 2 -1(6x 2 + x - 2) _ Factors of 6 Factors of -2 Outer + Inner ___________________________________ 1 and 6 1 and -2 1(-2) + 6(1) = 4 1 and 6 -1 and 2 1(2) + 6(-1) = -4 1 and 6 2 and -1 1(-1) + 6(2) = 11 1 and 6 -2 and 1 1(1) + 6(-2) = -11 2 and 3 1 and -2 2(-2) + 3(1) = -1 2 and 3 -1 and 2 2(2) + 3(-1) = 1 -1(2x - 1)(3x + 2) 7-5 FACTORING SPECIAL PRODUCTS 91. Yes x 2 + 12x + 36 x 2 + 2(x)(6) + 6 2 (x+ 6) 2 2 92. No, (x + 5x + 25) is not a perfect-square trinomial because 5x ≠ 2(x)(5). 86. 6x 2- x - 5 Factors of 6 Factors of -5 Outer + Inner _ ___________________________________ 1 and 6 1 and -5 1(-5) + 6(1) = 1 1 and 6 -1 and 5 1(5) + 6(-1) = -1 (x - 1)(6x + 5) 2 93. No, (4x - 2x + 1) is not a perfect-square trinomial because -2x ≠ 2(2x)(1). 87. 6x 2+ 17x - 14 ____________________________________ Factors of 6 Factors of -14 Outer + Inner _ 1 and 6 1 and -14 1(-14) + 6(1) = -8 1 and 6 -1 and 14 1(14) + 6(-1) = 8 1 and 6 2 and -7 1(-7) + 6(2) = 5 1 and 6 -2 and 7 1(7) + 6(-2) = -5 1 and 6 7 and -2 1(-2) + 6(7) = 40 1 and 6 -7 and 2 1(2) + 6(-7) = -40 1 and 6 14 and -1 1(-1) + 6(14) = 83 1 and 6 -14 and 1 1(1) + 6(-14) = -83 2 and 3 1 and -14 2(-14) + 3(1) = -25 2 and 3 -1 and 14 2(14) + 3(-1) = 25 2 and 3 2 and -7 2(-7) + 3(2) = -8 2 and 3 -2 and 7 2(7) + 3(-2) = 8 2 and 3 7 and -2 2(-2) + 3(7) = 17 (2x + 7)(3x - 2) 94. Yes 9x 2+ 12x + 4 (3x) 2+ 2(3x)(2) + 2 2 (3x + 2) 2 2 95. No, (16x + 8x + 4) is not a perfect-square trinomial because 8x ≠ 2(4x)(2). 96. Yes x 2+ 14x + 49 x 2 + 2(x)(7) + 7 2 2 (x + 7 ) 97. Yes 100x 2- 81 (10x) 2- 9 2 (10x + 9)(10x - 9) 98. No, (x 2- 2) is not a difference of 2 squares because 2 is not a perfect square. 4 6 9. No, (5x - 10y ) is not a difference of 2 squares 9 because 5x 4- 10y 6 = 5(x 4 - 2y 6 ) and 2y 6 is not a perfect square. 252 Holt McDougal Algebra 1 101. No, (121b 2+ 9c 8 ) is 100. Yes 2 3 2 (-12) - (x ) not a difference of 2 squares because (-12 + x 3)(-12 - x 3 ) 3 3 the operation between -1(x + 12)(x - 12) the terms is addition, and not subtracting. 102. Yes 100p 2- 25q 2 25(4p 2- q 2 ) 25[(2p) 2- q 2 ] 25(2p + q)(2p - q) 03. difference of 2 squares 1 x 2- 25 x 2- 5 2 (x + 5)(x - 5) 04. Perfect-square trinomial 1 x 2+ 20x + 100 x 2+ 2(x)(10) + 1 0 2 (x + 10) 2 05. Difference of 2 squares 1 2 4 j - k 2 j - (k 2 ) 2 (j + k 2)(j - k 2 ) 06. Perfect-square trinomial 1 2 9x - 42x + 49 (3x) 2- 2(3x)(7) + 7 2 (3x - 7) 2 07. Perfect-square trinomial 1 2 81x + 144x + 64 (9x) 2+ 2(9x)(8) + 8 2 2 (9x + 8) 08. Difference of 2 squares 1 4 6 16b - 121c (4b 2) 2- (11c 3 ) 2 (4b 2+ 11c 3)(4b 2 - 11c 3) 7-6 CHOOSING A FACTORING METHOD 09. No 1 4x 2+ 10x + 6 (4x + 6)(x + 1) 2(2x + 3)(x + 1) 111. No 4 b - 81 (b 2 + 9)(b 2 - 9) (b 2+ 9)(b + 3)(b - 3) 2 112. Yes, (x - 3) is completely factored. 