Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Chapter 15 Brain and Cranial Nerves Anterior Central sulcus Posterior Fig. 15.1a (left) Parietal lobe Frontal lobe Gyrus Sulcus Parieto-occipital Cerebrum sulcus Lateral sulcus Occipital lobe Temporal lobe Brainstem Pons Cerebellum Medulla oblongata Spinal cord (a) Left lateral view Cerebral hemispheres Fig. 15.1b Anterior Frontal lobe Cerebrum Temporal lobe Occipital lobe Posterior Eye Olfactory bulb Optic nerve Olfactory tracts Optic chiasm Pituitary gland Optic tract Mammillary bodies Midbrain Pons Brainstem Medulla oblongata Cranial nerves Cerebellum Anterior Fig. 15.1c Frontal lobe Central sulcus Parietal lobe Corpus callosum Diencephalon Posterior Parieto-occipital sulcus Occipital lobe Interthalamic adhesion Thalamus Hypothalamus Pineal gland Tectal plate Pituitary gland Temporal lobe Midbrain Brainstem Pons Medulla oblongata Spinal cord Cerebral aqueduct Fourth ventricle Cerebellum Copyright © McGraw-Hill Education. Permission required for reproduction or display. Fig. 15.2 (left) Rhombencephalon Prosencephalon Mesencephalon Mesencephalon Prosencephalon Rhombencephalon Spinal cord Spinal cord (a) 4 weeks Myelencephalon Telencephalon Optic vesicle Diencephalon Metencephalon Mesencephalon Optic vesicle Diencephalon Mesencephalon Telencephalon Metencephalon Spinal cord Myelencephalon Spinal cord (b) 5 weeks Copyright © McGraw-Hill Education. Permission required for reproduction or display. Fig. 15.2 (right) Central sulcus Cerebrum Outline of diencephalon Cerebrum Outline of diencephalon Midbrain Cerebellum Lateral sulcus Midbrain Cerebellum Pons Medulla oblongata Pons Medulla oblongata Spinal cord Spinal cord (c) 13 weeks (d) 26 weeks Cerebrum Midbrain Pons Medulla oblongata Thalamus Pituitary gland Cerebellum Spinal cord (e) Birth Brainstem Table 15.1 Fig. 15.3 (a) Gray matter White matter Cortex Inner white matter Corpus callosum Internal capsule Cerebral nuclei Lateral ventricle (a) Coronal section of cerebrum Cortex (gray matter) (a) Inner gray matter Cerebrum Cerebellum Cerebellum Medulla oblongata Fig. 15.3 (b) (c) Fourth ventricle Inner gray matter Brainstem Gray matter Outer white matter (b) Cerebellum and brainstem Fig. 15.3 Fourth ventricle Inner gray matter Cerebrum Cerebellum Medulla oblongata (b) (c) Outer white matter Fig. 15.3 (d) Spinal cord Cerebrum (b) (c) Cerebellum Medulla oblongata Central canal Outer white matter Inner gray matter Spinal cord (d) Fig. 15.4 Cranial meninges Skin of scalp Periosteum Bone of skull Arachnoid granulation Periosteal layer Dura mater Meningeal layer Subdural space (potential space) Arachnoid mater Subarachnoid space Arachnoid trabeculae Pia mater Dural venous sinus (superior sagittal sinus) Cerebral cortex • Connective tissue layers that separate soft brain tissue from bones of cranium • protects blood vessels that supply brain • contain and circulate cerebrospinal fluid White matter Falx cerebri Fig. 15.4 Cranial meninges Skin of scalp Periosteum Bone of skull Arachnoid granulation Periosteal layer Meningeal layer Subdural space (potential space) Arachnoid mater Subarachnoid space Arachnoid trabeculae Dural venous sinus (superior sagittal sinus) • Pia mater pia = tender; mater = mother • deepest meningeal layer • areolar connective tissue • highly vascularized • sticks to brain Dura mater Pia mater Cerebral cortex White matter Falx cerebri Fig. 15.4 Cranial meninges Skin of scalp Periosteum Bone of skull Arachnoid granulation Dural venous sinus (superior sagittal sinus) • Arachnoid mater (AKA arachnoid membrane) Falx cerebri • external to pia mater • resembles spider web • composed of collagen and elastic fibers called arachnoid trebeculae • subarachnoid space filled with trebeculae Periosteal layer Meningeal layer Dura mater Arachnoid mater Subarachnoid space Arachnoid trabeculae Cerebral cortex White matter Fig. 15.4 Cranial meninges • Dura mater Arachnoid dura = tough granulation • dense, Dural venous irregular sinus (superior sagittal sinus) connective tissue • meningeal layer deep to periosteal layer (layers usually Falx cerebri fused together) • where not fused, dural venous sinuses form; large veins that drain blood from brain • epidural space and subdural space are potential spaces between dura mater and bones Skin of scalp Periosteum Bone of skull Periosteal layer Dura Meningeal layer mater Subdural space Arachnoid mater Subarachnoid space Arachnoid trabeculae Pia mater Cerebral cortex White matter Cranium Dura mater Fig. 15.5 Cranial