Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Mathematics Name: Class: TRIGONOMETRY SECTION – A( 1 mark each) 1. If = 45°, the value of cosec2 is 1 (A) 2 (B) 1 (C) 1 2 (D) 2 2. Sin (60° + ) – cos (30° - ) is equal to (A) 2 cos (B) 2 sin (C) 0 (D) 1 (C) -2 (D) 0 (C) cos A (D) sin A (C) 2 (D) 3.If sin A + sin2 A = 1, then the value of cos2 A + cos4 4 is (A) 2 4. (B) 1 The value of [(sec A + tan A) (1 – sin A)] is equal to (A) tan2 A (B) sin2 A 5.In fig., if D is mid-point of BC, the value of (A) 1 3 (B) 1 tan x is tan y 1 2 6.In the given figure, ACB = 90°, BDC = 90°, CD = 4 cm, BD = 3 cm, AC = 12 cm cos A – sin A is equal to (A) 5 12 (B) 5 13 (C) 7 12 (D) 7 13 7.The value of tan1°. tan2°. tan3° ………. tan89° is : (A)0 (B) 1 8.Given that sin A = (C) 2 (D) 1 2 1 1 and cos B = then the value of A + B is : 2 2 (A) 30° (B) 45° (C) 75° (D) 15° (B) -5 (C) 0 (D) 5 (B) 2 sin A (C) 2 cos A (D) sec A 9.The value of 5 tan2 - 5 sec2 is : (A) 1 10. cos A sin A is : cot A (A) cot a 11.If cot = (A) 1 cos 1 cos is : 7 then the value of 8 1 sin 1 sin 49 64 (B) 8 7 (C) 64 49 (C) 4 4 (D) 7 8 12.The value of cos 60° sin 30° + sin 60° cos 30° is : (A) 1 4 (B) 3 4 (D) 2 4 13.If cos (20 + ) = sin 30°, then the value of is : (A) 20° (B) 50° (C) 30° (D) 40° 14.The value of sine cos ( 90° - ) + cos sin (90° - ) is : (A) 1 (B) 0 (C) 2 (D) -1 15.From the figure 1, the value of cosec A + cot A is : (A) bc a (B) ab c (C) a bc (D) b ac 16.If a cos + b sin = 4 and a sin - b cos = 3, then a2 + b2 is (A) 7 (B) 12 (C) 25 (D) None 17.If cosec2 (1 + cos ) ( 1 – cos ) = , then the value of , then the value of is (B) cos2 (A) 0 18.If sin = (C) 1 (D) -1 1 and is acute, then (3 cos - 4cos2) is equal to : 2 (A) 0 (B) 1 2 (C) 1 6 (D) -1 19.If x cos A = 1 and tan A = y, then x2 – y2 is equal to : (A) tan A (B) 1 (D) – tan A (C) 0 20.[Cos4 A – sin4 A] is equal to : (A) 2 cos2 A + 1 (B) 2 cos2 A – 1 (C) 2 sin2 A – 1 (D) 2 sin2 A + 1 21.The value of the expression [( sec2 - 1) (1 – cosec2 )] is : (A) -1 (B) 1 1 2 (C) 0 (D) (C) sec 90° (D) sin 90° 22.Which of the following is not defined? (A) cos 0° 23.The value of (A) 1 2 (B) tan 45° tan 45 is : sin30 cos 30 (B) 1 (C) 1 2 (D) 2 24.(sec A + tan A) (1 – sin A) is equal to : (A) sec A (B) sin A (C) cosec A (D) cos A. 25.If sin 2 = cos ( - 6°) where 2 and ( - 6°) are both acute angles then the value of is: (A) 16° (B) 32° 26.Given that cos = (C) 48° (D) 45° 2 sec 1 the value of is : 2 1 tan2 (A) 1 (B) 2 27.If sec A = cosec B = (C) 1 2 (D) 0 15 then A + B is equal to : 12 (A) zero (B) > 90° (C) 90° (D) < 90° 28.If A is an acute angle in a right ABC, right angled at B, then the value of sin A + cos A is : (A) equal to one (B) greater than one (C) less than one (D) equal to two 29.If x = 2 sin2 , y = 2 cos2 + 1 then the value of x + y is : (A) 2 (B) 3 (C) 1 2 (D) 1 30.If cos (+) = 0, then sin ( - ) can be reduced to : (A) cos 31.If cosec = (A) 3 (B) cos 2 (C) sin (D) sin 2 3 , then 2 (cosec2 + cot2) is : 2 (B) 7 (C) 9 (D) 5 (C) 1 (D) 0 32.If sin + sin2 = 1, the value of (cos2 + cos4 ) is : (A) 3 (B) 2 33.If sin = cosec = 5 , then the value of sin + cosec is : (a) 3 34.If cos 3 = (b) 1 3 ; 0 < < 20° then the value of is : 2 (c) 3 (d) 9 (a) 15° (b) 10° (c) 0° (d) 12° 35.If 3 cos = 1, then the value of cosec is : (a) 2 2 3 (c) 2 2 2 2 3 (d) 4 3 2 1 , then the value of sin (sin - cosec ) is 2 36.If sin = (A) (b) 3 4 (B) 3 4 (C) 3 2 (D) 3 2 37.The value of sin2 30° + cos2 45° + cos2 30° is : (A) 1 2 (B) 3 2 (C) 3 2 (D) 2 3 38.Expressing sin A in terms of cot A is (A) (C) 1 cot2 A cot A 1 1 cot2 A (B) 1 cot2 A cot A (D) 1 cot2 A cot A 39.If tan 2A = cot (A – 18°), then the value of A is (A) 18° (B) 36° (C) 24° (D) 27° 40.Value of (1 + tan + sec ) (1 + cot - cosec ) is : (A) 1 (B) -1 (C) 2 (D) -4 (C) 2 (D) -1 (C) cosec 90° (D) sec 90° 41.The value of [ sin2 20° + sin2 70° - tan2 45° ] is : (A) 0 (B) 1 42.Which of the following is defined ? (A) tan 90° 43.If sin (A – B) = (A) 45° (B) cot 0° 1 1 and cos (A + B) = , then the value of B is : 2 2 (B) 60° 44.If sin = cos , then value of is : (C) 15° (D) 0° (A) 0° 45.If cot A = (A) (B) 45° (C) 30° (D) 90° 12 , then the value of (sin A + cos A) cosec A is : 5 13 5 (B) 17 5 (C) 14 5 (D) 1 46.9 sec2 - 9 tan2 is equal to : (A) 1 (B) -1 (C) 9 (D) -9 1 2 (D) -1 47.cos 1°, cos 2°, cos 3° ……. Cos 180° is equal to : (A) 1 (B) 0 48.The maximum value of (A) 0 48.If tan A = (A) (C) 1 is : cos ec (B) -1 (C) 1 (D) 3 2 3 and A + B = 90° then the value of cot B is equal to : 4 4 3 (B) 1 2 (C) 3 4 (D) 1 49.If x, tan 45°. cot 60° = sin 30°. cosec 60°, then the value of x is : (A) 1 (B) 1 4 (C) 1 2 (D) 3 50.If sin 3 = cos ( - 26°) where 3 and (0 – 26°) are acute angles, then value of is : (A) 30° (B) 29° (C) 27° (D) 26° 51.If sin = cos , then the value of cosec is : (A) 2 52.If sec A = cosec B = (A) zero (B) 1 (C) 2 3 (D) 2 12 then A + B is equal to : 7 (B) 90° (C) < 90° (D) > 90° SECTION – B( 2 mark each) 1.If sec 4 A = cosec (A – 20°) where 4 A is an acute angle, find the value of A. 2.cot = 1 sin 1 sin 7 , find the value of 8 1 cos 1 cos 3.If 5 tan = 4, find the value of 5 sin 3 cos . 5 sin 2 cos 4.Prove that sin cos sin 90 cos 90 5.Prove that cos cos = 2 sec . 1 sin 1 sin 6.Evaluate : cos ec2 90 tan2 2 2 4 cos 48 cos 42 = sec . cosec 2 tan2 30 sec2 52 sin2 38 cos ec2 70 tan2 20 7.In figure, ABC is right triangle, D is mid point of BC. Show that tan 1 tan 2 8.In PQR right angled at Q, PR + QR = 25 cm and PQ = 5 cm. Find the value of sin P. 9.If sin (A-B) = 10.If and 1 1 , cos (A+B) = and 0 < A + B < 90° and A > B then find the values of A and B 2 2 1 are the zeros of the polynomial 4x2 – 2x + (k – 4), find the value of k. 11.If 3 cot A = 4, find the value of cos ec2 A 1 cos ec2 A 1 12.If tan = 1 7 , find the value of cos ec2 sec2 . cos ec2 sec2 13.If A,B,C are interior angles of ABC, show that : B C 2 A =1 - tan 2 ccosec2 2 14.sec2 + cot2 (90 - ) = 2 cosec2 (90 - ) – 1. 