Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Name: __________________ 1 Class: Use the definitions to evaluate the six trigonometric functions of denominator. . In cases in which a radical occurs in a denominator, rationalize the 15 , tan = 8 , csc = 17 17 17 8 15 8 17 , cot = , sec = cos = 8 15 15 d. sin 15 , tan = 8 , csc = 1 17 17 17 cos = , cot = 17 , sec = 1 15 8 e. sin a. sin b. sin = = 15 , tan = 15 , csc = 17 17 8 15 8 8 cos = , cot = , sec = 17 17 15 8 c. sin PAGE 1 Date: _____________ = 1 , tan = 15 , csc = 8 17 17 15 1 17 , cot = , sec = 15 cos = 15 8 8 = 15 , tan = 8 , csc = 2 17 17 15 cos = , cot = 17 , sec = 1 8 15 2 = Name: __________________ 2 Suppose that Class: Date: _____________ ABC is a right triangle with C = 90 . If A C = 3 and BC = 5 , find the following quantities. cos A , sin A , tan A 3 a. cos A = 34 , sin A = 34 34 , tan A = 34 b. cos A = 34 , sin A = 34 34 , tan A = 3 34 c. cos A = 3 34 , sin A = 34 5 34 , tan A = 34 d. cos A = 34 , sin A = 34 e. cos A = 5 34 , sin A = 34 1 a. yes 5 3 3 34 , tan A = 34 5 3 cos 30 cos 60 b. no 2 Determine whether the equation is correct by evaluating each side. Do not use a calculator. Note: Notation such as sin ( sin ) 2 . 2 1 2 tan 30 = sec 30 a. no 5 34 , tan A = 34 5 3 Determine whether the equation is correct by evaluating each side. Do not use a calculator. cot 30 = 4 3 5 b. yes Carry out the indicated operation. sin cos a. PAGE 2 cos sin sin b. cos c. 1 d. tan e. 1 stands for Name: __________________ 6 Class: Date: _____________ Carry out the indicated operation. 3 2 tan 2 tan 3 3 tan a. 7 2 tan c. 3 2 tan d. 1 e. 1 Factor the expression. 2 tan + 5 tan a. (tan b. (tan 8 b. 3 tan 2 6 1)(tan + 5) c. (tan 3)(tan + 4) d. (tan 5)(tan + 3) 4)(tan + 3) e. (tan 1)(tan + 6) Use the given information to determine the value of remaining five trigonometric functions. (Assume that the angle is acute.) If a radical appears in the denominator, rationalize the denominator. sin = 2 3 a. cos = cot = b. cos = cot = c. cos = cot = PAGE 3 2 5 2 5 , tan = , 3 5 5 3 5 , sec = , csc 2 2 5 2 5 , tan = , 3 5 5 3 5 , sec = , csc 2 5 5 2 5 , tan = , 3 5 5 3 5 , sec = , csc 2 5 = 3 2 = 3 2 = 5 2 d. cos = cot = e. cos = cot = 5 2 5 , tan = , 3 3 3 5 , sec = 3 , csc 2 5 5 2 5 , tan = , 3 5 5 3 5 , sec = , csc 2 5 3 2 = = 3 5 Name: __________________ 9 Class: Date: _____________ Use the given information to determine the value of remaining five trigonometric functions. (Assume that the angle is acute.) If a radical appears in the denominator, rationalize the denominator. cot = 5 3 a. sin = 3 14 , cos 14 = 70 , tan 14 = 3 , sec 5 b. sin = 3 14 , cos 14 = 70 , tan 14 = 3 5 , sec 5 c. sin = 3 , cos 14 d. sin = 3 14 , cos 14 = 70 , tan 14 e. sin = 3 14 , cos 14 = 5 , tan 14 70 , tan 14 = = 3 5 , sec 5 = = 70 , csc 5 = 70 , csc 5 = 3 5 , sec 5 3 5 , sec 5 70 , csc 5 = = = 14 3 14 3 14 , csc 3 = 70 5 14 5 , csc 5 = 14 3 = = 14 3 = 10 Rewrite in terms of sine and cosine, and simplify the expression: cos sec tan a. cos b. sec c. csc d. tan e. sin 11 Simplify the expression and enter the answer in terms of sine and cosine. (csc A + cot A )(csc A a. 0 b. 1 cot A ) 2 c. 1 sin A d. 2 sin A cos A 2 2 e. csc A + cot A 12 Rewrite in terms of sine and cosine, and simplify the expression: cos + 1 + 1 cos cos 1 1 cos a. sin cos PAGE 4 b. 1 c. 1 d. sec + csc e. 2 cos 1 Name: __________________ 13 Refer to the figure. If Class: Date: _____________ A = 30 and AB = 60 cm , find A C . a. AC = 60 2 cm c. AC = 30 3 