Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
2011-04-04 Antibiotika PÅL 2011 copyright Per-Åke Lundberg 2011 1 copyright Per-Åke Lundberg 2011 2 1 2011-04-04 copyright Per-Åke Lundberg 2011 3 Verkningsmekanismer Antibakteriella läkemedel Hämning av: Cellväggssyntes Proteinsyntes Nukleinsyrasyntes copyright Per-Åke Lundberg 2011 4 2 2011-04-04 Normalflora Bakterier som vi bär på utan att bli sjuka! På huden I munhålan I tunn/tjocktarm Staphylococcus epidermis Bacteroides Bacteroides Staphylococcus aureus Streptokocker Clostridium perfringens Propionibacterium acnes Pneumokocker Clostridium difficile Meningokocker Enterokocker Escherichia coli copyright Per-Åke Lundberg 2011 5 Grampositiva bakterier och infektioner – Exempel Kocker Stavar Enterokocker UVI Pneumokocker Lunginflammation, öroninflammation, bihåleinflammation Klostridier Mykobakterier Stelkramp Tuberkulos Sårinfektion Blodinfektion, rosfeber, halsfluss, scharlakansfeber Stafylokocker Streptokocker G+ copyright Per-Åke Lundberg 2011 6 3 2011-04-04 Gramnegativa bakterier och infektioner – Exempel Kocker Stavar Neisseria Gonorré, meningit Moraxella catharralisÖroninflammation, bihåleinflammation Escherichia coli Shigella Salmonella H.influenzae Klebsiella Proteus Pseudomonas aeruginosa UVI Dysenteri Tyfoid Öroninflammation UVI, lunginflammation UVI, sårinfektion UVI, sårinfektion G- copyright Per-Åke Lundberg 2011 7 Definitions • • An antibiotic is a substance produced by a microorganism, which, in minute amounts, is able to inhibit other microorganisms. Therefore, this term is properly applied only to compounds directly derived from microorganisms. An antibacterial agent is any compound – natural, synthetic or semisynthetic – that is clinically useful in the treatment of bacterial infections. copyright Per-Åke Lundberg 2011 8 4 2011-04-04 När började det….? Kloramfenikol Glycylcykliner Tetracykliner Streptograminer Aminoglykosider Makrolider Kinoloner Sulfonamider Penicilliner Glykopeptider Linkosamider 1930 1940 1950 1960 Cykliska lipopeptider Trimetoprim 1970 Oxazolidinoner 2000 copyright Per-Åke Lundberg 2011 9 Alexander Fleming copyright Per-Åke Lundberg 2011 10 5 2011-04-04 copyright Per-Åke Lundberg 2011 11 copyright Per-Åke Lundberg 2011 12 Chain & Florey : Penicillinet kan användas kliniskt ! 6 2011-04-04 Patienter med svår lung-inflammation Penicillinet (1941) ökade chansen att överleva från 10% till 90% Det behövs att 1,25 personer får penicillin för att rädda ett liv ! copyright Per-Åke Lundberg 2011 13 copyright Per-Åke Lundberg 2011 14 7 2011-04-04 Bacteriostatic vs. bactericidal • • • Bacteriostatic agents (ex. sulfonamides, chloramphenicol) inhibit bacterial growth. Bactericidal agents (ex. penicillin, streptomycin) significantly reduce (99.9%) the number of viable bacteria in the culture (killing effect). Bactericidal effect in vivo is obtained in cooperation with host’s defense mecha-nisms. copyright Per-Åke Lundberg 2011 15 Kemoterapeutika / Antibiotika . Förvärvande av infektion på sjukhus betecknas nosokomial infektion (efter 48 timmar på sjukhus); infektion förvärvad utanför sjukhus är samhällsförvärvad infektion. MIC MBC Smalspektrum / bredspektrum Ekoskugga copyright Per-Åke Lundberg 2011 16 8 2011-04-04 Vad är MIC? MBC ? Tiden över MIC styr effekten Bild: Kjell Ström Production copyright Per-Åke Lundberg 2011 17 SIR = tolkning av resistensbestämningen • S = Känslig • Infektionen kan förväntas svara på behandling med detta antibiotikum vid dosering rekommenderad för denna typ av infektion. Bakterien har inga påvisade resistensmekanismer mot medlet • I = Intermediär • Behandlingseffekten med detta medel är osäker. Bakterien har förvärvat låggradig resistens mot medlet eller har naturligt lägre känslighet för medlet. • R = Resistent • Klinisk effekt av behandling med detta medel är osannolik. Bakterien har förvärvat betydelsefulla resistensmekanismer eller är naturligt resistent mot medlet. copyright Per-Åke Lundberg 2011 18 9 2011-04-04 Tid över MIC Exempel PcV Dosering T>MIC vid MIC=0.03 mg/l T>MIC vid MIC=0.5 mg/l 1gx2 25 % 8% 2gx2 29 % 13 % 1gx3 38 % 13 % 2gx3 44 % 19 % 1gx4 50 % 17 % Källa: RAF copyright Per-Åke Lundberg 2011 19 Att dosera antibiotika... Dosering och behandlingstid Bild: Kjell Ström Production copyright Per-Åke Lundberg 2011 20 10 2011-04-04 Postantibiotisk effekt Bild: Kjell Ström Production copyright Per-Åke Lundberg 2011 21 Skillnad bakteriecell jmf humancell • • • • Cellvägg/cellmembran (peptidoglykan) Folsyrasyntes (DHPS) Ribosomen (subenheter) DNA-gyras copyright Per-Åke Lundberg 2011 22 11 2011-04-04 copyright Per-Åke Lundberg 2011 23 Modes of Antimicrobial Action copyright Per-Åke Lundberg 2011 24 12 2011-04-04 INHIBITOR OF PEPTIDOGLYCAN SYNTHESIS • Nearly all bacteria posses peptidoglycan