Dura Septa • • • • Dural venous sinus (superior sagittal sinus) Inferior sagittal sinus folds of dura mater 4 partitions of cranial cavity stabilize brain falx cerebri Falx cerebri Tentorium cerebelli Straight sinus Transverse sinus Diaphragma sellae Confluence of sinuses Pituitary gland • largest dura septa • midsaggital plane • separates right and left cerebral hemispheres • anterior inferior attachment to crista galli of ethmoid • posterior inferior attachment to internal occipital crest • contains two dural venous sinuses: superior saggital sinus and inferior saggital sinus Sigmoid sinus Falx cerebelli Occipital sinus Dural venous sinus (superior sagittal sinus) Cranium Fig. 15.5 Cranial Dura Septa • falx cerebelli • separates right and left cerebellaral hemispheres • contains occipital sinus in posterior vertical border Dura mater Dural venous sinus (superior sagittal sinus) Falx cerebri Inferior sagittal sinus Tentorium cerebelli Straight sinus Transverse sinus Diaphragma sellae Confluence of sinuses Pituitary gland Sigmoid sinus Falx cerebelli Occipital sinus Occipital sinus Cranium Fig. 15.5 Cranial Dura Septa • tentorium cerebelli Dura mater Dural venous sinus (superior sagittal sinus) Falx cerebri Inferior sagittal sinus • horizontal fold of dura Tentorium mater cerebelli • separates occipital and Diaphragma temporal lobes from sellae cerebellum Pituitary • contains transverse sinuses gland in posterior border • anterior border has tentorial notch; brain stem passes through Straight sinus Transverse sinus Sigmoid sinus Falx cerebelli Occipital sinus Transverse sinus Cranium Fig. 15.5 Cranial Dura Septa • diaphragma sellae Dura mater Dural venous sinus (superior sagittal sinus) Falx cerebri Inferior sagittal sinus • smallest dura septa • form roof over sella turica of Tentorium cerebelli sphenoid bone • infundibulum passes Diaphragma through; pituitary gland sellae hangs from infundibulum Straight sinus Transverse sinus Confluence of sinuses Sigmoid sinus Falx cerebelli Occipital sinus Pituitary gland Copyright © McGraw-Hill Education. Permission required for reproduction or display. Fig. 15.5 Cranium Dura mater Dural venous sinus (superior sagittal sinus) Falx cerebri Inferior sagittal sinus Tentorium cerebelli Straight sinus Transverse sinus Diaphragma sellae Confluence of sinuses Pituitary gland Sigmoid sinus Falx cerebelli Occipital sinus Cranium Dura mater Falx cerebri Dural venous sinus (superior sagittal sinus) Inferior sagittal sinus Diaphragma sellae Pituitary gland Straight sinus Tentorium cerebelli Tentorial notch Transverse sinus Confluence of sinuses Falx cerebelli Occipital sinus Brainstem Midsagittal section © The McGraw-Hill Companies, Inc./Photos and Dissections by Christine Eckel Posterior view Fig. 15.6 Brain Ventricles • 4 cavities in brain, connected to each other and central canal of spinal cord • Make and contain cerebrospinal fluid Posterior Third ventricle Anterior Interventricular foramen Lateral ventricles Cerebral aqueduct Fourth ventricle Lateral aperture Median aperture Central canal of spinal cord (a) Lateral view Third ventricle Fourth entricle Posterior Anterior Interventricular foramen Lateral ventricles Cerebrum Lateral ventricle Interventricular foramen Third ventricle Cerebral aqueduct Cerebral aqueduct Fourth ventricle Lateral aperture Median aperture Central canal of spinal cord (a) Lateral view Central canal of spinal cord (b) Anterior view Cerebrospinal Fluid • clear, colorless liquid • bathes surfaces of CNS • brain floats in CSF, preventing it from being crushed under its own weight • cushions brain during sudden movements • transports nutrients and chemicals to brain; removes waste from brain • formed by choroid plexus in each ventricle Fig. 15.7 Corpus callosum Ependymal Longitudinal fissure cells Choroid plexus in lateral ventricles Capillary Pia mater Cavity of ventricle (a) Coronal section of the brain, close-up (b) Choroid plexus Choroid plexus • Blood plasma secreted through ependymal cells • ependymal cells secrete CSF • CSF circulates through ventricles, enters subarachnoid space, removed from subarachnoid space Fig. 15.8 Arachnoid Superior villus sagittal sinus Dura mater (meningeal layer) Arachnoid mater Subarachnoid space Pia mater CSF flow Arachnoid villi 5 Dural venous sinus (superior sagittal sinus) Pia mater Dura Choroid plexus mater (periosteal layer) Interventricular foramen 4 Venous fluid flow 1 (b) Arachnoid villus 1. CSF is produced by the choroid plexus in the ventricles. 