Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
02_ch02_pre-calculas11_wncp_tr.qxd 5/26/11 12:48 PM Page 21 Home Quit Lesson 2.4 Exercises, pages 126–133 A 3. Expand and simplify. a) c) √ √ 61 5 + 22 √ √ √ ⴝ 6( 5) ⴙ 6(2) √ √ ⴝ 30 ⴙ 2 6 √ √ 21 -7 + 22 √ √ √ ⴝ 2(ⴚ7) ⴙ 2 ( 2 ) √ ⴝ ⴚ7 2 ⴙ 2 b) √ √ 51 2 - 42 √ √ √ ⴝ 5( 2 ) ⴚ 5(4) √ √ ⴝ 10 ⴚ 4 5 √ √ d) - 313 + 82 √ √ √ ⴝ ⴚ 3(3) ⴚ 3( 8) √ √ ⴝ ⴚ 3 3 ⴚ 24 √ √ ⴝ ⴚ3 3 ⴚ 2 6 4. Expand and simplify. a) √ √ √ 61 3 + 22 √ √ √ √ ⴝ 6( 3) ⴙ 6( 2) √ √ ⴝ 18 ⴙ 12 √ √ ⴝ3 2ⴙ2 3 ©P DO NOT COPY. √ √ √ b) -2 713 2 - 72 √ √ √ √ ⴝ ⴚ 2 7(3 2) ⴚ 2 7( ⴚ 7 ) √ ⴝ ⴚ 6 14 ⴙ 2(7) √ ⴝ ⴚ 6 14 ⴙ 14 2.4 Multiplying and Dividing Radical Expressions—Solutions 21 02_ch02_pre-calculas11_wncp_tr.qxd 5/26/11 12:48 PM Page 22 Home 5. Expand and simplify. √ √ a) 1 3 + 221 3 - 22 √ √ √ ⴝ 3( 3 ⴚ 2) ⴙ 2( 3 ⴚ 2) √ √ √ ⴝ 3( 3) ⴚ 3(2) √ ⴙ 2( 3 ) ⴚ 2(2) √ √ ⴝ3ⴚ2 3ⴙ2 3ⴚ4 ⴝ ⴚ1 Quit √ b) 1 5 + 222 √ √ ⴝ ( 5 ⴙ 2)( 5 ⴙ 2) √ √ √ ⴝ 5( 5 ⴙ 2) ⴙ 2( 5 ⴙ 2) √ √ √ √ ⴝ 5( 5 ) ⴙ 5(2) ⴙ 2( 5 ) ⴙ 2(2) √ √ ⴝ5ⴙ2 5ⴙ2 5ⴙ4 √ ⴝ9ⴙ4 5 √ √ √ √ √ √ c) 1 3 + 222 d) 12 3 + 3 521 3 - 2 52 √ √ √ √ √ √ √ ⴝ 2 3( 3 ⴚ 2 5) ⴝ ( 3 ⴙ 2)( 3 ⴙ 2 ) √ √ √ √ √ √ √ √ √ ⴙ 3 5( 3 ⴚ 2 5) ⴝ 3( 3 ⴙ 2) ⴙ 2( 3 ⴙ 2 ) √ √ √ √ √ √ √ √ ⴝ 2(3) ⴚ 4( 15) ⴙ 3 15 ⴚ 6(5) ⴝ 3( 3 ) ⴙ 3( 2) ⴙ 2( 3) √ √ √ √ ⴝ 6 ⴚ 4 15 ⴙ 3 15 ⴚ 30 ⴙ 2( 2) √ √ √ ⴝ ⴚ24 ⴚ 15 ⴝ3ⴙ 6ⴙ 6ⴙ2 √ ⴝ5ⴙ2 6 6. Rationalize the denominator. √ 3 2 a) √ ⴝ √2 # √ 3 3 3 √ √ 1 1 b) √ ⴝ √ 2 3 ⴝ 3 5 3 5 3 √ ⴝ ⴝ # √3 3 3 5(3) √ 3 15 B 7. Expand and simplify. √ √ √ √ a) 1 3 + 8212 3 - 12 - 317 3 - 42 √ √ √ √ √ √ ⴝ 3(2 3 ⴚ 1) ⴙ 8(2 3 ⴚ 1) ⴚ 3(7 3) ⴚ 3(ⴚ4) √ √ √ ⴝ 2(3) ⴚ 3 ⴙ 16 3 ⴚ 8 ⴚ 7(3) ⴙ 4 3 √ √ √ ⴝ 6 ⴚ 3 ⴙ 16 3 ⴚ 8 ⴚ 21 ⴙ 4 3 √ ⴝ ⴚ23 ⴙ 19 3 √ √ √ √ √ b) - 13 2 - 521 2 + 72 - 12 2 - 522 √ √ √ √ √ √ √ ⴝ (ⴚ3 2 ⴙ 5)( 2 ⴙ 7) ⴚ (2 2 ⴚ 5)(2 2 ⴚ 5) √ √ √ √ √ √ √ √ √ √ ⴝ ⴚ3 2( 2 ⴙ 7) ⴙ 5( 2 ⴙ 7) ⴚ [2 2(2 2 ⴚ 5) ⴚ 5(2 2 ⴚ 5 ) ] √ √ √ √ √ ⴝ ⴚ3(2) ⴚ 21 2 ⴙ 10 ⴙ 7 5 ⴚ [4(2) ⴚ 2 10 ⴚ 2 10 ⴙ 5] √ √ √ √ ⴝ ⴚ6 ⴚ 21 2 ⴙ 10 ⴙ 7 5 ⴚ 8 ⴙ 4 10 ⴚ 5 √ √ √ ⴝ ⴚ19 ⴚ 21 2 ⴙ 5 10 ⴙ 7 5 22 2.4 Multiplying and Dividing Radical Expressions—Solutions DO NOT COPY. ©P 02_ch02_pre-calculas11_wncp_tr.qxd 5/26/11 12:48 PM Page 23 Home Quit √ √ √ √ √ √ c) 16 7 - 5 5216 7 + 5 52 + 13 7 + 4 522 √ √ √ √ √ √ √ √ √ √ ⴝ 6 7(6 7 ⴙ 5 5 ) ⴚ 5 5(6 7 ⴙ 5 5 ) ⴙ (3 7 ⴙ 4 5)(3 7 ⴙ 4 5 ) √ √ √ √ √ √ √ √ ⴝ 6 7(6 7) ⴙ 6 7(5 5) ⴚ 5 5(6 7) ⴚ 5 5(5 5) √ √ √ √ √ √ ⴙ 3 7(3 7 ⴙ 4 5) ⴙ 4 5(3 7 ⴙ 4 5) √ √ √ √ ⴝ 36(7) ⴙ 30 35 ⴚ 30 35 ⴚ 25(5) ⴙ 3 7(3 7) √ √ √ √ √ √ ⴙ 3 7(4 5) ⴙ 4 5(3 7) ⴙ 4 5(4 5 ) √ √ ⴝ 252 ⴚ 125 ⴙ 9(7) ⴙ 12 35 ⴙ 12 35 ⴙ 16(5) √ ⴝ 252 ⴚ 125 ⴙ 63 ⴙ 24 35 ⴙ 80 √ ⴝ 270 ⴙ 24 35 8. Identify the values of the variable for which each expression is defined, then expand and simplify. √ √ a) w12 w + 32 The radicands cannot be negative, so w √ √ w(2 w ⴙ 3) ⴝ √ √ w(2 w ) ⴙ √ √ » 0. w(3) ⴝ 2w ⴙ 3 w √ √ b) 13 x - 2212 x + 52 » 0. √ √ √ (3 x ⴚ 2)(2 x ⴙ 5) ⴝ 3 x (2 x ⴙ 5) ⴚ 2(2 x ⴙ 5) √ √ √ √ ⴝ 3 x (2 x ) ⴙ 3 x(5) ⴚ 2(2 x) ⴚ 2(5) √ √ ⴝ 6x ⴙ 15 x ⴚ 4 x ⴚ 10 √ The radicands cannot be negative, so x √ √ ⴝ 6x ⴙ 11 x ⴚ 10 √ √ c) 1 c + d22 The radicands cannot be negative, so c » 0 and d » 0. √ √ 2 √ √ √ √ ( c ⴙ d ) ⴝ ( c ⴙ d )( c ⴙ d ) √ √ √ √ √ √ ⴝ c( c ⴙ d) ⴙ d( c ⴙ d) √ √ ⴝ c ⴙ cd ⴙ cd ⴙ d √ ⴝ c ⴙ 2 cd ⴙ d √ √ √ √ d) 12 x - 3 y212 x + 3 y2 The radicands cannot be negative, so x » 0 and y » 0. The expression is the binomial factors of a difference of squares. √ √ √ √ √ √ (2 x ⴚ 3 y )(2 x ⴙ 3 y ) ⴝ (2 x )2 ⴚ (3 y )2 ⴝ 4x ⴚ 9y ©P DO NOT COPY. 2.4 Multiplying and Dividing Radical Expressions—Solutions 23 02_ch02_pre-calculas11_wncp_tr.qxd 5/26/11 12:48 PM Page 24 Home Quit √ √ √ √ √ √ e) 12 a - b213 a - 4 b2 - 1 a - 3 b22 The radicands cannot be negative, so a » 0 and b » 0. √ √ √ √ √ 2 (2 a ⴚ b)(3 a ⴚ 4 b) ⴚ ( a ⴚ 3 b) √ √ √ √ √ √ √ √ √ √ ⴝ 2 a(3 a ⴚ 4 b) ⴚ b(3 a ⴚ 4 b) ⴚ ( a ⴚ 3 b)( a ⴚ 3 b) √ √ √ √ √ √ √ √ ⴝ 2 a(3 a ) ⴚ 2 a(4 b) ⴚ b(3 a ) ⴚ b (ⴚ4 b) √ √ √ √ √ √ ⴚ [ a( a ⴚ 3 b) ⴚ 3 b( a ⴚ 3 b) ] √ √ √ √ √ √ ⴝ 6a ⴚ 8 ab ⴚ 3 ab ⴙ 4b ⴚ [ a( a ) ⴚ a(3 b ) √ √ √ √ ⴚ 3 b( a ) ⴚ 3 b( ⴚ3 b ) ] √ √ √ ⴝ 6a ⴚ 11 ab ⴙ 4b ⴚ [a ⴚ 3 ab ⴚ 3 ab ⴙ 9b] √ √ √ ⴝ 6a ⴚ 11 ab ⴙ 4b ⴚ a ⴙ 3 ab ⴙ 3 ab ⴚ 9b √ √ ⴝ 5a ⴚ 5 ab ⴚ 5b 9. Simplify. Describe the strategy you used in part c. √ √ √ 2 5 + 4 5 8 - 2 5 √ a) √ b) 5 6 √ √ √ √ √ (2 5 ⴙ 4) # 5 (5 8 ⴚ 2 5) # 6 √ √ √ √ ⴝ ⴝ 5 √ 5 √ √ 2 5# 5ⴙ4# 5 √ √ ⴝ 5 √ ⴝ # 5 10 ⴙ 4 5 5 √ 6 6 √ √ √ 5 8# 6ⴚ2 5# 6 √ √ ⴝ ⴝ # 6 √ 6 √ 5 48 ⴚ 2 30 6 √ √ 20 3 ⴚ 2 30 ⴝ 6 √ 10 3 ⴚ ⴝ 3 √ √ - 3 12 + 2 3 √ c) 18 √ √ ⴝ ⴚ6 3 ⴙ 2 3 √ 3 2 √ √ ⴚ4 3 # 2 √ ⴝ √ 3 2 2 √ √ ⴚ4 3 # 2 ⴝ √ √ 3 2# √ ⴚ4 6 ⴝ 6 √ ⴝ 2 √ 30 √ √ 4 2 - 6 5 √ d) 2 3 √ √ ⴝ 4 2ⴚ6 5 √ √ 2 3 √ # √3 3 √ √ √ 4 2# 3ⴚ6 5# 3 √ √ ⴝ ⴝ √ 2 3 √ √ √ # 3 4 6 ⴚ 6 15 6 2 6 ⴚ 3 15 ⴝ 3 ⴚ2 6 3 In part c, I first simplified the radicals, then collected like terms. I was left with an expression with a monomial in the numerator and in the denominator. I rationalized the denominator, then removed a common factor. 24 2.4 Multiplying and Dividing Radical Expressions—Solutions DO NOT COPY. ©P 02_ch02_pre-calculas11_wncp_tr.qxd 5/26/11 12:48 PM Page 25 Home 10. Simplify. √ - 5 a) √ 7 - 3 √ √ √ 5 3 + 2 √ b) √ 3 - 2 √ √ √ √ (5 3 ⴙ 2) # ( 3 ⴙ 2) √ √ √ ⴝ √ ( 3 ⴚ 2) ( 3 ⴙ 2) √ √ √ √ √ √ 5 3( 3 ⴙ 2) ⴙ 2( 3 ⴙ 2) √ √ ⴝ ( 3)2 ⴚ ( 2)2 √ √ √ √ √ √ √ √ 5 3( 3) ⴙ 5 3( 2) ⴙ 2( 3) ⴙ 2( 2) √ # (√7 ⴙ 3) ⴚ 5 ⴝ √ ( 7 ⴚ 3) ( 7 ⴙ 3) √ √ √ ⴚ 5( 7) ⴚ 5(3) √ ⴝ ( 7)2 ⴚ (3)2 √ √ ⴝ ⴝ ⴝ ⴚ 35 ⴚ 3 5 7ⴚ9 ⴝ ⴚ2 ⴝ 17 ⴙ 6 6 √ 35 ⴙ 3 