in their cell walls, but this macromolecule is absent from mammalian cells selective toxicity copyright Per-Åke Lundberg 2011 25 Penicillins • Vary in – Resistance to gastric acid – Oral bioavilability – Core Structure of β lactam Antibiotics copyright Per-Åke Lundberg 2011 26 13 2011-04-04 Mechanism of Action of Penicillins • Bactericidal • Interfere with bacterial cell wall synthesis – Penicillin-binding proteins (PBPs) – Inactivation of transpeptidases • Prevent cross–linking of peptidoglycan – Activation of autolytic enzymes • Causes lesions in bacterial cell wall • Time-dependent killing action copyright Per-Åke Lundberg 2011 27 Inhibition of Cell Wall Synthesis copyright Per-Åke Lundberg 2011 28 14 2011-04-04 Clinical Uses • Narrow Spectrum Penicillinase-suceptible agents: • Penicillin G: prototype • Therapeutic use •Common streptococci, meningococci, grampositive bacilli and spirochetes • Drug of choice for syphilis; not longer for gonorrhea • Penicillin V: oropharyngeal infections copyright Per-Åke Lundberg 2011 29 Very Narrow Spectrum penicillinase penicillinase-resistant Drugs • β-lactamase Resistant • Methicillin, • prototype, rarely use due to nephrotoxicity potential • Primary use: staphylococcal infections • Nafcillin • Relatively acid stable but poorly absorbed copyright Per-Åke Lundberg 2011 30 15 2011-04-04 Wider spectrum Penicillinase Penicillinase--susceptible drugs • Amino-penicillins: Ampicillin and Amoxicillin • Wider spectrum of activity than penicillin G • Bactericidal for both gram-positive and gram-negative bacilli • Therapeutic Indications: • Upper respiratory infections : sinusitis, otitis media, acute exacerbations of chronic bronchitis • Urinary tract infections (UTIs) • Meningitis (N. meningitidis) Enterococci;Listeria monocytogenes;Escherichia coli;Haemophilus influenzae;Moraxella catarrahalis • ampicillin is synergistic with amynoglycosides in Enterococcal and listeria infections copyright Per-Åke Lundberg 2011 31 Adverse effects of Penicillins • Hypersensitivity reactions • Urticaria, severe pruritus, fever, joint swelling, hemolytic anemia, nephritis, and anaphylaxis – Ampicillin- high incidence of skin rashes • Diarrhea and nausea: the intestinal flora is affected with oral penicillins – Overgrowth of yeast and gram positive bacteria – Pseudomembranous colitis • Neurotoxicity: epileptic patients at risk copyright Per-Åke Lundberg 2011 32 16 2011-04-04 Penicillinallergi Reaktion Tid efter behandlingsstart Åtgärd Utslag utan klåda (exantem) Kan komma snabbt Ingen (fortsatt behandling) Utslag med klåda alt. som sprids alt. + andra allergisymtom 2-3 dagar om man tidigare fått pc, annars 714 dagar Avbruten kur. Läkarkontakt. Provokationstest. Testdos innan ny pcbehandling. Anafylaktisk chock Inom 1 timme vid p.o dos, snabbare vid i.v. (Patienten måste ha haft pc tidigare.) Akutvård. Alla betalaktamer kontraindicerade. copyright Per-Åke Lundberg 2011 33 Mechanism of Resistance • Hydrolysis of the beta-lactam ring results in loss of antibacterial activity – Formation of beta-lactamases (penicillinases) • Most staphylococci • Many Gram-negative organisms – Inhibition of penicillinases • Clavulanic acid copyright Per-Åke Lundberg 2011 34 17 2011-04-04 Mechanism of Resistance • Formation of β-lactamases (penicillinases) • Staphylococcus • E. coli and H. influenza • Structural changes in penicillinbinding proteins (PBPs) • Responsible for methicillinresistance in staphylococci and penicillin G in pneumococci • Structural changes in porins • Resistance in P. aeruginosa • Changes in the porin structure in copyright Per-Åke Lundberg 2011 the outer cell wall membrane 35 Beta-lactam antibiotika Penicilliner Cephalosporiner S R O S R N N O COOH COOH Carbapenemer Monobactamer C R R R O N COOH Bredspekterum, verkar också på anaerobe, beta-lactamase prod. och på Pseudomonas O N OSO3 bara effekt på Gram-negativa bakterier copyright Per-Åke Lundberg 2011 36 18 2011-04-04 Inhibitors of Cell Wall Synthesis β-Lactams • Penicillins • Cephalosporins • Carbapenems • Monobactams Polypeptides • Vancomycin • Bacitracin • Fosfomycin copyright Per-Åke Lundberg 2011 37 Cephalosporins • Cephalosporins are among the most frequently prescribed class of antibiotics. • They are structurally and pharmacologically related to the penicillins. • They are less susceptible to penicillinases produced by staphylococcus copyright Per-Åke Lundberg 2011 38 19 2011-04-04 Cephalosporins • Cephalosporins are bactericidal agents and have the same mode of action as other beta-lactam antibiotics bind to PBP’s on bacterial cell membrane to inhibit the synthesis of the peptidoglycan layer of bacterial cell walls(such as penicillins). • Good distribution throughout the body • CSF penetration • pneumococci, meningococci, H. influenza • Tissue penetration including bone copyright Per-Åke Lundberg 2011 Cephalosporin Type First generation Cefazolin, Cephalexin Second Generation Cefaclor, Cefamandole, Cefoxitin Third Generation Cefotaxime, Ceftazidime, Ceftriaxone Fourth Generation Cefepime, Cefpirome 39 Spectrum Narrow spectrum similar to narrow spectrum penicillins; sensitive to β-lactamases Increased activity toward gramnegative organisms; increased stability Even broader in spectrum and more resistant to β-lactamases Gram-positive and gram-negative activity (P. aeruginosa); includes gram-negative and multiple-drug resistance patternsMany can cross blood brain barrier and are effective in meningitis copyright Per-Åke Lundberg 2011 40 20 2011-04-04 Adverse effects of Cephalosporins • Hypersensitivity • avoided or used with care in patients allergic to penicillins • Local pain after IM injection and thrombophlebitis after IV administration • Increased nephrotoxicity when administered together with aminoglycoside • Acetaldehyde accumulation – disulfiram-like effect with cefamandole and cefotetan (second-generation) or cefoperazone (thirdgeneration) • Bleeding – antivitamin K effects with cefotetan or cefoperazone copyright Per-Åke Lundberg 2011 41 COMPOUNDS THAT INHIBIT MEMBRANE INTEGRITY Polymixins : • The bactericidal activity results from their interaction with the bacterial cytoplasmic membrane modify the structure which disturb the active transport of some molecules through it. • Membranes containing the phospholipid phosphatidyl ethanolamine (in Gram negative bacteria) are sensitive to polymixin. • They also have affinity to mammalian membranes, but bind less readily. • orally in enteritis; parenterally in urinary tract infections. • They don’t penetrate the blood-brain barrier (not efficient in meningitis). • Toxicity: nephrotoxic, neurotoxic. copyright Per-Åke Lundberg 2011 42 21 2011-04-04 Other β-lactam Antibiotics Carbapenems Monobactams copyright Per-Åke Lundberg 2011 43 copyright Per-Åke Lundberg 2011 44 22 2011-04-04 Other antibiotics inhibitors of cell wall synthesis • Vancomycin (o,p) • β-lactamase-resistant gram-positive bacteria • Prevents polymerization of linear peptidoglycan; block incorporation of new subunits in the peptidoglycan molecule. •first choice antibiotic in infections produced by methicillin resistant staphylococci (MRSA) and penicillinase producing enterococci. • Slow IV injection •Adverse effects: •phlebitis; •chills and fever •“Red man/red neck syndrome” Sudden redness that spreads over the upper body and neck and is due to intravenous vancomycin copyright Per-Åke Lundberg 2011 45 Other antibiotics inhibitors of cell wall synthesis • Bacitracin • Inhibits peptidoglycan synthesis by binding to a lipid carrier that transports cell wall precursors; • Wide variety of gram-positive organisms • Restricted to topical application is nephrotoxic and ototoxic when given parenterally; copyright Per-Åke Lundberg 2011 46 23 2011-04-04 Other antibiotics inhibitors of cell wall synthesis •Fosfomycin •Antimetabolite inhibitor inactivating the bacterial transferase • Effective against gram-negative bacteria that infect the urinary tract • May be synergistic with beta-lactam and quinolone antibiotics in specific infections copyright Per-Åke Lundberg 2011 47 Other inhibitors of cell wall synthesis • Cycloserine: inhibits incorporation of Dalanine into an oligopeptide in the cytoplasm. • An antibiotic effective against Mycobacterium tuberculosis. •For the treatment of tuberculosis, it is classified as a second line drug •its use is only considered if one or more first line drugs cannot be used. • Potential neurotoxicity: tremors. seizures, psychosis copyright Per-Åke Lundberg 2011 48 24 2011-04-04 Other inhibitors of cell wall synthesis • Daptomycin • A novel lipopeptide antibiotic used in the treatment of certain infections caused by Gram-positive organisms. • Active against vancomycin-resistant strains of enterocci (VRE) and staphylococci. • Toxicity: May cause myopathy •Creatinine phosphokinase should be monitored copyright Per-Åke Lundberg 2011 49 Compounds that inhibit enzymic process in nucleic acid synthesis • Inhibitors of DNA gyrase • Inhibitors of RNA polymerase copyright Per-Åke Lundberg 2011 50 25 2011-04-04 Antibiotikas angreppspunkter i bakterier DNA replikation Quinoloner (ex. Ciprofloxacin) Metronidazole RNA syntesen Rifampin Rifabutim copyright Per-Åke Lundberg 2011 51 copyright Per-Åke Lundberg 2011 52 26 2011-04-04 Inhibitors of DNA gyrase Bacterial DNA gyrase is composed of two subunits A and two subunits B Various quinolones derivatives (norfloxacin, enoxacin, ofloxacin and ciprofloxacin) binds to the A subunits of DNA gyrase, prevent replication of damaged DNA lethal to the cell