Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Lab exam 1 Study Guide • Know what a zygotic, gametic and sporic life cycle are and the difference between • Know meiosis and mitosis and where they occur (see handout from the first lab) • Know how to ID parenchyma cells, and state their primary functions • Know how to ID and recognize collenchyma, sclerenchyma (sclerids and fibers), phloem, • • • • • • • • • • • • • • • • • • • • • • • • xylem, epidermal cells and their main functions. Within Phloem know the sieve tube members and the companion cells Within Xylem, know the vessel elements and the tracheids (which plant only has tracheids?) Know what the pith and cortex are, and the vascular bundles Recognize cytoplasmic streaming Recognize a chromoplast, and know what its function is Recognize other plastids such as amyloplasts (starch storage) and chloroplasts Be able to recognize amyloplasts What are crystals? Know how to recognize them. We had most success with Raphides (the ‘shards of glass’) Recognize and state the function of some major plant cell organelles such as chloroplasts, the central vacuole, the cell wall, mitochondria, and the cytoskeleton Be able to recognize a cyanobacteria and a heterocyst and state its function (we focused on identifying heterocysts, but know the function of an akinete too) What are some major characteristics (size, life history, pigments…) of cyanobacteria? Know what a spectrophotometer does, what an absorbtion spectrum is, and how to read one Know what paper chromatography shows, and be able to recognize some major pigments Know why O2 production is a measure of photosynthesis What is the likely relationship between light output and O2 production? Know how to recognize plasmodesmata in plant cells, and what their function is For the following protists, be able to identify them, and know the clade and phylum, major characteristics including photosynthetic pigments, cell wall components, living arrangements (single, chain, colony, multicellular etc), reproductive strategies. Also, be able to state whether they have likely gone through primary, secondary or tertiary endosymbiosis, and what evidence we have for that. o Euglena (Euglenophyta) o Dinoflagellates (Dinophyta) o Diatoms (Bacillariophyta) o Golden-browns (Chrysophyta) (we didn’t do much with these – so just know some of the major characteristics – like the photosynthetic pigments) Be able to identify members from three phyla of algae (Phaeophyta, Rhodophyta, Chlorophyta). Know their clades too. Be able to label the thallus: holdfast, stipe, blade, pneumatocyst. Remember not all phyla have all of these. Be able to point out which has an isomorphic (ulva) and heteromorphic – all the others) life cycle. Life cycles and stages in polysiphonia – identify the antheridial cluster (sperm producing male n) the cystocarp (female n), and the 2n with the tetraspores in it. *The zygotic (haploid) life cycles are NOT alternation of generations. Organisms also rely heavily on asexual reproduction (we saw some of that) and they have a mobile stage that we were also able to see Cladophora – this was a green (chlorophyte) alga that is filamentous but DOES have an alternation of generation life cycle For the Volvox (chlorophyta), be able to identify the asexual reproductive structures (daughter colonies): zygotic (haploid) life cycle For spirogyra, be able to identify it (spiral chloroplast arrangment), and state some key characteristics of its life cycle that we saw (eg. conjugation in spirogyra), and most importantly the zygotic (haploid) life cycle For chlamydomonas be able to recognize it as a single celled alga (zygotic/haploid life cycle) with many mobile individuals Ulothrix: zygotic life cycle