2 113. 4x - 64 4(x 2 - 16) 4(x + 4)(x - 4) 4 3 114. 3b - 6b - 24b 3b 3(b 2 - 2b - 8) 3b 2(b + 2)(b - 4) 4 3 2 5 115.a b - a b a 2b 3 (a 2 - b 2 ) a 2b 3 (a + b)(a - b) 2 117. 5x + 20x + 15 5(x 2 + 4x + 3) 5(x + 1)(x + 3) 4 2 118. 2x - 50x 2x 2(x 2 - 25) 2x 2(x + 5)(x - 5) 119. 8t + 32 + 2st + 8s 2(st + 4s + 4t + 16 2[(st + 4s) + (4t + 16)] 2[s(t + 4) + 4(t + 4)] 2(s + 4)(t + 4) 20. 25m 3 - 90m 2 - 40m 1 5m(5m 2- 18m - 8) _ Factors of 5 Factors of -8 Outer + Inner ___________________________________ 1 and 5 1 and -8 1(-8) + 5(1) = -3 1 and 5 -1 and 8 1(8) + 5(-1) = 3 1 and 5 2 and -4 1(-4) + 5(2) = 6 1 and 5 -2 and 4 1(4) + 5(-2) = -6 1 and 5 4 and -2 1(-2) + 5(4) = 18 1 and 5 -4 and 2 1(2) + 5(-4) = -18 5m(m - 4)(5m + 2) 21. 32x 4- 48x 3 + 8x 2 - 12x 1 4x(8x 3- 12x 2 + 2x - 3) 4x[(8x 3- 12x 2 ) + (2x - 3)] 4x[4x 2(2x - 3) + 1(2x - 3)] 4x(4x 2 + 1)(2x - 3) 4 3 2 2 3 22. 6s t + 12s t + 6s t 1 6s 2t(s 2 + 2st + t 2 ) 6s 2t(s + t) 2 3 110. Yes, 3(y 2+ 25) is completely factored. 5 116.t 20- t 4 t 4(t 16 - 1) t 4(t 8 + 1)(t 8 - 1) t 4(t 8 + 1)(t 4 + 1)(t 4 - 1) t 4(t 8 + 1)(t 4 + 1)(t 2 + 1)(t 2 - 1) t 4(t 8 + 1)(t 4 + 1)(t 2 + 1)(t + 1)(t - 1) 2 23. 10m + 4m - 90m - 36 1 2(5m 3+ 2m 2 - 45m - 18) 2[(5m 3+ 2m 2 ) - (45m + 18)] 2[m 2(5m + 2) - 9(5m + 2)] 2(m 2 - 9)(5m + 2) 2(m + 3)(m - 3)(5m + 2) chapter test 1. 3t 4 = 3 · t · t · t · t 8t 2= 2 · 2 · 2 · t · t The GCF of 3t 2 and 8 t 2is t 2 . 3 2. 2y = 2 · y · y · y -12y = -1 · 2 · 2 · 3 · y The GCF of 2 y 3 and -12y is 2y. 5 3. 15n = 3 · 5 · n · n · n · n · n 9n 4 = 3 · 3 · n · n · n · n The GCF of 15n 5 and 9n 4 is 3n 4 . 4. 360 = 2 · 2 · 2 · 3 · 3 · 5 = 2 3 · 3 2· 5 253 Holt McDougal Algebra 1 5. The 16 Liberty nickels, 24 Buffalo nuckels, and 40 Jefferson nickels must be divided into groups of equal size. The number of nickels in each row must be a common factor of 16, 24 and 40. factors of 16: 1, 2, 4, 8, 16 factors of 24: 1, 2, 3, 4, 6, 8, 12, 24 factors of 40: 1, 2, 4, 5, 8, 10, 20, 40 The GCF of 16, 24 and 40 is 8. The greatest possible number of nickels in each row is 8. Find the number of rows. 16 Liberty nickels _______________ = 2 rows 8 per row 19. Yes a 2+ 14a + 49 a 2 + 2(a)(7) + 7 2 2 (a + 7 ) 2 20. No, (2x + 10x + 25) is not a perfect-square trinomial because 2x 2 is not a perfect square. 