5 2 √ √ 5 8 - 3 2 √ c) √ 32 + 3 2 Simplify first. √ √ √ √ ⴝ √ √ √ 5 8ⴚ3 2 10 2 ⴚ 3 2 32 ⴙ 3 2 4 2ⴙ3 2 √ 3ⴚ2 √ √ ⴝ 15 ⴙ 5 6 ⴙ 6 ⴙ 2 √ √ √ ⴚ ( 35 ⴙ 3 5 ) √ Quit √ ⴝ √ 7 2 7 2 √ 6 3 - 2 √ d) 5 + 4 2 √ √ (6 3 ⴚ 2) # (5 ⴚ 4 2) √ √ ⴝ (5 ⴙ 4 2) (5 ⴚ 4 2) √ √ √ 6 3(5 ⴚ 4 2) ⴚ 2(5 ⴚ 4 2) √ ⴝ (5)2 ⴚ (4 2)2 √ √ √ √ 6 3(5) ⴚ 6 3(4 2) ⴚ 2(5) ⴚ 2(ⴚ4 2) ⴝ ⴝ1 ⴝ √ 25 ⴚ 32 √ √ 30 3 ⴚ 24 6 ⴚ 10 ⴙ 8 2 ⴚ7 √ √ √ ⴚ 30 3 ⴙ 24 6 ⴙ 10 ⴚ 8 2 ⴝ 7 11. Rationalize each denominator. Describe any patterns in each list of quotients. Predict the next three quotients in each pattern. 1 1 1 √ ,√ √ ,√ √ ,... 5 + 2 6 + 2 7 + 2 a) √ √ 1 √ 5ⴙ √ 1 √ 2 2 √ √ ( 6 ⴚ 2) 1 # √ √ √ √ ⴝ ( 6 ⴙ 2) ( 6 ⴚ 2) √ √ ⴝ ⴝ 5ⴚ 3 2 √ 1 √ 7ⴙ 2 ⴝ √ 1 √ √ # (√7 ⴚ √2) √ ( 7 ⴙ 2) ( 7 ⴚ 2) √ √ ⴝ ©P 6ⴙ √ √ ( 5 ⴚ 2) 1 # √ √ √ √ ⴝ ( 5 ⴙ 2) ( 5 ⴚ 2) √ √ 7ⴚ 5 DO NOT COPY. 2 6ⴚ 4 2 The numerator of the quotient is the conjugate of the denominator in the original expression. The denominator is the absolute value of the difference of the radicands. The next three quotients are: √ 8ⴚ 6 √ √ √ √ , , 2 9ⴚ 7 2 10 ⴚ 8 √ 2 2.4 Multiplying and Dividing Radical Expressions—Solutions 25 02_ch02_pre-calculas11_wncp_tr.qxd 5/26/11 12:48 PM Page 26 Home √ √ 3 Quit √ 5 √ ,√ √ ,√ √ ,... 3 + 2 4 + 3 5 + 4 √ √ b) √ 3 √ 3ⴙ 4 √ √ 2 √ √ ⴝ √ 4ⴙ √ # (√3 ⴚ √2) 3 5 √ 5ⴙ 4 √ √ 5 √ # (√5 ⴚ √4) √ ( 5 ⴙ 4) ( 5 ⴚ 4) ⴝ5ⴚ √ 20 √ √ # (√4 ⴚ √3) 4 √ ⴝ4ⴚ 6 √ ⴝ √ 3 √ √ ( 4 ⴙ 3) ( 4 ⴚ 3) √ √ √ ⴝ √ √ ( 3 ⴙ 2) ( 3 ⴚ 2) ⴝ3ⴚ 4 12 The first term of the quotient is the square of the numerator in the original expression. The second term is the square root of the product of the radicands in the denominator of the original expression. The next three quotients are: √ √ √ 6 ⴚ 30, 7 ⴚ 42, 8 ⴚ 56 12. The dimensions of the Parthenon of ancient Greece are thought to be based on the golden rectangle. The length of a golden rectangle is 2 times as long as its width. √ 5 - 1 2 to 3 decimal places. 