cm b. AC = 60 cm d. AC = 30 7 cm e. AC = 14 A ladder 20 ft long leans against a building. The ladder forms and angle of 45 the ladder reach? a. 10 2 ft b. 2 ft c. 20 ft d. 2 cm with the ground. How high up the side of the building does 10 ft e. 20 2 ft 15 From a point level with and 1500 ft away from the base of a monument, the angle of elevation to the top of the monument is 29.45 . Determine the height of the monument to the nearest foot. a. 737 ft b. 1306 ft c. 847 ft d. 992 ft e. 964 ft 16 From a point on ground level, you measure the angle of elevation to the top of a mountain to be 33 . Then you walk 200 m farther away from the mountain and find that the angle of elevation is now 20 . Find the height of the mountain. a. 73 m PAGE 5 b. 130 m c. 100 m d. 101.5 m e. 166 m Name: __________________ Class: Date: _____________ 17 The radius of the circle in the figure is 10 units. Express the length DC in terms of a. 10 sec b. 10 sin c. 10 tan 18 In the figure, AB = 6 in . Express x a. 6 cos b. 6 sin PAGE 6 as a function of 3 cot c. 3 tan 3 tan d. 3 sin . d. 10 cot e. 10 cos . 6 cos 6 cot e. 3 cos 6 tan Name: __________________ Class: Date: _____________ 19 Use the definitions (not a calculator) to evaluate the six trigonometric functions of the angle. 540 a. sin( 540 ) = 0 540 ) = 1 tan( cot( 540 ) = 0 540 ) is undefined csc( sec( 540 ) = 1 540 ) is undefined b. sin( 540 ) = 1 540 ) = 0 tan( cot( 540 ) is undefined 540 ) = 0 csc( sec( 540 ) = 1 540 ) is undefined c. sin( 540 ) = 0 540 ) = 1 tan( cot( 540 ) = 0 540 ) is undefined csc( sec( 540 ) is undefined 540 ) = 1 d. sin( 540 ) = 0 540 ) = 1 tan( cot( 540 ) is undefined 540 ) = 0 csc( sec( 540 ) is undefined 540 ) = 1 e. sin( 540 ) = 1 540 ) = 0 tan( cot( 540 ) = 0 540 ) is undefined csc( sec( 540 ) is undefined 540 ) = 1 cos( cos( cos( cos( cos( 20 Use the definitions (not a calculator) to evaluate the six trigonometric functions of the angle. 810 a. sin( 810 ) = 1 810 ) = 0 tan( cot( 810 ) = 0 810 ) is undefined csc( sec( 810 ) = 1 810 ) is undefined b. sin( 810 ) = 0 810 ) = 1 tan( cot( 810 ) = 0 810 ) is undefined csc( sec( 810 ) is undefined 810 ) = 1 c. sin( 810 ) = 0 810 ) = 1 tan( cot( 810 ) is undefined 810 ) = 0 csc( sec( 810 ) = 1 810 ) is undefined d. sin( 810 ) = 1 810 ) = 0 tan( cot( 810 ) is undefined 810 ) = 0 csc( sec( 810 ) = 1 810 ) is undefined e. sin( 810 ) = 1 810 ) = 0 tan( cot( 810 ) is undefined 810 ) = 0 csc( sec( 810 ) is undefined 810 ) = 1 cos( cos( cos( cos( cos( 21 Evaluate the expression using the concept of a reference angle. cos 225 a. PAGE 7 2 2 b. 3 2 c. 2 2 d. 1 3 e. 2 3 Name: __________________ Class: Date: _____________ 22 Evaluate the expression using the concept of a reference angle. cos( 420 ) 6 6 a. b. 1 2 1 2 c. 6 2 d. e. 1 6 23 Evaluate the expression using the concept of a reference angle. sin 300 1 6 a. b. 3 2 c. 6 6 3 2 d. 6 2 e. 24 Evaluate the expression using the concept of a reference angle. sin( a. 330 ) 1 3 b. 1 2 c. 1 2 d. 3 2 e. 3 3 25 Use the following information to determine the remaining five trigonometric values. Rationalize any denominators that contain radicals. 