Mammalian cells posses a gyrase that differs in structure from bacterial gyrase selective activity copyright Per-Åke Lundberg 2011 53 Quinolones • Mechanism of action. Bactericidal; they inhibit DNA gyrase. • Antibacterial spectrum. First generation quinolones are active only on Enterobacteriaceae. • Fluoroquinolones have extended spectrum, being also active on Ps. aeruginosa, staphylococci, gramnegative cocci and coccobacilli, Legionella pneumophila, chlamydia and mycoplasmas. • They are inactive on streptococci and anaerobic bacteria. copyright Per-Åke Lundberg 2011 54 27 2011-04-04 Quinolones • Administration. Nalidixic acid is given orally, but it realizes active concentrations only in the kidneys. Fluoroquinolones are systemic quinolones, which, after oral administration, realize active concentrations in tissues and CSF, having good penetration in the cells. • Adverse effects. Fluoroquinolones determine photosensitivity after exposure to the sunlight. They have limited applications in children. copyright Per-Åke Lundberg 2011 55 Inhibitors RNA polymerase • • Rifamycins, ex. rifampicin, binds to the β subunit and interference the ability of this enzyme to initiate RNA synthesis. Rifampicin no effect on RNA polymerase from mammalian cells selective action copyright Per-Åke Lundberg 2011 Rifampicin 56 28 2011-04-04 INHIBITORS OF PROTEIN SYNTHESIS • Protein synthesis is inhibited by several antibiotics, some are selective toxic towards bacteria. • The selectivity of clinically useful arises from their ability to bind selectively to bacterial rather than mammalian ribosomes copyright Per-Åke Lundberg 2011 57 Ribosomes • • Function – protein production Structure – ribosomes contain rRNA & protein – composed of 2 subunits that combine to carry out protein synthesis – The primary target of a number of antibacterial drugs : ribosomal RNA, rather than ribosomal protein. copyright Per-Åke Lundberg 2011 58 29 2011-04-04 Prokaryote vs eukaryote ribosomes copyright Per-Åke Lundberg 2011 59 Ribosomes • P site (peptidyl-tRNA site) – holds tRNA carrying growing polypeptide chain • A site (aminoacyl-tRNA site) – holds tRNA carrying next amino acid to be added to chain • E site (exit site) – empty tRNA leaves ribosome from exit site copyright Per-Åke Lundberg 2011 60 30 2011-04-04 Stages in Protein Synthesis 1. 2. 3. 4. 5. Synthesis of aminoacyl-tRNAs Initiation of protein synthesis Recognition of internal codons Peptide bond formation and translocation Termination of protein synthesis copyright Per-Åke Lundberg 2011 61 Synthesis of aminoacyl-tRNAs • Aminoacyl tRNA synthetase – enzyme which bonds amino acid to tRNA – energy stored in tRNA-amino acid bond • unstable • so it can release amino acid at ribosome copyright Per-Åke Lundberg 2011 62 31 2011-04-04 Initiation of protein synthesis copyright Per-Åke Lundberg 2011 63 Classification of Antimicrobial Drugs By Mechanism of Action • Inhibitors of Cell Wall Synthesis • Inhibitors of Protein Synthesis • Inhibitors of Metabolism • Inhibitors of Nucleic Acid Synthesis & Function copyright Per-Åke Lundberg 2011 64 32 2011-04-04 Antibacterial agents that inhibit the protein synthesis 1. 2. 3. 4. Aminoglycosides Tetracyclines Chloramphenicol Macrolides – lincosamides – streptogramines (MLS group) copyright Per-Åke Lundberg 2011 65 Protein Synthesis Inhibitor • It is a substance which stops or slows the growth or proliferation of cells by disrupting the processes that lead directly to the generation of new proteins. • Most of the antibiotics in this group are bateriostatic inhibitors of protein synthesis acting at the ribosomal level. • With the exception of tetracyclines, the binding sites for these antibiotics are on the 50S ribosomal subunit. copyright Per-Åke Lundberg 2011 66 33 2011-04-04 Inhibitors of Protein Synthesis Tetracyclines Aminoglycosides Demeclocycline Doxycycline Minocycline Tetracycline Amikacin, Gentamycin, Neomycin, Netilmicin, Streptomycin, Tobramycin Macrolides Chloramphenicol Clindamycin Azithromycin Clarithromycin Erythromycin copyright Per-Åke Lundberg 2011 67 Tetracyclines • This is a family of antibiotics that have a four-ring structure. copyright Per-Åke Lundberg 2011 68 34 2011-04-04 Tetracyclines • prevent protein synthesis both 70S and 80S ribosomes, although 70S ribosomes are more sensitive arises from their concentration within bacterial. They are broad-spectrum agents that inhibit binding of the aminoacyltRNA to the 30S ribosomal subunit in bacteria thus, they stop peptide elongation.. copyright Per-Åke Lundberg 2011 • Tetracyclines Broad-spectrum antibacterials, active on gram-positive and gramnegative, aerobic and anaerobic organisms. They are also active on: spirochete, mycoplasmas, chlamydia, rickettsia. • Alternative drugs in treatment of