2. CSF flows from the third ventricle through the cerebral aqueduct into the fourth ventricle. 3. CSF in the fourth ventricle flows into the subarachnoid space by passing through the paired lateral apertures or the single median aperture, and into the central canal of the spinal cord. CSF flow Cerebral aqueduct Lateral aperture Choroid plexus of fourth ventricle 2 3 Dura mater Median aperture Subarachnoid space Central canal of spinal cord 4. As the CSF flows through the subarachnoid space, it removes waste products and provides buoyancy to support the brain. 5. Excess CSF flows into arachnoid villi, then drains into the dural venous sinuses. The greater pressure on the CSF in the subarachnoid space ensures that CSF moves into the venous sinuses without permitting venous blood to enter the subarachnoid space. (a) Midsagittal section Blood-Brain Barrier • perivascular feet of astrocytes are external layer Astrocyte Nucleus Fig. 15.9 Perivascular feet • tight junctions between cells of capillaries prevent movement of unwanted materials Erythrocyte inside • continuous basement membrane is capillary 3rd layer • lipid-soluble compounds can diffuse through plasma membrane and enter brain (nicotine, alcohol, some anesthetics, etc.) Capillary Continuous basement membrane Tight junction between endothelial cells Nucleus of endothelial cell Cerebral Hemispheres Left cerebral Right cerebral hemisphere hemisphere Anterior Frontal lobes Parietal lobes Occipital lobes • Left and right hemispheres separated by longitudinal fissure along midsaggital plane Gyrus Sulcus • hemispheres almost completely separate • communication between hemispheres through tracts, bundles of axons Precentral gyrus Central sulcus • corpus callosum is largest Postcentral gyrus Longitudinal fissure Superior view Fig. 15.10 Posterior Cerebral Lobes Left cerebral Right cerebral hemisphere hemisphere Anterior Frontal lobes Parietal lobes Occipital lobes • five lobes per hemisphere • frontal lobe ends at central sulcus and lateral sulcus on inferior side • concerned with voluntary motor functions, concentration, verbal communication, decision making, planning, personality • precentral gyrus is mass of nervous tissue anterior to central sulcus • parietal • temporal • occipital • insula (not visible at surface) Gyrus Sulcus Precentral gyrus Central sulcus Postcentral gyrus Longitudinal fissure Superior view Posterior Cerebral Lobes Left cerebral Right cerebral hemisphere hemisphere Anterior Frontal lobes Parietal lobes Occipital lobes • five lobes per hemisphere • parietal lobe bordered by central sulcus, longitudinal fissure, and parieto-occipital sulcus • involved with general sensory functions (ex. evaluating shape and texture of objects being touched) • temporal lobe is inferior to lateral sulcus • involved with hearing and smell Gyrus Sulcus Precentral gyrus Central sulcus Postcentral gyrus Longitudinal fissure Superior view Posterior Copyright © McGraw-Hill Education. Permission required for reproduction or display. Cerebral Lobes Left cerebral Right cerebral hemisphere hemisphere Anterior Frontal lobes Parietal lobes Occipital lobes • five lobes per hemisphere • occipital lobe • resonsible for processing incoming visual information and storing visual memories • insula (not visible at surface) • deep to lateral sulcus • probably involved in interoceptive awareness, emotional responses, empathy, and interpretation of taste Gyrus Sulcus Precentral gyrus Central sulcus Postcentral gyrus Longitudinal fissure Superior view Posterior Fig. 15.11 Frontal lobe (retracted) Primary motor cortex (in precentral gyrus) Central sulcus Premotor cortex Parietal lobe Primary somatosensory cortex (in postcentral gyrus) Somatosensory association area Frontal eye field Motor speech area (Broca area) Parieto-occipital sulcus Wernicke area Insula Primary gustatory cortex Gnostic area Lateral sulcus Temporal lobe (retracted) Primary auditory cortex Auditory association area Primary olfactory cortex Occipital lobe Primary visual cortex Visual association area Primary motor cortex (within precentral gyrus) Trunk Hip Leg Foot Hip Knee Trunk Neck Primary somatosensory cortex (within postcentral gyrus) Toes Ankle Genitals Toes Pharynx Intra-abdominal Lateral Medial Primary somatosensory cortex Medial Lateral Primary motor cortex Fig. 15.12 How do we learn what different parts of the brain do? • Study people who have had brain injuries • Ex. Phineas Gage • railroad construction worker • injured Sept. 1848: tamping rod (13 pounds, 3.5 feet long) went through his head Page 457 Copyright © McGraw-Hill Education. Permission required for reproduction or display. Computer reconstructions of Phineas Gage’s skull injury. Dornsife Neuroscience Imaging Center and Brain and Creativity Institute, University of Southern California. H. Damasio et al., “The return of Phineas Gage: Clues about the brain from the skull of a famous patient,” Science, 264(5162):1102-1105 © 1994 American Association for the Advancement of Science • Gage’s personality changed after he recuperated • became irreverent and profane, incapable of making decisions • Research into his case led to understanding of working of frontal lobe Other cases • Rep. Gabrielle Giffords • Shot while talking to constituents • Bullet entered left side of forehead, exited at back of left side of head • After recovery, can understand language, but has difficulty speaking clearly • Dr. John Hamdi, retired professor of chemistry • suffered a skull fracture during a skiing accident, then a stroke • paralysis on the right side of the body • inability to speak properly • took great effort to say “I want water.” • “Dr. Hamdi could convey the general sense of what he was trying to say, but his speech was slow and effortful, conveyed in a flat monotone, filled with pauses, and almost completely devoid of [grammatical structure].” • Writing also had bad grammatical structure • Could sing perfectly well, without missing any words From The Tell-Tale Brain by V.S. Ramachandran Fig. 15.11 Frontal lobe (retracted) Primary motor cortex (in precentral gyrus) Central sulcus Premotor cortex Parietal lobe Primary somatosensory cortex (in postcentral gyrus) Somatosensory association area Frontal eye field Motor speech area (Broca area) Parieto-occipital sulcus Wernicke area Insula Primary gustatory cortex Gnostic area Lateral sulcus Temporal lobe (retracted) Primary auditory cortex Auditory association area Primary olfactory cortex Occipital lobe Primary visual cortex Visual association area Functional areas of the cerebrum • Primary motor cortex (AKA somatic motor area) • controls voluntary skeletal muscle activity • neurons cross to the opposite side of brainstem and spinal cord • left primary motor cortex controls right side of body • information processed in premotor cortex (AKA somatic motor association area) anterior to primary motor cortex • coordinates learned, skilled motor activities (moving eyes while reading) • Frontal eye field • superior surface of middle frontal gyrus • control and regulate eye movement for reading, and coordinating binocular vision • Sometimes considered part of motor cortex Page 469 Copyright © McGraw-Hill Education. Permission required for reproduction or display. Frontal Lobotomy • Introduced as “cure” for mental disturbances, especially violence • 1936 by Portuguese neurologist Egas Moniz • no existing treatments except heavy sedation, physical restraint • Destroyed connections between prefrontal areas and rest of brain • Moniz earned Nobel prize in 1949 • Procedure became overused, had serious side effects; was not effective on many patients Prefrontal cortex Needle probe Orbit Functional areas of the cerebrum • Motor speech area (AKA Broca area) • interolateral portion of left frontal lobe • responsible for controlling muscular movements for speaking • Wernicke area • overlaps parietal and occipital lobes on left hemisphere • association area involved in recognizing, understanding and comprehending spoken or written language Functional areas of the cerebrum • Primary somatosensory cortex • located in postcentral gyrus of parietal lobes • receives somatic sensory information (touch, pressure, pain, temperature) somatosensory association area • Somatosensory association area located posterior to somatosensory cortex • interprets sensory information • integrates sensations to determine texture, temperature, pressure, shape Functional areas of the cerebrum • Primary visual cortex • receives and processes incoming visual information • Primary auditory cortex • receives and processes incoming auditory information • Primary gustatory cortex • located in insula • processes taste information • Primary olfactory cortex • provides conscious awareness of smells somatosensory association area Functional areas of the cerebrum • Visual association area • located in occipital lobe • surrounds primary visual area • enables processing of visual information • analyze color, movement, and form to identify what it is we are