7 , 90 < < 180 8 cos = a. sin = 15 , tan = 8 b. sin = 15 , tan = 8 c. sin = 15 , tan = 8 15 , csc = 7 8 15 , cot = 15 7 15 , sec = 15 d. sin = 15 , tan = 8 15 , csc = 7 8 15 , cot = 15 7 15 , sec = 15 e. sin = 15 , tan = 8 PAGE 8 15 , csc = 7 7 15 , csc = 15 7 15 , csc = 15 7 15 , sec = 15 8 , cot = 7 8 15 , cot = 15 8 , cot = 7 15 , sec = 7 15 , sec = 7 8 15 15 8 7 8 15 15 8 7 8 7 Name: __________________ Class: Date: _____________ 26 Use the following information to determine the remaining five trigonometric values. Rationalize any denominators that contain radicals. csc A = 7 , 270 < A < 360 a. sin A = 4 , cos A = 7 b. sin A = 1 , cos A = 7 c. sin A = 1 , cos A = 7 d. sin A = e. sin A = PAGE 9 4 , tan A = 7 4 , cos A = 7 1 , cos A = 7 1 , tan A = 7 4 , cot A = 4 , cot A = 4 4 , tan A = 7 1 , tan A = 7 4 3 , tan A = 7 4 , cot A = 4 4 , cot A = 4 , sec A = 4 4 , sec A = 7 4 4 7 4 4 4 , sec A = 7 4 4 4 , sec A = 4 7 4 4 3 , cot A = 12 4 3 , sec A = 7 3 12 Name: __________________ Class: Date: _____________ 27 Use the following information to express the remaining five trigonometric values as functions of p . Assume that p Rationalize any denominators that contain radicals. cos = p , 270 < < 360 3 9 p tan = 9 a. 9 cot = tan = 2 9 p cot = p 9 tan = 9 p 9 p csc = sec = 2 p 9 p 3 9 sec = , 9 p 9 tan = 9 p p p PAGE 10 , 2 9 p p 2 2 , 3 2 , 9 p , 3 . 9 p 2 , 3 2 . 3 9 p p 2 2 , 9 sin = sin = 2 . p 3 csc = 3 . p csc = 3 9 p 2 9 p 2 2 sin = sec = 3 , p , p 9 2 2 e. cot = p p 9 d. cot = p 2 p 3 , p 2 p 9 sin = sin = csc = 3 9 p 2 9 p , 2 9 2 p 9 , c. tan = , 2 p cot = p 2 2 p , sec = 3 , p , b. 2 p csc = 3 . p , p 3 9 sec = 9 2 p p , 2 p p 9 2 p 9 p 3 2 , 2 , is positive. Name: __________________ Class: Date: _____________ 28 Use the following information to express the remaining five trigonometric values as functions of u . Assume that u is positive. Rationalize any denominators that contain radicals. cos = u , 0 < < 90 10 1 tan = u 1 a. u 1 cot = 2 u 1 cot = 2 2 u u ,, 10 u 1 u 2 csc = 2 sec = , u 1 cot = u u 1 u 2 u u 1 1 PAGE 11 u u 2 u , 2 , 10u 2 , 10 10 2 1 2 u 2 , 10 2 100 sin = 10u 2 10u . 100 u 10 2 10 , u 10u , 10 , 2 . , sin = 10 10u 10 2 , 10 . u 2 u e. cot = 1 2 10u csc = , 2 1 tan = 10u 10 d. 10 sin = 10 sec = , , sin = 10 , u 2 2 10 tan = csc = , c. u 2 10 . u 2 10 u u cot = u 1 2 sec = , u tan = 10u csc = , u 1 10 2 u 1 sec = , u tan = u b. 2 u 10 , u sec = csc = 10 10u 1 2 u sin = 2 . 10 10u 10 2 , Name: __________________ Class: Date: _____________ 29 Determine the answer that establishes an identity. 2 tan A + 1 = ? 2 2 a. cot A 2 b. cos A 2 c. sin A 2 d. csc A e. sec A 30 Determine the answer that establishes an identity. (1 cos )(csc + cot ) = ? a. sec b. cos c. 1 d. csc e. sin 31 Determine the answer that establishes an identity. sin B + 1 + cos B 1 + cos B = ? sin B a. 2 cos B 32 Use the definition a. = 0.56 radians PAGE 12 b. 2 sec B = s r c. 2 sin B d. 2 csc B e. 1 to determine the radian measure of the angle in the figure below. b. = 0.83 radians c. = 0.2 radians d. = 0.6 radians e. = 0.3 radians Name: __________________ Class: Date: _____________ 33 Convert to radian measure. Express your answer in terms of . 90 a. b. 6 c. 2 7 6 d. 34 Convert to radian measure. Express your answer in terms of 5 3 e. 5 6 . 126 a. 3 10 b. 3 5 c. 7 10 d. e. 2 2 5 35 Convert the radian measure to degrees. 3 a. 530 b. 490 c. 540 d. 660 e. 620 36 Convert the radian measure to degrees. 6 a. 30 b. 45 c. 35 d. 40 e. 50 37 Convert the radian measure to degrees. Round the answer to two decimal places. 5 radians a. 286.31 b. 287.64 c. 284.86 d. 286.48 e. 286.91 38 Evaluate the expression. cos a. PAGE 13 6 3 2 b. 0 c. 2 2 d. 3 2 e. 2 2 Name: __________________ Class: Date: _____________ 39 Evaluate the expression. sin 11 3 3 2 a. 1 2 b. 1 2 c. d. 3 2 2 2 e. 40 Evaluate the expression. 