syphillis, acne vulgaris, chronic bronchitis • The action is bacteriostatic • given orally, they are well absorbed. They don’t realize active concentrations in CSF. • They are not eliminated by urine, so, they are not effective in urinary tract infections. • The clinical use of tetracyclines is generally confined to adults. – This is because tetracyclines affect bone development and can cause staining of teeth in children. copyright Per-Åke Lundberg 2011 70 35 2011-04-04 Adverse effects of Tetracyclines • Deposition in growing bones and primary teeth in small children • Contraindicated in • pregnancy : tooth enamel dysplagia and irregularities in bone growth • breast-feeding women • children under 8 years of age: crown deformation • GI disturbances • nausea, vomiting, diarrhea, superinfections, colitis copyright Per-Åke Lundberg 2011 71 Resistance Mechanisms • Widespread plasmid-mediated resistance • plasmid-encoded efflux pumps • Decreased intracellular accumulation due to decreased influx or increased efflux due to active pump • Modification of tetracycline binding site and/or production of proteins that interfere with the binding • Enzymatic inactivation • Altered ribosomal subunits copyright Per-Åke Lundberg 2011 72 36 2011-04-04 Streptogramines These antibiotics can be classified into two major group, A (ex. steptogramin A) and B (ex.streptogramin B). These antibiotic are bacteriostatic and inhibit protein synthesis directed by 70S ribosomes Group A distort the ribosomal A site inhibit the binding of aminoacyl-tRNA and the peptidyl transferase action Group B block translocation of the growing polypeptide chain from A site to P site Group A and B exhibit a synergism towards Gram positive bacteria. copyright Per-Åke Lundberg 2011 73 Aminoglycoside-aminocyclitol group • • Neomycin, kanamycin, amikacin, tobramycin, and gentamicin : bactericidal aminoglycosides bindings to the 30S subunit at multiple sites, is tighter than 50S subunit. These antibiotics inhibit translocation. Spectinomycin : an aminocyclitol bacteriostatic, binding to ribosomal DNA, inhibit translocation by preventing the movement between ribosomes and mRNA in polypetides elongation Peptidyl transferase EF-G copyright Per-Åke Lundberg 2011 74 37 2011-04-04 Aminoglycosides copyright Per-Åke Lundberg 2011 75 Aminoglycosides • Bactericidal inhibitors of protein synthesis • GENTAMICIN • TOBRAMYCIN • STREPTOMYCIN • Amikacin • Kanamycin • Neomycin • Netilmicin copyright Per-Åke Lundberg 2011 76 38 2011-04-04 Aminoglycosides Mode of Action • Bactericidal inhibitors of protein synthesis • Transport can be enhanced by cell wall synthesis inhibitors • They bind irreversibly to the 30S subunit of bacterial ribosomes which disturbs the protein synthesis and produce non-functional proteins. • in at least 3 ways: – Block the formation of the initiation complex – Misreading of the code on the mRNA template – Inhibition of translocation – in association with penicillins or vancomycin are synergistic against enterococci and viridans streptococci. copyright Per-Åke Lundberg 2011 77 Aminoglycosides Interfering with the Translocation of tRNA from the AA-site to the P P--site copyright Per-Åke Lundberg 2011 78 39 2011-04-04 Aminoglycosides Resistance • Predominant mechanism is production of enzymes that inactivate functions responsible for drug activity. – Group Transferases • Changes in ribosomal binding site • Membrane impermeability to aminoglycosides results in resistance to all aminoglycosides copyright Per-Åke Lundberg 2011 79 Aminoglycosides Pharmacokinetics • Are distributed well into ECF CSF, respiratory secretions, and bile. • They are active on facultative anaerobic gram-negative bacilli and on staphylococci. Gentamycin, tobramycin, amikacin and netilmycin are also active on Pseudomonas aeruginosa. • Streptomycin is particularly active on mycobacteria, Yersinia pestis and Brucella Intraventricular injection is often required to reach intraventricular levels high enough to treat meningitis. copyright Per-Åke Lundberg 2011 80 40 2011-04-04 Aminoglycosides Adverse Effects • Ototoxicity and neurotoxicity concentration dependent – May be irreversible • Symptoms and signs of vestibular damage are vertigo, nausea, vomiting, nystagmus, and ataxia. • Neuromuscular blockade is a rare pharmacological effect. – A curare-like block may occur at high doses • Occasionally antagonism of factor V may result in bleeding • Nephrotoxicity • Allergic skin reactions • concentrations very close to the toxic ones (their serum Lundberg 2011 concentrations have copyright to bePer-Åke checked). 