seeing • integrates disparate shapes and colors into a single things (such as a face) visual cortex visual association area Functional areas of the cerebrum • Gnostic area • covers regions of parietal occipital, and temporal lobes • integrates sensory, visual, and auditory information • provides comprehensive understanding of complex sets of stimuli Fig. 15.11 Frontal lobe (retracted) Primary motor cortex (in precentral gyrus) Central sulcus Premotor cortex Parietal lobe Primary somatosensory cortex (in postcentral gyrus) Somatosensory association area Frontal eye field Motor speech area (Broca area) Parieto-occipital sulcus Wernicke area Insula Primary gustatory cortex Gnostic area Lateral sulcus Temporal lobe (retracted) Primary auditory cortex Auditory association area Primary olfactory cortex Occipital lobe Primary visual cortex Visual association area What does that tell us? • If someone can understand language but not speak properly (Gabby Giffords and Dr. Hamdi) where is the damage? • What areas are not damaged? Fig. 15.13 Arcuate fibers (a) Sagittal view Association Tracts Corpus callosum Longitudinal fasciculi Parietal lobe Longitudinal fissure Cortex Frontal lobe Temporal lobe Occipital lobe • groups of axons with similar function • connect different regions of same hemisphere Commissural tracts (in corpus callosum) Cerebral nuclei Lateral ventricle Thalamus Lateral sulcus Third ventricle Projection tracts Pons Decussation in pyramids Medulla oblongata (b) Coronal section Fig. 15.13 Arcuate fibers (a) Sagittal view Corpus callosum Longitudinal fasciculi Parietal lobe • Arcuate fibers are short and connect neighboring gyri in same hemisphere • ex. tract connects primary motor cortex to motor association area Frontal lobe Temporal lobe Occipital lobe • Longer association tracts are composed of longitudinal fasciculi; connect gyri in different lobes of same hemisphere • ex. tract connects Wernicke area to motor speech (Broca) area Fig. 15.13 • Commissural tracts connect two hemispheres • commissure = axonal bridge • ex. Corpus callosum • Projection tracts link cerebral cortex to inferior brain regions and spinal cord • internal capsule is group of axons passing to and from cortex between cerebral nuclei (paired, irregular masses of gray matter) Longitudinal fissure Cortex Commissural tracts (in corpus callosum) Cerebral nuclei Lateral ventricle Thalamus Lateral sulcus Third ventricle Projection tracts Pons Decussation in pyramids Medulla oblongata (b) Coronal section Fig. 15.14 • Caudate nucleus • produce pattern and rhythm of arms and legs in walking • amygdaloid body • at tail of caudate nucleus • emotions, behavior, moods Cerebral nuclei Caudate nucleus Putamen Globus pallidus Lentiform nucleus Claustrum Amygdaloid body Corpus striatum Fig. 15.14 • putamen and globus pallidus • positioned between insula and and diencephalon • together, form lentiform nucleus • controls muscular movement at the subconscious level • claustrum • processes visual subconscious information Cerebral nuclei Caudate nucleus Putamen Globus pallidus Lentiform nucleus Claustrum Amygdaloid body Corpus striatum Fig. 15.15 Corpus callosum Diencephalon Septum pellucidum Fornix Choroid plexus in third ventricle Interthalamic adhesion Habenular nucleus Pineal gland Posterior commissure Tectal plate Anterior commissure Cerebral aqueduct Fourth ventricle Midsagittal section Epithalamus Diencephalon • Sandwiched between inferior regions of cerebral hemispheres • Epithalamus • includes pineal gland (secretes melatonin, regulates circadian rhythm) • habenular nuclei relays signals from limbic system Diencephalon • Thalamus • made of 12 thalamic nuclei • axons from nuclei project into regions of cerebral cortex • impulses from all conscious senses except olfaction converge on thalamus, relayed to the primary somatosensory cortex Diencephalon • Hypothalamus • Master control of autonomic nervous system and endocrine system (hormones) • Regulation of body temperature • control of emotional behavior, and food and water intake • Regulation of circadian (sleep-wake) rhythms Copyright © McGraw-Hill Education. Permission required for reproduction or display. Fig. 15.17 Nuclei of Hypothalamus • Mammillary body processes smell • suprachiasmic nucleus regulates sleep-wake cycle • Arcuate nucleus regulates appetite, release of growth hormone • Pituitary gland releases hormones based on signal from hypothalamus Mammillary body Suprachiasmatic nucleus Arcuate nucleus Optic chiasm Infundibulum