5 - 1 a) Write the value of √ Use a calculator. √ 2 5ⴚ1 ⬟ 1.618 2 to 3 decimal places. 5 - 1 b) Write the value of the reciprocal of √ √ 5ⴚ1 ⬟ 0.618 2 Reciprocal: c) Compare the values in parts a and b. How are they related? 1.618 ⴚ 0.618 ⴝ 1; the values have a difference of 1. 2 5 - 1 d) Write an expression to represent the difference between √ and its reciprocal. Simplify the expression. What do you notice? √ A common denominator is: 2( 5 ⴚ 1) √ √ 2 5ⴚ1 ⴚ √ √ ( 5 ⴚ 1)( 5 ⴚ 1) √ 2( 5 ⴚ 1) √ √ 4 ⴚ (5 ⴚ 5 ⴚ 5 ⴙ 1) √ ⴝ 2 5ⴚ2 √ 2 5ⴚ2 ⴝ √ 2(2) 5ⴚ1 ⴝ √ ⴚ 2 2( 5 ⴚ 1) 2 5ⴚ2 ⴝ1 The expression simplifies to 1, which is the same as the difference between the estimated decimal values in part c. 26 2.4 Multiplying and Dividing Radical Expressions—Solutions DO NOT COPY. ©P 02_ch02_pre-calculas11_wncp_tr.qxd 5/26/11 12:48 PM Page 27 Home Quit C 13. a) Simplify. √ √ 5 3 ii) √ - √ 12 8 2 1 1 i) √ - √ 5 3 A common denominator is: √ Simplify first. 15 √ √ √ √ 2 5 3 2 5 3 √ ⴚ √ ⴝ √ ⴚ √ √ √ 1# 3 1# 5 1 1 √ ⴚ√ ⴝ√ √ ⴚ√ √ 5 3 5 √ ⴝ # 3 3 √ 3ⴚ # 12 5 5 √ √ √ √ ( 3 ⴚ 5) # 15 √ √ ⴝ ⴝ 15 ⴝ 2 3 2 2 ⴝ 15 √ √ √ 3 # 15 ⴚ 5 # 15 45 ⴚ 15 2 3# 2 2 ⴚ 15 2 2 # 3 √ 2 6 2 6 √ ⴝ 3 5ⴚ5 3 15 √ √ ⴚ13 75 √ 2 2 √ 6 ⴝ √ #√ √ ( 15)2 √ √ ⴝ 2 3 √ √ √ √ √ √ 2 5 3 2# 2 5 3# 3 √ ⴚ √ ⴝ √ √ ⴚ √ √ 15 √ 8 A common denominator is: 2 6 √ 6 ⴚ13 6 12 √ 6 2 √ - √ √ 2 5 + 3 3 7 - 2 3 iii) √ Rationalize the denominator of each term, then subtract. √ 6 √ √ 2 5ⴙ3 3 ⴝ √ 7ⴚ2 3 √ √ ⴝ 2 √ ⴚ√ √ # (2√5 ⴚ 3√3) ⴚ 6 √ √ (2 5 ⴙ 3 3) (2 5 ⴚ 3 3) √ √ √ √ 2 30 ⴚ 3 18 ⴚ 20 ⴚ 27 √ √ 2 30 ⴚ 9 2 ⴝ ⴚ ⴚ7 √ √ 2 √ √ # (√7 ⴙ 2√3) √ √ ( 7 ⴚ 2 3) ( 7 ⴙ 2 3) 14 ⴙ 2 6 7 ⴚ 12 √ 14 ⴙ 2 6 ⴚ5 √ ⴚ 2 30 ⴙ 9 2 ⴝ ⴙ 7 √ √ √ √ √ 14 ⴙ 2 6 