81 Antibiotikas angreppspunkter i bakterier Protein syntes 50S Ribosomer Chloramphenicol Macrolider Clindamycin copyright Per-Åke Lundberg 2011 Protein syntes 30S Ribosomer Aminoglycosider 82 Tetracyklin 41 2011-04-04 CHLORAMPHENICOL copyright Per-Åke Lundberg 2011 83 Chloramphenicol the first antimicrobial compound synthesized in the laboratory. • Reversibly binds to 50S ribosomal subunits of susceptible organisms inhibiting the peptidyltransferasepreventing amino acids from being transferred to growing peptide chains thus inhibiting protein synthesis. • A broad spectrum bacterostatic agent binds to 70S bacterial ribosomes but not the 80S type • is bacteriostatic against most bacteria, but it is bactericidal against Haemophilus influenzae, Neisseria meningitidis, Streptococcus pneumoniae. active against most aerobic and anaerobic bacteria except P. aeruginosa • It is active against intracellular bacteria (it is the first choice antibacterial in the treatment of typhoid fever, • It is also useful in H. influenzae meningitis because it penetrates the blood-brain barrier. • can be given orally or in injections, copyright Per-Åke Lundberg 2011 84 42 2011-04-04 Mode of action growing polypeptide Chloramphenicol (binds to 50S and inhibits formation of peptide bond) 50S tRNA mRNA 30S direction of ribosome travel 70S bacterial ribosome copyright Per-Åke Lundberg 2011 85 Metabolism & Drug Interaction • Resistance • Conferred by the formation of acetyltransferase (inactivates antibiotic) and inability of drug to penetrate the organism copyright Per-Åke Lundberg 2011 86 43 2011-04-04 Adverse Effects of Chloramphenicol • Central nervous system: Confusion, delirium, depression, fever, headache • Dermatologic: Angioedema, rash, urticaria • Gastrointestinal: Diarrhea, enterocolitis, glossitis, nausea, stomatitis, vomiting • Hematologic: Aplastic anemia, bone marrow suppression, granulocytopenia, hypoplastic anemia, pancytopenia, thrombocytopenia • Ocular: Optic neuritis • Miscellaneous: Anaphylaxis, hypersensitivity reactions, Gray syndrome • Superinfections: Prolonged use may result in fungal or bacterial superinfection, including C. difficile-associated diarrhea (CDAD) and pseudomembranous colitis; – CDAD has been observed >2 months postantibiotic treatment. copyright Per-Åke Lundberg 2011 87 Chloramphenicol - Toxicity. • In newborn or premature, chloramphenicol produces gray baby syndrome because the liver is incapable to conjugate the compound. • In adults, there is a dose-dependent toxic effect on the bone marrow, which is reversible. • In a very low number of patients (1: 25000), a dose independent toxic effect may appear – the irreversible, lethal bone marrow aplasia. copyright Per-Åke Lundberg 2011 88 44 2011-04-04 Fusidic acid • A narrow-spectrum steroidal antibiotic that inhibits protein synthesis in prokaryotic and eucaryotic subcellular systems. • This antibiotic forms a stable complex with the ribosomes which is unable for a further round of translocation lack of toxicity Peptidyl transferase EF-G copyright Per-Åke Lundberg 2011 89 Lincosamides • Lincosamides, ex. lincomycin and chlorinated derivatives, inhibit the peptidyl transferase function of the bacterial 50S ribosomal subunit Peptidyl transferase EF-G copyright Per-Åke Lundberg 2011 90 45 2011-04-04 Macrolides • Group of compounds characterized by a macrocyclic lactone ring to which deoxy sugars are attached • Erythromycin, prototype drug • Clarithromycin and azythromycin are semisynthetic derivatives of erythromycin copyright Per-Åke Lundberg 2011 91 Macrolides erythromycin clarithromycin Bakteriostatiskt. Proteinsynteshämmare. Binder 23S rRNA i 50S subenheten. Hindrar förflyttning av ribosomen peptidyl tRNA utefter mRNA. and cause premature peptide chain termination. Hög intracellulär koncentration, fundamentalt för effekten på intracellulära bakterier. copyright Per-Åke Lundberg 2011 92 46 2011-04-04 Mode of action growing polypeptide 50S tRNA Macrolides: erythromycin (binds to 50S preventing movement of ribosome along mRNA) mRNA 30S direction of ribosome travel Bakteriostatiskt. Proteinsynteshämmare. Binder 23S rRNA i 50S subenheten. bacterial ribosome Hindrar förflyttning av ribosomen70S utefter mRNA. Hög intracellulär koncentration, fundamentalt för effekten på intracellulära bakterier. copyright Per-Åke Lundberg 2011 93 Antimicrobial spectrum of macrolides • Bacteriostatic or bactericidal Erythromycin Antibacterial spectrum: erythromycin is active against gram-positive cocci and bacilli, including anaerobes, Erythromycin is the alternative to penicillin in the treatment of group A streptococcal infections. • Mycoplasma infections • Community-acquired pneumonia • Legionnaire's disease • Chlamydial infections (respiratory, neonatal, ocular or genital) • Diphteria and pertussis(kikhosta) copyright Per-Åke Lundberg 2011 94 47 2011-04-04 Macrolides • The new macrolides (clarithromycin, azithromycin) are also active on