Posterior pituitary Anterior pituitary Midsagittal section of hypothalamus Fig. 15.18 Diencephalon Thalamus Pineal gland Superior colliculi Thalamus Diencephalon Optic chiasm Infundibulum Mammillary bodies Tectal Midbrain plate Inferior colliculi Optic tract Cerebral peduncle Superior cerebellar peduncle Midbrain Optic tract Middle cerebellar peduncle Pons Cranial nerves Inferior cerebellar peduncle Pons Brainstem Pyramids Olive Decussation of the pyramids Medulla oblongata Medulla oblongata Fourth ventricle Olive Nucleus cuneatus Nucleus gracilis (b) Posterolateral view (a) Anterior view Fig. 15.18 Midbrain • Cerebral aqueduct extends through midbrain, connects 3rd and 4th ventricles • periaqueductal gray matter surrounds aqueduct • Contains nuclei of oculomotor nerve (CN III) and trochlear nerve (CN IV) • Cerebral peduncles = motor tracts • somatic motor axons pass through from primary motor cortex to spinal cord • superior cerebellar peduncles connect cerebellum to midbrain (stop here) Diencephalon Thalamus Pineal gland Superior colliculi Tectal Midbrain plate Inferior colliculi Optic tract Cerebral peduncle Superior cerebellar peduncle Middle cerebellar peduncle Pons Inferior cerebellar peduncle Medulla oblongata Fourth ventricle Olive Nucleus cuneatus Nucleus gracilis (b) Posterolateral view Fig. 15.19 Midbrain Posterior • Tegmentum integrates information from cerebrum and cerebellum Superior colliculus Tectum Cerebral aqueduct Tegmentum Reticular formation Periaqueductal gray matter Nucleus for oculomotor nerve Medial lemniscus • controls involuntary movement of erector spinae muscles • contains red nuclei and reticular formation Red nucleus Substantia nigra • substantia nigra houses clusters of neurons that produce dopamine (neurotransmitter) • affects movement, emotional response, ability to experience pleasure and pain • degeneration causes Parkinson’s disease Oculomotor nerve (CN III) Cerebral peduncle Anterior Midbrain, cross-sectional view Page 470 Copyright © McGraw-Hill Education. Permission required for reproduction or display. Boxer Muhammad Ali and actor Michael J. Fox are two famous Parkinson disease patients. © Kenneth Lambert/AP Photo Fig. 15.18 Midbrain Diencephalon Thalamus Pineal gland • Tectum contains sensory nuclei • superior colliculi are visual reflex center; help visually track moving objects and control reflexes in response to visual stimulus • inferior colliculi are auditory reflex centers; control reflexive response to sound • four colliculi together called tectal plate Superior colliculi Tectal Midbrain plate Inferior colliculi Optic tract Cerebral peduncle Superior cerebellar peduncle Middle cerebellar peduncle Pons Inferior cerebellar peduncle Medulla oblongata Fourth ventricle Olive Nucleus cuneatus Nucleus gracilis (b) Posterolateral view Fig. 15.18 Diencephalon Thalamus Pineal gland Superior colliculi Thalamus Diencephalon Optic chiasm Infundibulum Mammillary bodies Tectal Midbrain plate Inferior colliculi Optic tract Cerebral peduncle Superior cerebellar peduncle Midbrain Optic tract Pons Cranial nerves Inferior cerebellar peduncle Brainstem Pyramids Olive Decussation of the pyramids Medulla oblongata Middle cerebellar peduncle Pons Medulla oblongata Fourth ventricle Olive Nucleus cuneatus Nucleus gracilis (b) Posterolateral view (a) Anterior view Fig. 15.18 Pons • Contains sensory and motor tracts that connect brain to spinal cord • middle cerebellar peduncles connect pons to cerebellum • helps regulate breathing, along with pontine respiratory center Diencephalon Thalamus Pineal gland Superior colliculi Tectal Midbrain plate Inferior colliculi Optic tract Cerebral peduncle Superior cerebellar peduncle Middle cerebellar peduncle Pons Inferior cerebellar peduncle Medulla oblongata Fourth ventricle Olive Nucleus cuneatus Nucleus gracilis (b) Posterolateral view Fig. 15.20 Pons • Superior olivary nucleus receives auditory input, helps determine sound localization Pontine respiratory center Pons Fourth ventricle Superior olivary nucleus Medulla oblongata Olive Inferior olivary nucleus Reticular formation (a) Longitudinal section (cut-away) Fig. 15.20 Pons • Several sensory and motor cranial nerve nuclei housed in pons • Trigeminal main sensory nucleus and trigeminal motor nucleus (CN V) • Abducens (CN VI) • Facial (CN VII) Superior cerebellar peduncle Posterior Fourth ventricle Middle cerebellar peduncle Trigeminal main sensory nucleus Trigeminal motor nucleus Reticular formation Medial lemniscus Superior olivary