21. Yes 9t 2- 6t + 1 (3t) 2- 3(3t)(1) + 1 2 2 (3t - 1 ) 22. Yes b 2- 16 b 2 - 4 2 (b + 4)(b - 4) 24 Buffalo nickels = 3 rows _______________ 8 per row 23. No, (25y 2 - 10) is not a difference of 2 squares because 10 is not a perfect square. 40 Jefferson nickels _________________ = 5 rows 8 per row When the greatest possible number of nickels is in each row, there are 10 rows in total. 24. Yes 9a 2- b 10 (3a) 2- (b 5 ) 2 (3a + b 5)(3a - b 5 ) 6. 24m 2 + 4m 3 4m 2(6) + 4m 2 (m) 4m 2(6 + m) 7. 9x 5- 12x 3x(3x 4 ) - 3x(4) 3x(3x 4 - 4) 8. -2r 4 - 6 -2(r 4 ) - 2(3) -2(r 4 + 3) 9. 3(c - 5) + 4c(c - 5) (3 + 4c)(c - 5) 2 25. 9x + 30x + 25 (3x) 2+ 2(3x)(5) + 5 2 2 (3x + 5) P = 4(3x + 5) ft x = 4, P = 4(3x + 5) = 4[3(4) + 5] = 68 The perimeter is 68 ft when x = 4 ft. 26. No (6x - 3)(x + 5) 3(2x - 1)(x + 5) 10. 10x 3+ 4x - 25x 2 - 10 (10x 3- 25x 2 ) + (4x - 10) 5x 2(2x - 5) + 2(2x - 5) (5x 2 + 2)(2x - 5) 3 27. Yes, (v 5+ 10)(v 5 - 10) is completely factored. 28. Yes, (2b + 3)(3b - 2) is completely factored. 2 2 11. 4y - 4y - 3 + 3y 12. -5t + 50t + 5 (4y 3- 4y 2 ) + (3y - 3) -1(5t 2 - 50t - 5) 4y 2(y - 1) + 3(y - 1) -1[5(t 2 ) - 5(10t) - 5(1)] (4y 2 + 3)(y - 1) -5(t 2- 10t - 1) 2 13.x + 6x + 5 (x + 1)(x + 5) 2 14.x - 4x - 21 (x + 3)(x - 7) 2 15.x - 8x + 15 (x - 3)(x - 5) 16. 2x 2 + 9x + 7 __________________________________ Factors of 2 Factors of 7 Outer + Inner _ 1 and 2 1 and 7 1(7) + 2(1) = 9 (x + 1)(2x + 7) 2 3 2 29. 8x + 72x + 160x 8x(x 2 + 9x + 20) 8x(x + 4)(x + 5) 5 3 30. 3x - 27x 3x 3(x 2 - 9) 3x 3(x + 3)(x - 3) 31. 8x 3+ 64x 2 - 20x - 160 4(2x 3+ 16x 2 - 5x - 40) 4[(2x 3+ 16x 2 ) - (5x + 40)] 4[2x 2(x + 8) - 5(x + 8)] 4(2x 2 - 5)(x + 8) 4 7 6 32. cd - c d cd 4(1 - c 6 d 2 ) cd 4(1 + c 3 d)(1 - c 3 d) 2 17. 2x + 9x - 18 ____________________________________ Factors of 2 Factors of -18 Outer + Inner _ 1 and 2 1 and -18 1(-18) + 2(1) = -16 1 and 2 -1 and 18 1(18) + 2(-1) = 16 1 and 2 2 and -9 1(-9) + 2(2) = -5 1 and 2 -2 and 9 1(9) + 2(-2) = 5 1 and 2 3 and -6 1(-6) + 2(3) = 0 1 and 2 -3 and 6 1(6) + 2(-3) = 0 1 and 2 6 and -3 1(-3) + 2(6) = 9 (x + 6)(2x - 3) 33. 100x - 80x + 16 4(25x 2 - 20x + 4) 4[(5x) 2- 2(5x)(2) + 2 2] 4(5x - 2 ) 2 8 34. 7m - 7 7(m 8 - 1) 7(m 4 + 1)(m 4 - 1) 7(m 4+ 1)(m 2 + 1)(m 2 - 1) 7(m 4+ 1)(m 2 + 1)(m + 1)(m - 1) 18. -3x 2 - 2x + 8 -1(3x 2 + 2x - 8) _ Factors of 3 Factors of -8 Outer + Inner ___________________________________ 1 and 3 1 and -8 1(-8) + 3(1) = -5 1 and 3 -1 and 8 1(8) + 3(-1) = 5 1 and 3 2 and -4 1(-4) + 3(2) = 2 -1(x + 2)(3x - 4) 254 Holt McDougal Algebra 1