gram-negative bacteria: Moraxella catarrhalis, Haemophilus influenzae. • Clarythromycin is active in the treatment of Helicobacter pylori gastritis and in infections with Mycobacterium avium-intracellulare. copyright Per-Åke Lundberg 2011 95 Toxic effects of Macrolides • Severe GI distress • dose-related • most common side effect especially associated with erythromycin, less with clarithromycin. • nausea and vomiting • Jaundice • hypersensitivity reaction to the ester form of erythromycin • Contraindicated in patients with hepatic dysfunction copyright Per-Åke Lundberg 2011 96 48 2011-04-04 Macrolides Resistance • Three (3) mechanisms have been identified: • reduced permeability of the cell membrane or active efflux • production of esterases that hydrolyzed macrolides •Modification of the ribosomal binding site (so-called ribosomal protection) copyright Per-Åke Lundberg 2011 97 Clindamycin • Antibacterial mechanism is similar to that of macrolides although no chemically related • Inhibit protein synthesis by interfering with the formation of initiation complexes and with amynoacyl translocation reactions • The binding site for clindamycin is identical with that for erythromycin copyright Per-Åke Lundberg 2011 98 49 2011-04-04 Clindamycin • Drug of choice for • severe anaerobic infections in abdomen, female genital tract, aspiration pneumonia; in combination with cephalosporins and amynoglycosides •prophylaxis of endocarditis in valvular disease patients who are allergic to penicillin •Moderate to moderate-severe Pneumocystis carinni pneumonia in AIDS patients; in combination with primaquine • AIDS-related toxoplasmosis; in combination with pyrimethamine copyright Per-Åke Lundberg 2011 99 Clindamycin • Adverse Effects • Common: Diarrhea, nausea, and skin rashes • Impair lever function (with or without jaundice) • neutropenia • Enterocolitis •Cause: Toxigenic C. difficile •Treatment: Metronidazole or Vancomycin • Resistance • Mutation of the ribosomal receptor site • Modification of the receptor by a methylase • Enzymatic inactivation of clindamycin copyright Per-Åke Lundberg 2011 100 50 2011-04-04 Compounds that interrupt nucleotide metabolism Antibiotics that interfere with the biosynthesis of tetrahydrofolic acid (THFA), a donor of one-carbon units at several stages in purine and pyrimidine synthesis. DHPS : Dihydropteroate synthase copyright Per-Åke Lundberg 2011 DHFR : Dihydrofolate reductase 101 Antibiotikas angreppspunkter i bakterier Metabolism Anti-metaboliter Folinsyre Sulfonamid Trimetoprim copyright Per-Åke Lundberg 2011 102 51 2011-04-04 copyright Per-Åke Lundberg 2011 103 copyright Per-Åke Lundberg 2011 104 52 2011-04-04 Sulfonamides: Mechanism of Action • Bacteriostatic action • Prevent synthesis of folic acid required for synthesis of purines and nucleic acid by inhibiting dihidropteroate synthetase. • Does not affect human cells or certain bacteria— they can use preformed folic acid • active on: Gram-positive and gram-negative bacteria, except Pseudomonas aeruginosa; Chlamydia. copyright Per-Åke Lundberg 2011 105 Compounds that interrupt nucleotide metabolism Sulphonamides are alternative substrate that bind more tightly to DHPS than PABA formation of inactive folate-like analogues. DHPS is absent from mamalian cells selective activity. PABA : p-aminobenzoic acid; DHPS : Dihydropteroate synthase; DHFR : copyright Per-Åke Lundberg 2011 Dihydrofolate reductase, Sx : Sulphamethoxazole 106 53 2011-04-04 Compounds that interrupt nucleotide metabolism Sulphonamides (exp. Sulphamethoxazole) are structural analogues of PABA (p-aminobenzoic acid) copyright Per-Åke Lundberg 2011 107 Compounds that interrupt nucleotide metabolism Trimethoprim) competitively inhibit bacterial DHFR. Although mammalian cells posses DHFR, these drugs are highly selective towards the bacterial enzymes. A combination of appropriate sulphamethoxazole and trimethoprim (cotrimoxazole) would offer theurapeutic advantages through double blockade of the folate pathways PABA : p-aminobenzoic acid; DHPS : Dihydropteroate synthase; DHFR : copyright Per-Åke Lundberg 2011 Dihydrofolate reductase, Sx : Sulphamethoxazole, Tp : Trimethoprim 108 54 2011-04-04 Trimethoprim • Mechanism of action. Bacteriostatic. It inhibits folic acid synthesis by blocking dihidrofolate reductase. • Antibacterial spectrum. Similar to sulfonamides. • Adverse effects. It may produce skin rash or bone marrow depression. copyright Per-Åke Lundberg 2011 109 Sulfonamides: Side Effects Body System Effect GI Nausea, vomiting, diarrhea, pancreatitis Other Convulsions, crystalluria, toxic nephrosis, headache, peripheral neuritis, urticaria Blood Hemolytic and aplastic anemia, thrombocytopenia hud Photosensitivity, exfoliative dermatitis, Stevens-Johnson syndrome, epidermal