nuclei Trigeminal nerve Fibers of pyramidal tract Pontine nuclei Anterior (b) Pons, cross-sectional view Fig. 15.21 Medulla oblongata • Continuous with spinal cord • All communication between brain and spinal cord goes through medulla • Pyramids hold corticospinal (pyramidal) tracts • some cross to opposite side of brain at decussation of the pyramids • Olives relay sensory impulses to cerebellum, especially proprioceptive information Posterior Nucleus of vagus nerve (CN X) Inferior olivary nucleus Fourth ventricle Nuclei of vestibulocochlear nerve (CN VIII) Nucleus of hypoglossal nerve (CN XII) Vagus nerve (CN X) Medial lemniscus Olive Pyramid Hypoglossal nerve (CN XII) Decussation of pyramids Lateral corticospinal tract axons Spinal nerve C1 Anterior corticospinal tract axons Spinal cord Anterior (a) Medulla oblongata, cross-sectional view Fig. 15.21 Medulla oblongata • Inferior cerebellar peduncles connect medulla to cerebellum Posterior Nucleus of vagus nerve (CN X) Inferior olivary nucleus Inferior cerebellar peduncle Fourth ventricle Nuclei of vestibulocochlear nerve (CN VIII) Nucleus of hypoglossal nerve (CN XII) Vagus nerve (CN X) Medial lemniscus Olive Pyramid Hypoglossal nerve (CN XII) Decussation of pyramids Lateral corticospinal tract axons Spinal nerve C1 Anterior corticospinal tract axons Spinal cord Anterior (a) Medulla oblongata, cross-sectional view Fig. 15.21 Medulla oblongata • Cranial nerve nuclei • Vestibulocochlear (CN VIII) • Glossopharyngeal (CN IX) • Vagus (CN X) • Accessory (CN XI) • Hypoglossal (CN XII) Posterior Nucleus of vagus nerve (CN X) Inferior olivary nucleus Fourth ventricle Nuclei of vestibulocochlear nerve (CN VIII) Nucleus of hypoglossal nerve (CN XII) Vagus nerve (CN X) Medial lemniscus Olive Pyramid Hypoglossal nerve (CN XII) Decussation of pyramids Lateral corticospinal tract axons Spinal nerve C1 Anterior corticospinal tract axons Spinal cord Anterior (a) Medulla oblongata, cross-sectional view Fig. 15.21 Medulla oblongata • Nucleus cuneatus and nucleus gracilis relay sensory information to thalamus • Respiratory center helps control breathing • cardiac and vasomotor centers control heartbeat and blood pressure Inferior olivary nucleus Cardiac and vasomotor centers Ventral respiratory group Dorsal respiratory group Respiratory center Nucleus cuneatus Pyramid Anterior Nucleus gracilis Posterior Reticular formation (b) Medulla oblongata, lateral view Fig. 15.22 Cerebellum • convoluted surface covered by cerebellar cortex • folia = folds in cerebellum • arbor vitae = white matter • functions: • fine-tunes and coordinates skeletal muscle movements • enables precise, smooth movements • maintains posture and equilibrium Cerebral aqueduct Tectal plate White matter (arbor vitae) Midbrain Fourth ventricle Pons Medulla oblongata Folia Gray matter (a) Midsagittal section Fig. 15.22 Cerebellum • two cerebellar hemispheres • anterior lobe and posterior lobe separated by primary fissure • vermis is narrow band of cortex • separates hemispheres • helps maintain balance Anterior Cerebellar hemisphere Primary fissure Anterior lobe Vermis Posterior lobe Folia Posterior (b) Cerebellum, superior view Fig. 15.23 Corpus callosum Anterior commissure Components of the limbic system Cingulate gyrus Limbic System • Includes structures from cerebrum and diencephalon • Processes and experiences emotion • motivation • emotion • emotional memory Fornix Anterior thalamic nucleus Septal nucleus Mammillary body Hippocampus Amygdaloid body Parahippocampal gyrus Olfactory tract Olfactory bulb Midsagittal section Fig. 15.23 Corpus callosum Anterior commissure Components of the limbic system Cingulate gyrus Limbic System • Cingulate gyrus = cerebral cortex within longitudinal fissure • receives input from rest of limbic system, focuses attention Fornix Anterior thalamic nucleus Septal nucleus Mammillary body Hippocampus Amygdaloid body Parahippocampal gyrus Olfactory tract Olfactory bulb Midsagittal section Fig. 15.23 Corpus callosum Anterior commissure Components of the limbic system Cingulate gyrus Limbic System Fornix • Parahippocampal gyrus = cortical tissue in temporal lobe Anterior thalamic nucleus Septal nucleus Mammillary body • works with hippocampus • Hippocampus stores memories, forms long-term memories • Fornix connects hippocampus with other limbic structures Hippocampus Amygdaloid body Parahippocampal gyrus Olfactory tract Olfactory bulb Midsagittal section Fig. 15.23 Corpus callosum Anterior commissure Components of the limbic