Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Section 1.4 Compound Inequalities 63 1.4 Exercises In Exercises 1-12, solve the inequality. Express your answer in both interval and set notations, and shade the solution on a number line. 1. 2. 8x + 5 ≤ −1 and 4x − 2 > −1 18. −x − 1 < 7 and − 6x − 9 ≥ 8 19. −3x + 8 ≤ −5 or − 2x − 4 ≥ −3 20. −6x − 7 < −3 and − 8x ≥ 3 21. 9x − 9 ≤ 9 and 5x > −1 22. −7x + 3 < −3 or − 8x ≥ 2 23. 3x − 5 < 4 and − x + 9 > 3 24. −8x − 6 < 5 or 4x − 1 ≥ 3 25. 9x + 3 ≤ −5 or − 2x − 4 ≥ 9 26. −7x + 6 < −4 or − 7x − 5 > 7 27. 4x − 2 ≤ 2 or 3x − 9 ≥ 3 28. −5x + 5 < −4 or − 5x − 5 ≥ −5 29. 5x + 1 < −6 and 3x + 9 > −4 30. 7x + 2 < −5 or 6x − 9 ≥ −7 31. −7x − 7 < −2 and 3x ≥ 3 32. 4x + 1 < 0 or 8x + 6 > 9 33. 7x + 8 < −3 and 8x + 3 ≥ −9 34. 3x < 2 and − 7x − 8 ≥ 3 35. −5x + 2 ≤ −2 and − 6x + 2 ≥ 3 36. 4x − 1 ≤ 8 or 3x − 9 > 0 37. 2x − 5 ≤ 1 and 4x + 7 > 7 38. 3x + 1 < 0 or 5x + 5 > −8 −8x − 3 ≤ −16x − 1 6x − 6 > 3x + 3 3. −12x + 5 ≤ −3x − 4 4. 7x + 3 ≤ −2x − 8 5. −11x − 9 < −3x + 1 6. 4x − 8 ≥ −4x − 5 7. 4x − 5 > 5x − 7 8. −14x + 4 > −6x + 8 9. 2x − 1 > 7x + 2 10. −3x − 2 > −4x − 9 11. −3x + 3 < −11x − 3 12. 6x + 3 < 8x + 8 In Exercises 13-50, solve the compound inequality. Express your answer in both interval and set notations, and shade the solution on a number line. 1 17. 13. 2x − 1 < 4 or 7x + 1 ≥ −4 14. −8x + 9 < −3 and − 7x + 1 > 3 15. −6x − 4 < −4 and − 3x + 7 ≥ −5 16. −3x + 3 ≤ 8 and − 3x − 6 > −6 Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/ Version: Fall 2007 64 Chapter 1 Preliminaries 39. −8x + 7 ≤ 9 or − 5x + 6 > −2 40. x − 6 ≤ −5 and 6x − 2 > −3 41. −4x − 8 < 4 or − 4x + 2 > 3 42. 9x − 5 < 2 or − 8x − 5 ≥ −6 43. −9x − 5 ≤ −3 or x + 1 > 3 44. −5x − 3 ≤ 6 and 2x − 1 ≥ 6 45. −1 ≤ −7x − 3 ≤ 2 46. 0 < 5x − 5 < 9 47. 5 < 9x − 3 ≤ 6 48. −6 < 7x + 3 ≤ 2 49. −2 < −7x + 6 < 6 50. −9 < −2x + 5 ≤ 1 In Exercises 51-62, solve the given inequality for x. Graph the solution set on a number line, then use interval and setbuilder notation to describe the solution set. 51. 1 x 1 1 − < + < 3 2 4 3 52. x 1 1 1 − < − < 5 2 4 5 53. 1 1 x 1 − < − < 2 3 2 2 54. 2 1 x 2 − ≤ − ≤ 3 2 5 3 55. −1 < x − x+1 <2 5 56. −2 < x − 2x − 1 <4 3 57. −2 < x+1 x+1 − ≤2 2 3 Version: Fall 2007 x − 1 2x − 1 − ≤2 3 5 58. −3 < 59. x<4−x<5 60. −x < 2x + 3 ≤ 7 61. −x < x + 5 ≤ 11 62. −2x < 3 − x ≤ 8 63. Aeron has arranged for a demonstration of “How to make a Comet” by Professor O’Commel. The wise professor has asked Aeron to make sure the auditorium stays between 15 and 20 degrees Celsius (C). Aeron knows the thermostat is in Fahrenheit (F) and he also knows that the conversion formula between the two temperature scales is C = (5/9)(F − 32). a) Setting up the compound inequality for the requested temperature range in Celsius, we get 15 ≤ C ≤ 20. Using the conversion formula above, set up the corresponding compound inequality in Fahrenheit. b) Solve the compound inequality in part (a) for F. Write your answer in set notation. c) What are the possible temperatures (integers only) that Aeron can set the thermostat to in Fahrenheit? Section 1.4 Compound Inequalities 65 1.4 Answers 1. (−∞, 14 ] = {x|x ≤ 14 } S 13 19. −∞, − 21 3 ,∞ ={x|x ≤ − 12 or x ≥ 13 3 } 1 4 3. − 12 13 3 [1, ∞) = {x|x ≥ 1} 21. (− 15 , 2] = {x| − 1 5 < x ≤ 2} 1 5. (− 45 , ∞) = {x|x > 23. − 54 2 − 15 − 54 } (−∞, 3) = {x|x < 3} 3 7. (−∞, 2) = {x|x < 2} 25. 2 9. (−∞, − 35 ) = {x|x < 27. 4} (−∞, − 34 ) = {x|x < − 34 } − 34 13. − 89 − 35 } − 35 11. (−∞, 1] S [4, ∞) = {x|x ≤ 1 or x ≥ 1 29. 4 7 (− 13 3 , − 5 ) = {x| − − 13 3 (−∞, ∞) = {all real numbers} 31. 15. (−∞, − 98 ] = {x|x ≤ − 89 } 13 3 < x < − 75 } − 75 [1, ∞) = {x|x ≥ 1} (0, 4] = {x|0 < x ≤ 4} 1 0 4 33. 17. no solution no solution Version: Fall 2007 66 Chapter 1 Preliminaries 53. (−1/3, 5/3) = {x : −1/3 < x < 5/3} 35. no solution 37. (0, 3] = {x|0 < x ≤ 3} 0 39. 3 −1/3 55. 57. 41. (−∞, ∞) = {all real numbers} [− 29 , ∞) = {x|x ≥ − 29 } − 29 45. [− 75 , − 72 ] = {x| − − 75 47. ≤ x ≤ − 72 } − 72 ( 89 , 1] = {x| 89 < x ≤ 1} (−13, 11] = {x : −13 < x ≤ 11} 11 (−1, 2) = {x : −1 < x < 2} −1 61. 5 7 11/4 −13 59. 43. (−1, 11/4) = {x : −1 < x < 11/4} −1 (−∞, ∞) = {all real numbers} 5/3 2 (−5/2, 6] = {x : −5/2 < x ≤ 6} −5/2 6 63. a) 15 ≤ 59 (F − 32) ≤ 20 b) {F : 59 ≤ F ≤ 68} 8 9 49. 1 (0, 78 ) = {x|0 < x < 78 } 0 8 7 51. (−7/6, 1/6) = {x : −7/6 < x < 1/6} −7/6 Version: Fall 2007 1/6 c) {59, 60, 61, 62, 63, 64, 65, 66, 67, 68}