necrolysis increased concentrations of non-conjugated bilirubine in newborn. copyright Per-Åke Lundberg 2011 110 55 2011-04-04 Resistensutveckling Antibiotikaresistens Spontana kromosomala mutationer Naturlig Upptag av resistensgener Förvärvad copyright Per-Åke Lundberg 2011 111 Antibiotika resistens 1. Genuin resistens (arts-/genusrelateret) f.ex. Gram-positive/ Gram-negative 2. Nyutvecklad resistens f.ex. penicillin-resistens hos stafylocker o pneumokocker a. nyförvärvade resistensgener b. anhopning av mutationer i målet copyright Per-Åke Lundberg 2011 112 56 2011-04-04 Resistens kan uppstå på olika sätt 1. Försämrad tillgänglighet till bakteriecellen Förändrad genomsläpplighet eller ”utpumpningsmekanism” 2. Förändring av bindningsstället Förändrad struktur hos PBP, ribosomer, enzymer 3. Produktion av inaktiverande enzym Hydrolyserande enzymer t.ex. betalaktamas 4. Biokemisk by-pass mekanism Bakterier som t.ex. kan ta upp färdig folsyra copyright Per-Åke Lundberg 2011 113 Biochemical mechanisms of resistance to antibiotics •The principal mechanisms are as follow. • Production of enzymes that inactivate the drug: for example βlactamases, which inactivate penicillin; acetyltransferases, which inactivate chloramphenicol; kinases and other enzymes, which inactivate aminoglycosides. Biochemical mechanisms of resistance to antibiotics • Alteration of the drugbinding sites foraminoglycosides, erythromycin, penicillin. • Reduction of drug uptake by the bacterium: for example tetracyclines. • Alteration of enzyme pathways: for example dihydrofolate reductase becomes insensitive to trimethoprim. copyright Per-Åke Lundberg 2011 114 57 2011-04-04 Antibiotika Resistensmekanismer Antibiotikum Ändrat mål Ändrat upptag Inaktivering Aminoglycosider + - + + ++ ++ Tetracyklin - + - + Beta-lactam Chloramphenicol Macrolider Glycopeptider Lincosamider Fucidin syre Sulphonamider Trimetoprim Quinoloner Rifampicin ++ + ++ ++ ++ - ++ + + ++ copyright Per-Åke Lundberg 2011 115 Förvärvad resistens Horisontell överföring av gener mellan bakterier Konjugation – Överföring av DNA mellan bakterier Transduktion – Överföring av DNA genom fager (bakterievirus) Transformation – upptag av DNA från omgivningen copyright Per-Åke Lundberg 2011 116 58 2011-04-04 Genetic transfer copyright Per-Åke Lundberg 2011 117 Antibiotikaresistens är en oundviklig konsekvens av antibiotikabehandling copyright Per-Åke Lundberg 2011 118 59 2011-04-04 Resistenta bakterier MRSA Meticillinresistenta S. aureus MRSE Meticillinresistenta S. epidermidis PRP/PNSP Penicillinresistenta pneumokocker/ Pneumokocker med nedsatt känslighet för penicillin ESBL Enterobacteriaceae som producerar Extended spectrum betalactamases VRE Vankomycinresistenta enterokocker Anmälningspliktiga enligt smittskyddslagen PNSP, MRSA, VRE och ESBL copyright Per-Åke Lundberg 2011 119 Antalet fall av MRSA Sverige Källa Smittskyddsinstitutet copyright Per-Åke Lundberg 2011 120 60 2011-04-04 Miljöpåverkan Ekoskugga Utdrag – exempel: Sedan mars 2006 finns miljödata om antibiotika i FASS på www.fass.se. Detta gäller dock inte alla antibiotika ännu Källa fass.se copyright Per-Åke Lundberg 2011 121 Antibiotikaanvändning EU-länderna Total användning av antibiotika i öppenvård under 2002 DDD per 1000 inv/dag Sverige Källa: H. Goossens Lancet 2005; 365: 579–87 copyright Per-Åke Lundberg 2011 122 61 2011-04-04 Hur motverka resistensutveckling? Använd antibiotika som har effekt mot den aktuella bakterien, gärna med: • Kort ekoskugga • Total absorption Ny lag trädde i kraft 1/7 2006 Begränsa användningen av antibiotika Hygieniska åtgärder, undvik trängsel Ev. kombinationsbehandling Växelbruk mellan olika antibiotika Resistensövervakning copyright Per-Åke Lundberg 2011 123 Vårda antibiotika ! Det måste gå ! copyright Per-Åke Lundberg 2011 124 62 2011-04-04 Resistensbestämning med disk på agarplattor copyright Per-Åke Lundberg 2011 125 Tidsberoende antimikrobiell verkan. Antimikrobiella läkemedelsklasser Alla betalaktamer inklusive Pencilliner samt aminopenicilliner, cefalosporiner, karbapenemer Den antimikrobiella verkan beror på hur länge läkemedelskoncentrationen överstiger tröskelvärdet mellan doserna Betydelse Doseras ofta, betalaktamer oralt minst tre gånger om dagen Långsam infusion effektivare än snabb infusion eller bolusdos Konstant infusion effektivast copyright Per-Åke Lundberg 2011 126 63 2011-04-04 Antimikrobiella läkemedelsklasser Aminglykosider Fluorokinoloner Metronidazol Den antimikrobiella effekten beror på maximal läkemedelskoncentration Betydelse Tillförs i höga doser Kan ges mera sällan Snabb infusion teoretiskt sett effektivast, p.g.a. toxicitet bör infusionen ges i över 30–60 minuter Konstant eller mycket lång infusion borde undvikas copyright Per-Åke Lundberg 2011 127 64