system Cingulate gyrus Limbic System • Amygdaloid body involved with emotion, especially fear • codes and stores memories based on emotion • olfactory bulbs, tracts, and cortex process odor sensation Fornix Anterior thalamic nucleus Septal nucleus Mammillary body Hippocampus Amygdaloid body Parahippocampal gyrus Olfactory tract Olfactory bulb Midsagittal section Fig. 15.24 Cranial nerves Cranial Nerves Olfactory bulb, termination of olfactory nerve (CN I) Olfactory tract Optic chiasm Optic nerve (CN II) Infundibulum Optic tract Oculomotor nerve (CN III) Trochlear nerve (CN IV) Pons Trigeminal nerve (CN V) Abducens nerve (CN VI) Facial nerve (CN VII) Vestibulocochlear nerve (CN VIII) Medulla oblongata Glossopharyngeal nerve (CN IX) Vagus nerve (CN X) Hypoglossal nerve (CN XII) Accessory nerve (CN XI) Spinal cord • Originate on inferior surface of brain • Part of peripheral nervous system (PNS) • Numbered starting with most anterior Fig. 15.24 Cranial nerves Cranial Nerves Olfactory bulb, termination of olfactory nerve (CN I) Olfactory tract Optic chiasm Optic nerve (CN II) Infundibulum Optic tract Oculomotor nerve (CN III) Trochlear nerve (CN IV) Pons Trigeminal nerve (CN V) Abducens nerve (CN VI) Facial nerve (CN VII) Vestibulocochlear nerve (CN VIII) Medulla oblongata Glossopharyngeal nerve (CN IX) Vagus nerve (CN X) Hypoglossal nerve (CN XII) Accessory nerve (CN XI) Spinal cord • Some are motor only • • • • • oculomotor (CN III) trochlear (CN IV) abducens (CN VI) accessory (CN II) hypoglossal (CN XII) • Some are sensory only • olfactory (CN I) • optic (CN II) • vestibulocochlear (CN VIII) • Some carry both signals • • • • trigeminal (CN V) facial (CN VII) glossopharyngeal (CN IX) vagus (CN X) Fig. 15.24 Cranial nerves Cranial Nerves Olfactory bulb, termination of olfactory nerve (CN I) • Mnemonics Olfactory tract Optic chiasm Optic nerve (CN II) Infundibulum Optic tract Oculomotor nerve (CN III) Trochlear nerve (CN IV) Pons Trigeminal nerve (CN V) Abducens nerve (CN VI) Facial nerve (CN VII) Vestibulocochlear nerve (CN VIII) Medulla oblongata Glossopharyngeal nerve (CN IX) Vagus nerve (CN X) Accessory nerve (CN XI) Hypoglossal nerve (CN XII) Spinal cord • • • • • • • • • • • • On Occasion Our Trusty Truck Acts Funny Very Good Vehicle Any How • for function: • • • • • • • • • • • • Oh Once One Takes The Anatomy Final Very Good Vacations Are Heavenly • • • • • • • • • • • • Some Say Marry Money But My Brother Says Big Brains Matter More Table 15.7 Table 15.8a Table 15.8a Table 15.8a-4 Copyright © McGraw-Hill Education. Permission required for reproduction or display. Eye Optic nerve (CN II) Optic chiasm Optic tract Lateral geniculate nucleus of thalamus Optic projection axons Visual cortex (in occipital lobe) Table 15.8b Table 15.8b Table 15.8c CN V Trigeminal Nerve Ophthalmic branch (V1) Trigeminal nerve Ophthalmic branch (V1) Maxillary branch (V2) Mandibular branch (V3) Sensory distribution of trigeminal nerve Trigeminal ganglion Maxillary branch (V2) Trigeminal nerve (CN V) Superior alveolar nerves Mandibular branch (V3) To muscles of mastication Chorda tympani (from facial nerve) Lingual nerve Inferior alveolar nerve Submandibular ganglion To mylohyoid muscle Mental nerve Primary functions: • controls muscles of mastication • sensation from face Table 15.8d Table 15.8d Table 15.8d-3 CN VII Facial Nerve Temporal branch Geniculate ganglion Lacrimal gland Greater petrosal nerve Pons Facial nerve (CN VII) Pterygopalatine ganglion Zygomatic branch Posterior auricular branch Stylomastoid foramen Chorda tympani nerve (traveling to mandibular branch of CN V) Parotid gland Buccal branch Branch of lingual nerve of CN V Submandibular ganglion Mandibular branch Cervical branch Primary functions: • controls muscles of facial expression • sensation of taste from anterior end of tongue Table 15.8e Table 15.8e Table 15.8f Table 15.8f-2 CN X Vagus Nerve Primary functions: • Visceral sensory information from most internal organs • Control of pharynx and larynx muscles • Control of smooth and cardiac muscle • Innervates glands, lungs, etc. Superior ganglion Inferior ganglion Pharyngeal branch Superior laryngeal nerve Internal laryngeal nerve External laryngeal nerve Right vagus nerve (CN X) Left vagus nerve (CN X) Right recurrent laryngeal branch Left recurrent laryngeal branch Cardiac branch Lung Pulmonary plexus Heart Anterior vagal trunk (formed from left vagus) Kidney Spleen Liver Stomach Pancreas Small intestine Ascending colon Appendix Table 15.8g Table 15.8g