15.Find the value of k, if cos 20 2 cos k . sin70 sin 90 2 16.If sin + cos = m and sec + cosec = n, then prove that n (m2 – 1) = 2m. 17.Prove that : 1 + cot2 1 1 cos ec sin 18.If 3 tan = 3 sin , then prove that sin2 - cos2 = 1 . 3 19.If 7 sin2 + 3 cos2 = 4, then prove that sec + cosec = 2 + 20.If tan (A+B) = 3 and tan (A-B) = 1 3 2 3 . , 0° < A+B 90°: A> B, find A and B. 21.If sin 3 A = cos (A – 26) where 3 A is an acute angle, find the value of A. 22.In ABC, right angled at B, AB = 5 cm, ACB = 30°. Find BC and AC. 23.If sin + sin2 = 1, then find the value of cos2 + cos4 . 24.If sin (A + B) = cos (A –B) = 25.If tan = 3 and A, B (A > B) are acute angles, find the values of A and B. 2 5 find the value of : 12 cos sin cos sin SECTION – C( 3 mark each) 1.Prove that tan cot = tan2 - cot2 sin cos 2.In ABC is right angled at B, BC= 7 cm and AC– AB = 1cm. Find the value of cos A – sin A. B C A 2 3.If A,B,C are interior angles of ABC, show that Sec2 -1 = cot 2 2 4.Prove that : cos(90 ) = 2 cosec 1 sin(90 ) 5.If cot = 4 sin 3 cos 4 , evaluate . 3 4 sin 3 cos 6.If tan = 24 , find the value of sin + cos . 7 7.Evaluate : cos ec2 90 tan2 2 2 5 cos 48 cos 42 2 1 sin 48° sec 42° - tan2 60°. 5 5 8.Prove that (1 + cot - cosec ) (1 + tan + sec ) = 2. 9.Prove that 1 sec A sin2 A . sec A 1 cos A 10.If A + B = 90°, then prove that tan A tanB tan A cot B sin2 B = tan A sin A sec B cos2 A 11.Prove that 2 sec2 - sec4 - 2 cosec2 + cosec4 = cot2 - tan4 12.Prove that 13.If tan cot = 1 + tan + cot . 1 cot 1 tan x2 y2 1 y x y cos sin = 1 and sin cps = 1, prove that 2 2 = 2 a b a b a b C A B sec 2 . 14.If A, B, C are interior angles of ABC, prove that cosec 2 15.If sin (2A + 45°) = cos (30° - A), Find A. 16.Prove that sec 1 sec 1 sec 1 = 2 cosec . sec 1 17.Prove that 1 sin A = sec A + tan A 1 sin A 2 sin68 2 cot15 3 tan 45 tan20 tan 40 tan50 tan70 cos 22 5 tan75 5 18.Evaluate : 19.Prove that sec (1 – sin ) (sec + tan ) = 1. 20.If sec = x + 1 1 then prove that sec + tan = 2x or . 4x 2x 21.If A, B, C are interior angles of ABC, show that : 22.Prove that : 23.Prove that : 24.If sin = 25.Prove that cot 90o tan cos ec 90o o tan 90 Cos2 A B C + cos2 = 1. 2 2 = sec2 . tan cot = 1 + sec . cosec 1 cot 1 tan tan 4 m , then find the value of . n 4 cot 1 (cosec A – sin A) (sec A – cos A) = 1 tan A cot A 26.If tan A = n tan B sin A = m sin B, prove that cos2 A = m2 1 . n2 1 27.Evaluate : Sin (50° + ) – cos (40° - ) + tan 1° tan 10° tan 20° tan 70° tan 80° tan 89° + sec (90 - ) cosec tan (90 - ). cot . 28.Prove that (sin + cosec )2 + (cos + sec )2 = 7 + tan2 + cot2 29.Prove that (cosec - sin ) ( sec - cos ) = 1 tan cot 30.If sin + cos = p and sec + cosec = q, show that q(p2 – 1) = 2p 31.If sin + cos = 2 sin (90 - ), then find the value of tan . sin39 2 tan 11° tan 31° tan 45° tan 59° tan 79° - 3 (sin2 21° + sin2 69°) cos 51 32.Evaluate : 33.Prove that (cosec - cot )2 = 1 cos 1 cos 34.If m sin + n cos = p and m cos - n sin = q then prove that m2 + n2 = p2 + q2 SECTION – D(4 marks each) 1.Without using trigonometric tables, evaluate the following : sec 37o + 2 cot 15° cot 25° cot 45° cot 75° cot 65° - 3 (sin218° + sin272°) cos ec 53o tan cot = 1 + sec cosec . 