5 6 sin a. 3 2 b. 2 2 3 2 c. d. 1 2 e. 1 2 41 Evaluate the expression. sin a. 9 4 3 2 b. 1 2 c. 2 2 d. 2 2 e. 1 2 42 Evaluate the expression. sec a. 11 3 2 3 3 2 3 3 b. c. d. 2 2 43 Evaluate the expression. csc a. PAGE 14 15 4 2 b. 2 c. 1 d. 2 e. 2 e. 2 Name: __________________ Class: Date: _____________ 44 Find the arc length s . a. 5 b. ft 7 5 ft c. 35 ft 5 7 d. ft 45 Find the area of the sector determined by the given radius r and central angle decimal approximation rounded to two decimal places. r = 14 cm , = ft . Express the answer both in terms of 4 7 2 2 2 2 a. 58 cm , 182.21cm b. 55 cm , 172.79cm PAGE 15 e. 7 2 2 2 2 c. 56 cm , 175.93cm d. 59 cm , 185.35cm 2 e. 60 cm , 188.50cm 2 and as a Name: __________________ Class: Date: _____________ 46 Find the perimeter of the sector and then find the area of the sector. a. Perimeter Area PAGE 16 12.7 in 10.05 in b. Perimeter Area 2 . 10.05 in 12.7 in 2 . c. Perimeter . Area . 11.38 in 11.3 in d. Perimeter Area 2 2 e. Perimeter Area . 11.38 in 11.34 in . . . 11.34 in 11.3 in 2 . . Name: __________________ Class: Date: _____________ 47 You are given the rate of rotation of a wheel as well as its radius. Determine the angular speed. Then determine the linear speed of a point on the circumference of the wheel and of a point halfway between the center of the wheel and the circumference. 7 revolutions/sec r = 17 cm a. Angular speed 14 radians/sec Linear speed on the circumference 14 cm/sec Linear speed halfway between the center and edge b. Angular speed 14 238 cm/sec Linear speed halfway between the center and edge 238 119 119 Linear speed on the circumference 119 14 cm/sec 238 cm/sec radians/sec 238 cm/sec Linear speed halfway between the center and edge e. Angular speed cm/sec cm/sec Linear speed halfway between the center and edge 119 radians/sec Linear speed on the circumference d. Angular speed cm/sec radians/sec Linear speed on the circumference c. Angular speed 119 radians/sec Linear speed on the circumference 14 cm/sec Linear speed halfway between the center and edge 238 cm/sec 48 Suppose that a belt drives two wheels of radii r and R, as indicated in the figure. If r = 6cm , R = 11cm , and the angular speed of the larger wheel is 160 rpm, determine the angular speed of the smaller wheel in radians per minute. (Hint: Because of the belt, the linear speed of a point on the circumference of the larger wheel is equal to the linear speed of a point on the circumference of the smaller wheel.) a. PAGE 17 1760 3 b. 1760 3 c. 880 3 d. 3520 e. 880 3 Name: __________________ Class: Date: _____________ 49 Compute cos t and tan t . 5 and 0 < t < 13 2 sin t = 13 , tan t = 12 a. cos t = 12 5 13 , tan t = 12 b. cos t = 5 12 26 , tan t = 13 c. cos t = d. cos t = 12 , tan t = 13 5 12 e. cos t = 5 , tan t = 12 12 13 5 26 50 Compute tan t . 7 3 sin t = a. tan t = b. tan t = 51 If sin t = a. a. PAGE 18 3 2 < t < c. tan t = 14 2 d. tan t = 6 , find sin ( 7 b. s) = 7 6 c. b. 1 e. tan t = 3 2 7 18 2 6 7 d. 1 6 e. 6 7 ) . b. 0.01 3 5 7 2 t) . = 0.99 , find cos ( 0.01 53 If sin ( a. 2 3 2 2 7 6 52 If cos and d. c. 0.99 < s < 3 2 c. 0 , compute tan s + d. 5 4 0.99 tan ( e. e. 0.1 s) . 2 3 Name: __________________ Class: Date: _____________ 54 Use one of the identities below to evaluate the expression. cos ( t + 2 k ) = cos t or sin ( t + 2 k ) = sin t cos 2 6 1 2 a. b. 0 d. c. 1 1 2 e. 3 2 55 Use the Pythagorean identities to simplify the expression. 2 2 cos t + sin t 2 cot t + 1 2 a. sec PAGE 19 b. 1 2 c. csc 2 d. cos 2 e. sin t