5 Common denominator: 35 √ √ 5( ⴚ 2 30) ⴙ 5(9 2) ⴙ 7 14 ⴙ 7(2 6) ⴝ 35 √ √ √ √ ⴚ 10 30 ⴙ 45 2 ⴙ 7 14 ⴙ 14 6 ⴝ 35 b) How are the strategies you used in part a similar to those used to add and subtract quotients of integers? How are they different? The strategies are similar in that I still have to find a common denominator to add or subtract the terms. The strategies are different in that I have to rationalize the denominators. ©P DO NOT COPY. 2.4 Multiplying and Dividing Radical Expressions—Solutions 27 02_ch02_pre-calculas11_wncp_tr.qxd 5/26/11 12:48 PM Page 28 Home 14. Rationalize the denominator. 3 a) √ 3 4 √ 3 ( 4)2 # √ √ √ ⴝ 3 3 4 4 ( 3 4)2 √ 3( 3 4)2 3 ⴝ 4 3 b) √ 4 To make the denominator an integer, √ √ I multiply 3 4 by ( 3 4 )2. 3 Quit To make the denominator an integer, √ √ I multiply 4 3 by ( 4 3 )3. √ 4 ( 3)3 # √ √ √ ⴝ 4 4 3 3 ( 4 3)3 √ 4( 4 3)3 4 4 ⴝ 4 3 √ √ 2 x + 3 y √ , x, y ≥ 0 in simplest form. 15. Write √ x - y √ √ √ √ √ √ 2 xⴙ3 y (2 x ⴙ 3 y) # ( x ⴙ y ) √ √ √ ⴝ √ √ √ xⴚ y ( x ⴚ y) ( x ⴙ y ) √ √ √ √ √ √ 2 x( x ⴙ y) ⴙ 3 y( x ⴙ y) √ √ ⴝ ( x)2 ⴚ ( y)2 √ √ ⴝ 2x ⴙ 2 xy ⴙ 3 xy ⴙ 3y xⴚy √ 2x ⴙ 5 xy ⴙ 3y ⴝ xⴚy 16. Decide if it is possible to determine two whole numbers a and b that satisfy each condition. Justify your answers. √ √ √ a # b and √ are rational. a) a b Yes, it is possible. When a and b are perfect squares, b ⴝ 0, √ a √ a is a product of natural numbers and √ is a quotient of natural b √ √ √ 4 2 numbers. For example, 4 # 9 ⴝ 2 # 3, or 6, and √ ⴝ . 9 b) # √b 3 √ √ a a # b and √ are irrational. √ b Yes, it √ is possible. When a and b are different prime numbers, a and √ are irrational. For example, b √ 2 √ a # √b # √3 ⴝ √6 or 2.4494 Á , and √ 2 √ ⴝ 0.8164 Á . 3 28 2.4 Multiplying and Dividing Radical Expressions—Solutions DO NOT COPY. ©P