1 cot 1 tan 2.Prove that: 3.If 2 cos - sin = x and cos - 3 sin = y. Prove that 2x2 + y2 – 2xy = 5. 4.Prove that cot 1 cos ec 1 cot 1 cos ec cos ec cot 5.If tan + sin = m and tan - sin = n, show that (m2 – n2)2 = 16 mn 1 sinA = sec A + tan A 1 sin A 6.Prove that 7.Prove that cot A cos ec a 1 1 cos A cot A cos ec A 1 sin A 8.Prove that sin A cos A sin A cos A 2 . sin A cos A sin A cos A sin2 A cos2 A 9.Prove that cos A 1 sin A = 2 sec A. 1 sin A cos A 10.If tan + sin = m and tan - sin = n. Show that m2 – n2 = 4 mn 11.Prove that tan cot = 1 + tan + cot 1 cot 1 tan 3 tan35 tan 40 tan50 tan55 12.Without using trigonomietric tables evaluate : 13.If tan A = 2. Evaluate sec A sin A + tan2 A – cosec A 4 cos2 39 cos2 51 1 tan2 60 2 14.If tan A = 2 - 1. Show that sin A cos A = 2 4 15.Prove that sin6 9 cos6 = 1 – 3 sin2 cos2 . 16.In ABC, B = 90 AB = 3 cm and BC = 4 cm. Find (i) sin C (ii) cos C 1 17.If tan A = 3 (iii) sec A (iv) cosec A , ABC is right angled at B. 18.Find the value of sin A cos C + cos A sin C. 19.Prove that : tan cot = 1 + sec . Cosec 1 cot 1 tan 20.Prove that : 1 1 1 1 cos ec A cot A sin A sin A cos ec A cot A 21.Prove that : sec2 - sin2 2 sin4 = 1. 2 cos4 cos 2 22.If sec - tan = 4 then prove that cos = 8 . 17 23.Find the value of sin2 5° + sin2 10° + sin2 80° + sin2 85°. 24.Prove that 25.Prove that 1 sec A sin2 A . sec A 1 cos A tan 1 sec 1 tan 1 sec sec tan 26.If tan + sin = m and tan - sin = n, show that m2 – n2 = 4 mn . 27.Prove that cos ec A 1 = sec A + tan A cos ec A 1 28.Prove that cos sin 1 = cosec + cot . cos sin 1 29.If x = r sin A cos C, y = r sin A sin C, z = r cos A, prove that r2 = x2 + y2 + z2. 30.Prove that 1 cos A = cosec A + cot A. 1 cos A 31.Prove that : 32.Evaluate sin cos sin cos sin cos 2 . sin cos 2 sin2 1 sin35 cos 55 .cos ec 35o cos 55 tan5 tan25 tan 45 tan65 tan85 33.If a sin + b cos = c, then prove that a cos - b sin = a2 b2 c2 . 34.Prove that 1+cos θ+sinθ 1+sinθ . = 1+cos θ- sinθ cos θ 35.Without using trigonometric tables, evaluate cosec2 90°- θ - tan2 θ 2 tan2 30° sec2 52° sin2 38° . tan2 20°- cosec2 70° 4 cos2 48°+cos2 42° 1 sin A cot2 A (sec A 1) sec2 A 1 sin A 1 sec A 36.Prove that 37.Prove that 1 cos sin = cosec + cot . cos 1 sin sec2 (90 ) cot2 2 cos2 60 tan2 28 tan2 62 cot 40 tan50 2(sin2 25 sin2 65) 3(sec2 43 cot2 47) 32.Evaluate : 33.Show that sin 2 sin3 = tan 2 cos2 cos 34.Prove that sin A (1+tan A) + cos A (1+cot A) = sec A + cosec A. 35.Prove that tan sec 1 1 sin tan sec 1 cos 36.Is sec + tan = p, show that 37.If sec = x + p2 1 = sin . p2 1 1 1 , then prove that tan + sec = 2x or . 4x 2x 38.Prove that sec4 - tan4 + 1 + 2 tan2 . 39.Find the value of cos 20 cos 70 - 8 sin2 30° sin70 sin20 40.Prove that tan2 + cot2 + 2 = sec2 cosec2